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Tropical tree communities are shaped by local-scale habitat heterogeneity in

the form of topographic and edaphic variation, but the life-history stage at

which habitat associations develop remains poorly understood. This is

due, in part, to the fact that previous studies have not accounted for the

widely disparate sample sizes (number of stems) that result when trees are

divided into size classes. We demonstrate that the observed habitat structur-

ing of a community is directly related to the number of individuals in the

community. We then compare the relative importance of habitat heterogen-

eity to tree community structure for saplings, juveniles and adult trees

within seven large (24–50 ha) tropical forest dynamics plots while control-

ling for sample size. Changes in habitat structuring through tree life stages

were small and inconsistent among life stages and study sites. Where

found, these differences were an order of magnitude smaller than the

findings of previous studies that did not control for sample size. Moreover,

community structure and composition were very similar among tree sub-

communities of different life stages. We conclude that the structure of

these tropical tree communities is established by the time trees are large

enough to be included in the census (1 cm diameter at breast height),

which indicates that habitat filtering occurs during earlier life stages.
1. Introduction
Habitat filtering [1] is an important process that shapes ecological communities,

and arises from species–habitat niches, or the inability of a species to persist in

all environments [2]. In plant communities, habitat filtering refers to the non-

random germination, establishment and survival of individuals with respect

to variation in habitat characteristics. Many studies have supported the impor-

tance of habitat filtering via topographic–edaphic variation in tropical forests

by documenting non-random patterns in tree species distributions and
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community compositional variation with respect topographic

and edaphic variation over local to landscape scales [3–14].

Despite the importance of species–habitat niches and

habitat heterogeneity in shaping tropical tree communities,

the relative importance of habitat filtering through tree life

stages is still poorly understood. By examining the degree of

habitat structuring (expressed as the amount of community

compositional variation explained by the environment) of

tree sub-communities of different life stages, we may evaluate

the relative importance of habitat filtering versus negative

density dependence in governing the mortality of trees

across life stages. If tree mortality from one life stage to the

next is dominated by habitat filtering, we would expect

the degree of habitat structuring to be greater for trees belong-

ing to the later life stage. Alternatively, if tree mortality is

random with respect to habitat, we would expect the degree

of habitat structuring to be constant. Finally, if negative den-

sity dependence—due to either competitive effects or pest or

pathogen pressure—is the dominant driver of tree mortality,

we would expect the degree of habitat structuring to be

diminished for trees belonging to the later life stage.

Recent examinations of the degree of habitat structuring

across tree life stages have reached contrasting conclusions.

In an analysis of the community–habitat associations for

trees of different size classes and developmental stages in the

Barro Colorado Island (BCI) 50-ha plot, Kanagaraj et al. [15]

observed strong habitat structuring for juvenile trees, while

new census recruits and reproductive-sized trees showed

weak habitat structuring. This was suggested to be the result

of strong habitat filtering acting upon trees at the transition

from recruits to juveniles, followed by strong negative density

dependence acting upon trees as they reach maturity. In

another analysis, Punchi-Manage et al. [16] found similar

community–habitat associations among new recruits, juven-

iles and adult trees in a Sri Lankan forest. This was

interpreted as an indication of general stability of commu-

nity–habitat associations through life stages in this forest,

though the variation explained by the environment was

much greater for juvenile trees. Finally, Hu et al. [17] found

that the spatial structuring (which indicates the strength of

environmental structuring and dispersal limitation combined)

of a seasonal tropical forest in China was greatest among small

trees and this decreased with increasing tree size.

However, a possible pitfall for community-level analyses

of habitat structuring across tree life stages is the widely dispa-

rate sample sizes that result from splitting a tree community

into sub-communities by diameter at breast height (dbh).

Specifically, the number of large trees in a community is

usually much less than the number of small stems. We

expect the resolution of the community structure to decrease

as the number of individuals in the sample decreases, weaken-

ing the signal of the community–habitat relationship. The

number of individuals included in a census has been shown

to significantly influence calculated beta diversity and the

inferred relationship between a community and environmental

variables [18–20]. However, this effect has not been accounted

for in studies examining the influence of the environment

through tree life stages, in which the most abundant size

class nearly always shows the greatest amount of habitat or

spatial structure [15–17].

