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Abstract Information regarding the simultaneous evaluation of tillage and fertilization on the soil

biological traits in canola production is not available. Therefore, field experiments were conducted

in 2007–2010 in a split plot based on randomized complete block design with three replications.

Main plots consisted of conventional tillage (CT); minimum tillage (MT) and no tillage (NT).

Six strategies of fertilization including (N1): farmyard manure (cattle manure); (N2): compost;

(N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + com-

post + chemical fertilizers and (N6): control, were arranged in sub plots. Results showed that the

addition of organic manure increased the soil microbial biomass. No tillage system increased micro-

bial biomass compared to other tillage systems. The activities of all enzymes were generally higher

in the N4 treatment. The activity of phosphatase and urease tended to be higher in the no tillage

treatment compared to the CT and MT treatments.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
732916; fax: +98 8716387110.
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1. Introduction

Conventional canola production utilizing tillage, chemical fer-

tilizers, and irrigation can improve the grain yield. However,
this intensive production system also can degrade soil quality,
enhance runoff by covering the soil with an impervious surface,

contribute to surface and impurity pollution and add to pro-
duction cost (Rice et al., 2001). Alternative systems have been
developed that use renewable organic resources and minimize

tillage to build soil organic matter and enhance soil quality.
Fertilization is one of the soil and crop management practices,
which exert a great influence on soil quality (Chander et al.,

1998; Mohammadi et al., 2011). Farmyard manure (FYM)
and compost have the potential to increase of soil organic

mailto:kh.mohammadi@modares.ac.ir
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matter, in addition to making some nutrient input and stabiliz-
ing soil structure. It is well known that organic amendments,
such as plant residues, manures and composts have a number

of benefits in soil physical and chemical properties. Many re-
ports have also revealed different aspects of biology of soils
amended with organic matters, including the number of fungi

and bacteria (Nishio and Kusano, 1980), biomass of bacteria
and fungi (Lundquist et al., 1999), enzyme activities (Kandeler
et al., 1999) and biochemical properties (Lynch, 1983). Micro-

bial communities perform necessary ecosystem services, includ-
ing nutrient cycling, pathogen suppression, stabilization of soil
aggregates, and degradation of xenobiotics. Soil microbial bio-
mass, enzyme activity, and community structure have been

shown to respond to agricultural management practices. Alter-
nation to no tillage (NT) or increased cropping intensity in-
creases microbial biomass C (MBC) in response to increase

nutrient reserves and improved soil structure and water reten-
tion (Biederbeck et al., 2005; Mohammadi, 2011).

Enzyme activities have been indicated as soil properties suit-

able for use in the evaluation of the degree of alteration of soils
in both natural and agro-ecosystems. Soil microbial properties
have a strong correlation with soil health. Some researches have

already suggested the favorable effects of conservation tillage
practices and organic fertilizers on soil enzyme activities (Kan-
deler et al., 1999). The activity of dehydrogenase is considered
an indicator of the oxidative metabolism in soils and thus of the

microbiological activity, because it is exclusively intracellular
and, theoretically, can function only within viable cells. Urease
catalyzes the hydrolysis of urea into CO2 and NH3, which is of

specific interest because urea is an important N fertilizer. Ure-
ase is released from living and disintegrated microbial cells, and
in the soil it can exist as an extracellular enzyme absorbed on

clay particles or encapsulated in humic complexes. Phospha-
tases catalyze the hydrolysis of both organic phosphate (P) es-
ters and anhydrides of phosphoric acid into inorganic P.

Phosphatase activity may originate from the plant roots and
associated mycorrhiza and other fungi, or from bacteria (Taraf-
dar and Marschner, 1994).

The objective of this study was to determine the short-term

(three years) effects of conservation management practices,
such as no-tillage, reduced tillage and organic fertilizers on
microbiological soil quality indicators in the canola field.
2. Materials and methods

2.1. Site description and experimental design

The experiments were conducted from 2007 to 2010 at the Agri-

cultural Research Center of Sanandaj (ARCS), Kurdistan
province, the northwest region of Iran (35�16 lat. N; 47�1 long.
E, 1405 m above sea level). The dominant soil type is Inceptisol.