An additional consideration is that the degree of habitat

structuring of sub-communities of different size classes does

not indicate whether habitat associations of individual species
are consistent across life stages. Inconsistencies could be

observed if, for example, seedlings or small individuals of a

species have lower establishment or survival in the neighbour-

hood of adults [21,22]. Studies examining habitat associations

at different life stages have found that significant habitat

associations for a species at one life stage may not be present

for the same species at a different life stage [21–23]. It is

unclear, however, whether apparent differences in species–

habitat associations across life stage have important effects at

the community level.

We used the BCI 50-ha plot dataset to determine how the

amount of observed habitat structuring varied with the

number of trees sampled. We then compared the degree

with which community structure is related to habitat hetero-

geneity in the form of topographic and soil resource variation

across tree life stages for BCI and six additional large tropical

forest plots from around the globe. We used random

sampling of the sapling and juvenile communities to control

for sample size differences among life stages, which may be

thought of as simulating random survival of individuals in

these life stages to the adult stage. If the degree of habitat

structuring increases from earlier to later life stages, this

would indicate that habitat filtering is an ongoing process

that governs mortality across this transition. The absence of

change from earlier to later life stages would indicate that

neither habitat filtering nor negative density dependence is

a dominant driver of tree mortality across this transition,

and a decrease in habitat structuring would suggest the

presence of negative density-dependent mortality. We also

mapped the community compositional variation among the

sapling, juvenile and adult sub-communities to gain a better

understanding of the changes in community structure and

composition across life stages.
2. Material and methods
(a) Study sites and census data
We used tree censuses from seven long-term tropical forest

dynamics plots of the Center for Tropical Forest Science (CTFS)

network: BCI, Panama [24,25]; Huai Kha Khaeng and Khao

Chong, Thailand; Korup, Cameroon; La Planada, Colombia;

Pasoh, Peninsular Malaysia and Yasuni, Ecuador. Within each

plot, all free-standing trees larger than 1 cm dbh have been

mapped, identified to species and measured for dbh according to

a standard protocol [26]. Together, these plots represent a range

of forest types, climate regimes, soil types and fertilities, and

species richnesses (see table 1 for individual plot characteristics).

(b) Environmental data
The environmental data for each site consisted of topographic

and soil resource variables. The topographic variables consisted

of elevation, slope, convexity (the relative elevation of a quadrat

with respect to its immediate neighbours) and aspect. Through-

out each plot, elevation was recorded at the intersections of a

20 � 20 m grid and used to calculate topographic variables at

the 20 � 20 m quadrat scale. Mean elevation was calculated as

the mean of the elevation measurements at the four corners of

a quadrat. Slope was calculated as the average slope of the

four planes formed by connecting three corners of a quadrat

at a time. Convexity was the elevation of a quadrat minus the

average elevation of all immediate neighbour quadrats. Finally,

aspect was the direction of the steepest slope of a quadrat,

calculated in ARCMAP v. 9.3 (www.esri.com).

http://www.esri.com


Table 1. Vegetation and soil characteristics for the seven study sites.

study site size (ha) species forest type soil order soil variables used

BCI 50 298 semideciduous lowland moist Oxisol Al, B, Ca, Cu, Fe, K, Mg, Mn, Nmin, P, Zn, pH

Huai Kha Khaeng 50 233 seasonal dry evergreen Ultisol Al, B, Ca, Cu, Fe, K, Mg, Mn, P, Zn, pH

Khao Chong 24 571 mixed evergreen Ultisol Al, Ca, Fe, K, Mg, Mn, P, Zn, pH

Korup 50 452 lowland evergreen Oxisol/Ultisol Al, Ca, Fe, K, Mg, Mn, P, Zn

La Planada 25 192 pluvial premontane Andisol Al, Ca, Cu, Fe, K, Mg, Mn, Nmin, P, pH

Pasoh 50 790 lowland mixed dipterocarp Ultisol/Entisol Al, Ca, Cu, Fe, K, Mg, Mn, P

Yasuni 50 1088 evergreen lowland wet Ultisol Al, Ca, Cu, Fe, K, Mg, Mn, Nmin, P, Zn, pH
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Soil samples were collected throughout each plot, analysed for

elemental concentrations, and continuous maps of these concen-

trations were created by kriging the sample points (following the

methods of John et al. [7]). In each study, site soil samples were

taken at the intersections of a 40 or 50 m grid across the study

area, with additional samples taken near alternate grid points

to estimate small-scale variation in soil variables. The first

10 cm of topsoil was sampled, excluding the top organic horizon.

Phosphorus, cations and micronutrients were extracted with

Mehlich-III solution and analysed with inductively coupled

plasma optical-emission spectrometry (ICP–OES; Perkin Elmer

Inc., MA, USA), with the exception of phosphorus at the Yasuni

study site, which was extracted with Bray-1 solution and analysed

by automated colorimetry on a Quikchem 8500 Flow Injection

Analyzer (Hach Ltd, CO, USA). For the three neotropical

plots (BCI, La Planada and Yasuni), an estimate of the in situ
N-mineralization rate was taken at each sample location by

measuring nitrogen before and after a 28 day incubation period.

Nitrogen was extracted in 2 M KCl and NH4
þ and NO3

– deter-

mined on an auto analyser (OI FS 3000, OI Analytical, TX,

USA). Sample values were kriged to obtain estimated chemical

concentrations at the 20� 20 m quadrat scale. The set of soil

variables for each study site contained 8–12 variables, always

including Al, Ca, K, Fe, Mg, Mn and P, but where available also

included the N-mineralization rate, B, Cu, Zn and pH (table 1).
(c) The effect of sample size on observed
habitat structuring

We tested how the observed habitat structuring of a tree commu-

nity changes with the number of stems in the community by

sampling increasing numbers of stems from the BCI tree commu-

nity and measuring the importance of the environment in

explaining the community structure of each sample. We used

two popular community analysis techniques to assess the impor-

tance of the environmental variables: redundancy analysis (RDA)

and multivariate regression tree (MRT) analysis. Both analyses

were performed at the 20 � 20 m scale.

RDA is an extension of multiple regression for the analysis of

multivariate community data [27]. In RDA, the adjusted R2-value

gives an unbiased estimate of the proportion of variation in the

community (species abundance) data, which is explained by the

explanatory variable set [28]. The proportion of community com-

positional variation explained by environmental variables in an

RDA is frequently used to evaluate the influence of the environ-

ment on community structure [14,29]. Two explanatory variable

sets were used for the RDA. The first was the set of all environ-

mental variables, expanded to include their second- and third-

order polynomials for all variables except for aspect, plus the

sine and cosine of aspect (in the method of Legendre et al. [29]

and Baldeck et al. [14]). The second was a set of 705 spatial
eigenvectors created by principal components of neighbour

matrices, which were used to model the spatial structure of the

BCI tree community in Baldeck et al. [14]. This set of spatial vari-

ables models the spatial structure present in the community data

[29–32].

MRT analysis progressively splits the quadrats into groups

that are determined by a threshold value of one of the explana-

tory variables, the specific threshold chosen to maximize the

within-group homogeneity of the community data [33]. The fit

of an MRT model is evaluated by the cross-validated relative

error (CVRE), with lower CVRE values indicating better model

fit and greater importance of the explanatory variables in

explaining community assemblages (the R2 of the model is

given by 1-CVRE). The final number of groups created can be

set by the user or selected by the model using some criteria.

When selected by the model, a greater number of groups may

indicate greater habitat structuring [15]. To avoid overfitting,

only three topographic variables (elevation, slope and convexity)

were used to constrain the splits in the community data in the

MRT analysis.

We sampled the BCI tree community from 10 per cent of the

stems up to 100 per cent of the stems in increments of 10 per cent.

At each sampling level, x per cent of the stems were randomly

selected without replacement, and RDA and MRT analysis

were performed. For RDA, we recorded the proportion of vari-

ation explained by the environmental and spatial variable sets.

We performed MRT analysis twice, letting the number of

groups be chosen by the model using the 1-se rule [33] and

then constraining the number of groups to be equal to five,

recording the CVRE of the models and the number of groups.

This was repeated 100 times for each sampling level. For the

full community (100% of the stems), RDA was performed only

once, while the MRT analysis was repeated 100 times as MRT

analyses of the same community may yield variable results.