The annual temperature averages 12 �C and the annual rainfall
averages 512 mm. Experiments were arranged in the split plot
based on randomized complete block design with three replica-
tions. Main plots consisted of conventional tillage (CT) (mold-

board plowing with average depth of 30 cm + two shallow
disks followed by secondary tillage with a soil grubber and har-
row for seedbed preparation); minimum tillage (MT) (disk har-

rowing with average depth of 15 cm + one shallow disk
harrowing) and no tillage (NT). In NT, crop residues cut by
the combine were chopped and spread evenly with a
combine-attached chopper. NT plots were seeded with a NT
seed drill. Sub-plots were six strategies of supplying the basal
fertilizer requirements of canola, including (N1): 30 ton farm-

yard manure ha�1 (cattle manure); (N2): 15 ton compost
ha�1; (N3): 100 kg triple super phosphate ha�1 + 150 kg Urea
ha�1; (N4): 15 ton farmyard manure ha�1 + 7.5 ton compost

ha�1; (N5): 10 ton farmyard manure ha�1 + 5 ton compost
ha�1 + 50 kg triple super phosphate ha�1 + 75 kg Urea ha�1

and (N6) Control (without fertilizer). The amounts of chemical

and organic fertilizers were determined according to soil test
analysis. Soil texture was clay loam (28% sand, 42% clay and
30% silt) with 0.8% organic matter and a pH of 7.6. The farm-
yard manure and compost were also analyzed according to Pe-

ters et al. (2003) method for chemical and nutrients properties
(Table 1). Farmyard manure, compost and chemical fertilizers
were added to plots before sowing canola. For CT and MT

chemical fertilizer or organic fertilizers were applied and then
incorporated with tillage, while for NT treatments, fertilizers
were surface applied on the plots. Urea fertilizer was applied

equally two times before sowing canola and flowering.
Canola seeds were planted on September 22, 2007, Septem-

ber 12, 2008 and September 18, 2009. Main plot size was of

15 · 20 m and spaces between main plots were three meters.
The field was irrigated twice with a 7–9 day interval for the bet-
ter germination of seeds. The field was also irrigated at stem-
ming and flowering along with fertilization, and at podding

and grain filling. Weeds removed by hand in all plots.

2.2. Soil sampling

For soil physical and chemical analyses, soil pH was measured
in suspensions with a soil to water (w/w) ratio of 1:2.5. Organic
carbon was measured by a colorimetric method with an exter-

nal heating procedure (Anderson and Ingram, 1993) and total
nitrogen in soil was determined using the Kjeldahl method.
Soil for microbiological analysis was sampled in canola plots.

Soil samples were collected in crop rhizosphere at flowering
stage of canola growth. Plants were excavated from four ran-
dom 0.5-m lengths of a row from each plot. Loose soil was
shaken off the roots, and the soil that adhered strongly to

the roots was carefully brushed from the roots and kept as rhi-
zosphere soil. The four rhizosphere samples from each plot
were combined, passed through a 2-mm sieve and stored at

4 �C until required for analysis.

2.3. Microbial biomass

Microbial biomass carbon (MBC) and biomass N (MBN) con-
tents were estimated by chloroform fumigation extraction
(Vance et al., 1987). One 20-g portion (in dry weight) rewetted

to 60% was fumigated for 24 h at 25 �C with ethanol-free
CHC13. Following fumigant removal, the soil was extracted
with 60 mL 0.5 mol L�1 K2SO4 by 30 min horizontal shaking
at 200 r min�1 and filtered. The non-fumigated portion was

extracted similarly at the time fumigation commenced. Organic
C in extracts was determined by a dichromate digestion method
and unused dichromate titrated against ferrous ammonium sul-

fate. Microbial biomass C was calculated as follows: Microbial
biomass C= EC/kEC, where EC = organic C extracted from
fumigated soils� organic C extracted from non-fumigated soils

and kEC = 0.38 (Vance et al., 1987). The Kjeldahl digestion–
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distillation–titration method was used to determine the total N
in the extracts. Microbial biomass N was calculated as follows:
Microbial biomassN= EN/kEN, where EN = totalN extracted

from fumigated soils � total N extracted from non-fumigated
soils and kEN = 0.45 (Brookes et al., 1985). Each sample had
duplicate analyses and results are expressed on a moisture free

basis.