(d) Evaluating habitat structuring at different life stages
We examined the relative importance of environmental variables

in explaining community structure over different life stages in all

seven CTFS plots by splitting the tree communities into sapling,

juvenile and adult sub-communities based on their dbh. Saplings

were defined as trees less than or equal to 3 cm dbh, juveniles

were more than 3 cm and less than or equal to 10 cm dbh, and

adult trees more than 10 cm dbh. For each site, we randomly

sampled the sapling and juvenile sub-communities without

replacement with sample sizes equal to that of the adult sub-

community (which always had the fewest number of trees). This

process was repeated 100 times for both the sapling and juvenile

sub-communities, and the proportion of compositional variation

explained by the environment was calculated as the adjusted R2

from an RDA using the expanded set of all environmental

variables (as above).
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Figure 1. (a) The relative abundances of species in the adult versus the sapling sub-communities of BCI when sub-communities were determined using rigid dbh
cutoffs (less than or equal to 3 cm and more than 10 cm, respectively). Relative abundances are shown for the 196 species shared between the two sub-
communities (out of 291 total species in the two sub-communities). (b) The relative abundances of species in the adult versus sapling sub-communities of
BCI when sub-communities were determined using species-specific dbh cutoffs, for 234 species with at least 10 individuals in the entire census.
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Differences in the degree of habitat structuring observed

among size classes may result from differences in community

composition (figure 1a) as well as stem number. We therefore

repeated the above analysis using species-specific dbh cutoffs.

Over all sites and trees, approximately 12 per cent of the trees

were in the adult class (more than 10 cm dbh), 32 per cent fell

into the juvenile class (more than 3 and less than or equal to

10 cm dbh) and 56 per cent were in the sapling class (less than

or equal to 3 cm dbh). For the species-specific analysis, each

species with at least 10 individuals was split into its own sapling,

juvenile and adult classes by taking the largest 12 per cent of stems

of that species and placing them into the adult class, the second

largest 32 per cent of stems and placing them into the juvenile

class, and the remaining 56 per cent of stems were assigned to

the sapling class. The sapling, juvenile and adult sub-communities

formed this way had nearly identical compositions (figure 1b).

To evaluate whether the change in the amount of variation

explained by the environment across the transition from sapling

to juvenile or juvenile to adult trees was statistically significant,

the difference in the amount of variation explained between life

stages was taken for each sampling iteration. If the inner 95 per

cent of these differences overlapped with zero, the difference in

the variation explained was considered non-significant.

To better understand the stability of community structure

and composition across tree life stages, we mapped the com-

munity compositional variation of the sapling, juvenile and

adult tree sub-communities determined by species-specific dbh

cutoffs. For each site, the sapling and juvenile sub-communities

were randomly sampled to contain the same number of stems

as the adult sub-community. The sub-community data for the

three life stages of a study site were submitted to a single non-

metric multidimensional scaling (NMDS) ordination in three

dimensions using the Bray–Curtis dissimilarity index as the

community distance metric. This was performed at the 20 �
20 m scale for all sites except for Huai Kha Khaeng, for which

50 � 50 m quadrats were used to accommodate the lower density

of stems. The quadrats’ ordination scores on the three axes were

converted to an RGB (red–green–blue) colour by assigning the

score of the first axis to intensity of red, the second to green

and the third to blue (following [14]). The community maps of

the three life stages together display the community compo-

sitional variation in space and among tree life stages for a

single realization of the random sampling model. Only beta

diversity maps created for sub-communities determined by
species-specific dbh cutoffs are examined here as rigid dbh cut-

offs produced maps with overwhelming RGB differences

among sub-communities. RDA and NMDS analysis were per-

formed in the ‘vegan’ package [34], and MRT in the ‘mvpart’

package [35] of the R programming language [36].
3. Results
The proportion of compositional variation explained by a set of

variables in an RDA of the BCI tree community was found to

increase nonlinearly with increasing stem number (figure 2a).

The relationship was qualitatively the same whether the set

of explanatory variables used represented environmental vari-

ation or were spatial eigenfunctions which model the spatial

variation in the community. The 95% confidence limits for

the amount of variation explained were very narrow, indicating

significant changes in the variation explained by RDA over

small changes (approx. 10%) in sampling intensity. Similar

results were found in the MRT analysis, showing decreasing

CVRE with increasing stem number whether the number of

groups was constrained to be equal to five or was selected by

the model using the 1-se rule (figure 2b). When the number

of groups was selected by the model, the mean number of

groups formed increased with increasing stem number.