2.4. Soil enzyme activities

Protease (EC 3.4.21–24) activity was determined according to
Kandeler (1996). One g field-moist soil was incubated in a
rotating water bath for 2 h in 5 ml casein solution (2%, w/

v) and 5 ml 0.05 M Tris buffer (pH 8.1) at 50 �C. The reac-
tion was stopped with 5 ml 0.92 MTCA. Folin-Ciocalteu’s re-
agent was added to form a colored complex with the
aromatic amino acids formed during the incubation, and

the absorbance was determined at 700 nm (Perkin Elmer
Lambda 25 UV/VIS). To measure alkaline (EC 3.1.3.1) and
acid phosphatase (EC 3.1.3.2) enzymes (Mandal et al.,

2007) p-nitrophenyl phosphate disodium (0.115 M) was used
as the substrate. Soil samples (1 g) were treated with 2 ml
of 0.5 M sodium acetate buffer with a pH of 5.5 (using acetic

acid) (Naseby and Lynch, 1997) and 0.5 ml of substrate and
were incubated at 37 �C for 90 min. Cooling at 2 �C for
15 min inhibited the reaction. The treated samples were then
mixed with 2 ml of 0.5 M NaOH and 0.5 ml of 0.5 M CaCl2
(to inhibit the enzyme reaction) and centrifuged at 4000 rpm
for 5 min. Using spectrometry at 398 nm the produced p-
nitrophenol was measured (Tabatabai and Bremner, 1969).

Urease (EC 3.5.1.5) activity was measured using 0.5 M urea
as a substrate in 0.1 M phosphate buffer at pH 7.1 (Nannipi-
eri et al., 1974). The NHþ4 -N produced by urease activity was
Table 1 Chemical characteristics of farmyard manure and compos

Characteristic pH N (%) P (%) K (%) Ca

Farmyard manure 7.45 0.47 0.49 0.31 274

Compost 7.21 0.78 1.15 0.51 195
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Figure 1 Effect of tillage practices on MBN (A) and MBC (B) in soi
determined using a flow injection analyser (FIAStar, Tecator,
S). To account for the NHþ4 -N fixation by soils, NHþ4 -N solu-
tions with concentrations in the range of those released by

urease activity were incubated with these soils. Dehydroge-
nase activity was determined by the reduction of triphenyl
tetrazolium chloride (TTC) to triphenyl formazan (TPF) as

described by Serra-Wittling et al. (1995) with modifications.
Briefly, moist soil (2 g) was treated with 2.5 ml of 1%
TTC–Tris buffer (pH 7.6), and then incubated at 37 �C in

darkness for 24 h. All enzyme activity values were calculated
based on of oven-dry (105 �C) weight of soil.

2.5. Statistical analysis

Using SAS (SAS Institute, 2003) data were subjected to anal-
ysis of variance, including combined analysis. Analysis of var-
iance (ANOVA) was used to detect the treatments effect on

measured variables, and the least significant difference (LSD)
was used to compare means of measured enzyme activities
and microbial biomass carbon (P < 0.05). In addition correla-

tion coefficients among soil enzymes and microbial biomass
were also determined.

3. Results and discussion

3.1. Microbial biomass

The results indicated statistically significant (p< 0.05) differ-
ences in the level of MBC in the soil between various methods

of tillage and fertilization. There were no significant differences
between interaction effect of tillage and fertilization on MBC.
The pattern of variation of MBC in the soil during the three
years of study was similar. The addition of compost or FYM,
t applied to the soil.
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significantly (p < 0.05) increased the soil MBC in comparison
to the chemical fertilizer and the control. Higher levels of
MBC in N1 and N2 treatments could be due to greater amounts

of biogenic materials like mineralizable nitrogen, carbohy-
drates and water soluble carbon. Integrated use of chemical fer-
tilizers and organic matter (N5) brings in more MBC in soil

compared to their single application (Table 2). Similar observa-
tions were recorded by Leita et al. (1999). Fertilizers may meet
up the demand of mineral nutrition required by the microbes

but not that of carbon, which is a major component of micro-
bial cells. Integrated application of organic and inorganic mate-
rials provides a balanced supply of mineral nutrients as well as
carbon.

NT system increased MBC compared to other tillage sys-
tems (Fig. 1).

Conventional tillage decreases soil organic matter and soil

structure, and it is due to decrease soil microbial communities.
Madejon et al. (2007) observed that conservation tillage in-
creased MBC and microbial activities. Along with microbial

biomass changes, one might also expect shifts in microbial
community structure to occur due to the temporal increase
in microbial niche, water retention or reduced physical distur-

bance with no-tillage.
Analysis of variance showed that tillage, fertilization and

interaction of them had significant effects on MBN. The eval-
uation interaction of tillage and fertilization showed that the

MBN content was from 59.11 to 167.96 mg N kg�1 soil
(Fig. 2). Nitrogen microbial biomass contents were the highest
in the NTN5 treatment.

Higher levels of microbial biomass in organic manure
treated entire soil could be due to greater amounts of bio-
genic materials like mineralizable nitrogen, water soluble car-

bon and carbohydrates. Fertilizers may meet up the demand
of mineral nutrition required by the microbes but not that of
carbon, which is a major component of microbial cells. Inte-

grated application of organic and inorganic materials pro-
vides a balanced supply of mineral nutrients as well as
carbon. MBN is considered to be more sensitive than total
organic nitrogen to indicate soil changes because it is related
F

b

ti

fe

ic
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to soil microorganisms that are sensitive to soil variations
(Liu et al., 2003). The soil microbial biomass nitrogen is
the active component of the soil organic pool. Ren and

Stefano (2000) suggested that the MBC and MBN can pro-
vide an effectively early warning of the improvement or dete-
rioration of soil quality as a result of different management

practices (Powlson, 1994). Thus, the changes in biomass mea-
sured over relatively short periods can indicate the trends in
total organic matter content long before these can be detected

by chemical analysis. The soil microbial biomass carbon is
the early indicator of soil organic carbon, soil microbial bio-
mass nitrogen involved in soil nitrogen mineralization.
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Figure 3 Effect of tillage practices on protease (A), acid phosphatase

activity in soil. (CT: conventional tillage, MT: minimum tillage; NT: n
3.2. Soil enzyme activities

The activities of all enzymes varied significantly in different
fertilization methods. Only, urease activity was significantly
affected by the two-way interactions of fertilizers · tillage.

The pattern of variation of enzyme activity in the soil during
the three years of study was similar; however, urease activity
was higher in the first year. The activities of all enzymes were
generally higher in the N4 treatment than in the unfertilized

and chemical fertilizer treatments (Table 2). There were no dif-
ferences in phosphatase activity between the compost treat-
ment and the FYM treatments. The dehydrogenase,
b

a

MT NT

c

b a

0

10

20

30

40

50

60

70

CT MT NT

A
lk

al
in

e 
ph

os
ph

at
as

e 
(µ

g 
PN

P 
g-1

h-1
)

b

a a

0

10

20

30

40

50

60

70

CT MT NT

D
eh

yd
ro

ge
na

se
  (

µ
g 

tr
ip

he
ny

lf
or

m
az

an
 g

-1

24
h-1

)

)

)

(B), alkaline phosphatase (C), urease (D), and dehydrogenase (E)

o tillage).



Table 3 Correlation coefficients between enzyme activity and microbial biomass.

MBN MBC Protease Acid phosphatase Alkaline phosphatase Urease Dehydrogenase

MBN 1

MBC �0.123 ns 1

Protease 0.715 ** 0.873 ** 1

Acid phosphatase 0.134 ns 0.712 ** 0.665 ** 1

Alkaline phosphatase 0.098 ns 0.389 ns 0.632 ** 0.733 ** 1

Urease 0.789 ** 0.812 ** 0.332 ns 0.523 ** 0.249 ns 1

Dehydrogenase 0.456* 0.671 ** 0.703 ** 0.783 ** 0.674 ** 0.512 ** 1

Significance levels of correlations: * P < 0.05; ** P < 0.01; ns P > 0.05.
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phosphatase and urease activities in the N3 treatment were sig-
nificantly lower than in the FYM and compost treatments. As

shown in Table 2, alkaline and acid phosphatase generally in-
creased with compost application. Increased phosphatase
activity could be responsible for the hydrolysis of organically

bound phosphate into free ions, which were taken up by
plants. Tarafdar and Marschner (1994) reported that plants
can utilize organic P fractions from the soil by phosphatase

activity enriched in the soil–root interface. The observed in-
creases in enzyme activities due to organic manure are in
accordance with previous studies. Martens et al. (1992) re-
ported that addition of the organic matter maintained high lev-

els of phosphatase activity in soil during a long term study.
Giusquiani et al. (1994) reported that phosphatase activities in-
creased when compost was added at rates of up to 90 ton ha�1

and the phosphatases continued to show a linear increase with
compost rates of up to 270 ton ha�1 in a field experiment.
Application of nitrogen fertilizers significantly decreased ure-

ase activity while addition of organic manure increased its
activity. The authors concluded that because the chemical fer-
tilizers used in the experiments contained NH4+ and that the
reaction products of urease being NH4+, microbial induction

of urease activity had been inhibited. The effect of organic
manures on enzyme activities is probably a combined effect
of a higher degree of stabilization of enzymes to humic sub-

stances and an increase in microbial biomass with increased
soil carbon concentration (Martens et al., 1992). This is also
indicated by the strong correlation of protease, acid phospha-

tase and urease with microbial soil C concentrations. Only
alkaline phosphatase activity showed statistically non-signifi-
cant, correlations with MBC (Table 3). Compost application

increased dehydrogenase activity (Table 2). Stronger dehydro-
genase activity in compost applied plots may be due to higher
organic matter content (Wlodarczyk et al., 2002). Marinari
et al. (2000) reported that a higher level of dehydrogenase

activity was observed in soil treated with compost and farm-
yard manure compared to soil treated with mineral fertilizer.

The enzyme activity in organic amendment soil increased

by an average two to fourfold compared with the un-amended
soil. Application of compost caused a significant increase in
dehydrogenase activity (Martens et al., 1992). These results

were similar to our finding that dehydrogenase in rhizosphere
soil of N2 treatment was average three times higher than that
of mineral fertilizer (N3) treatments.

In addition, the higher organic matter in the compost treat-
ment may supply more favorable conditions for the accumula-
tion of enzymes in the soil matrix, since soil organic constituents
are thought to be important in forming stable complexes with
free enzymes. Soil factors, including redox potential (Eh) and

pH can affect the rate of enzymemediated reactions by influenc-
ing the redox status and ionization respectively, as well as solu-
bility of enzymes, substrates and cofactors. In addition, some

enzymes may predominate at specific pH levels. Application
of compost and FYM caused a faster and higher reduction of
soil, and at the same time increased the soil pH. Application

of chemical fertilizers decreased soil pH and compost amended
plots increased soil pH in a tropical Aeric Endoaquept planted
to rice under flooded condition (Nayak et al., 2007). Soil dehy-
drogenase activity showed a negative correlation with Eh and a

positive relationship with Fe2+ content, suggesting aeration
status is the main factor determining the activity (Wlodarczyk
et al., 2002).

Results showed significant differences (p< 0.05) in the en-
zyme activities in the soil between various methods of tillage.
The activity of acid, alkaline phosphatase and protease tended

to be higher in the NT treatment compared to the MT and CT
treatments. However, the activity of urease and dehydrogenase
was similar in NT and MT treatments (Fig. 3). Finding of Jin
et al. (2009) has already suggested the positive effects of conser-

vation tillage practices on soil enzyme activities. The generally
higher enzyme activities in NT mainly resulted from the larger
water availability in the plots rather than the better soil fertilities.

Urease activity under NTN4 treatment in the three years of our
studywas the highest of all treatments. In this treatment co-appli-
cation of compost and farmyard manure in no tillage system

assembles good condition for urease activity. The higher bulk
density could account for this difference. Enzyme activities were
shown to be linearly related to soil bulk density (Li et al., 2002).
4. Conclusion

The present study provides information on soil microbial bio-

mass dynamics and biocatalytic activities as influenced by or-
ganic and inorganic fertilization in canola production
conditions. The results demonstrate that microbial biomass
and soil enzyme activity are sensitive in discriminating between

organic fertilizers and inorganic fertilizer application on a
short-term basis. Soil microbial biomass and enzymatic proper-
ties were also closely related with the C inputs. Consistent dis-

tinctions in enzyme activities were observed between different
tillage practices. These differences were most pronounced be-
tween no tillage at the one hand and conventional and reduced

tillage at the other hand.
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