In the comparison of habitat structuring across life stages

in all study sites, changes in the explanatory power of

environmental variables across tree life stages varied among

study sites (table 2a and figure 3a). Across the transition

from the sapling (less than or equal to 3 cm dbh) to the juven-

ile (more than 3 and less than or equal to 10 cm dbh) stage,

four sites showed significantly different amounts of variation

explained, with two sites showing increases in the proportion

of variation explained (Huai Kha Khaeng and Korup) and

two showing decreases (Pasoh and Yasuni). At the transition

from juveniles to adults (more than 10 cm dbh), six sites had

significantly different amounts of variation explained. Of

these, four of the sites showed an increase in the proportion

of variation explained (BCI, Huai Kha Kheng, La Planada

and Yasuni) and two showed a decrease (Khao Chong

and Korup).
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Figure 2. The relationship between observed habitat structuring of the BCI
community and the proportion of the community sampled as evaluated by
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CVRE when the number of groups was constrained to be equal to five;
dashed line indicates the mean number of groups ( y-axis on the right)
when the number of groups was selected by the model.

Table 2. The differences in the proportion of variation explained by
environmental variables between the sapling and juvenile sub-communities
and the juvenile and adult sub-communities. Results of the test using
(a) rigid dbh size cutoffs between groups and (b) species-specific dbh cutoffs
to determine sub-communities. The difference in variation explained is the
proportion of variation explained for the larger size class minus the proportion
of variation explained for the smaller size class. Bold text indicates that the
inner 95% of difference values calculated for the random samples does not
overlap with zero (the difference is considered to be significant).

study site
sample
size

sapling –
juvenile

juvenile –
adult

(a)

BCI 20486 0.001 0.043

Huai Kha Khaeng 20461 0.006 0.009

Khao Chong 11298 0.002 20.040

Korup 23975 0.116 20.027

La Planada 12450 20.005 0.033

Pasoh 26696 20.015 0.001

Yasuni 33411 20.023 0.007

(b)

BCI 24926 20.007 0.028

Huai Kha Khaeng 9130 0.011 20.018

Khao Chong 14233 0.008 0.007

Korup 39094 0.017 20.005

La Planada 12342 0.009 0.020

Pasoh 33486 0.001 0.004

Yasuni 35166 0.002 20.008
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When individuals were assigned to a life stage by their

species-specific dbh quantiles, changes in the proportion of

variation explained by the environment across life stages

were reduced for some sites, especially Korup (table 2b and

figure 3b). At the transition from saplings to juveniles, two

sites showed significant increases in the proportion of vari-

ation explained (Huai Kha Kheng and Korup). Five sites

showed significant differences in the amount of variation

explained across the juvenile and adult transition, with

three sites showing increases in the proportion of variation

explained (BCI, La Planada and Pasoh), and two sites show-

ing decreases (Huai Kha Khaeng and Yasuni). The maps of

community structure of the sapling, juvenile and adult com-

munities (determined by species-specific dbh cutoffs) were

very similar among life stages for all study sites (figure 4;

electronic supplementary material, figure S1).
4. Discussion
Our analysis of the effect of sample size on the variation

explained by a set of variables demonstrates that the amount

of observed habitat structuring is strongly influenced by the

number of individuals included in the community data. The

community-level response to environmental or spatial vari-

ation arises from the responses of many individual species to

environmental or spatial gradients, but information pertaining
to these responses is lost when the analysis contains fewer

stems. The amount of observed habitat structuring always

decreased when fewer stems were included in the census, irre-

spective of the explanatory variables or community analysis

technique used. This result is consistent with Jones et al. [19],

who found that the variation of a Costa Rican pteridophyte

community explained by the environment decreased signifi-

cantly when the community was subsampled randomly to

include many fewer individuals.

By controlling for differences in sample size among

sub-communities of different life stages, we show that tree

community response to habitat heterogeneity is relatively

consistent across tree life stages among trees more than or

equal to 1 cm dbh. Although many of the differences in the

variation explained by the environment between life stages

were statistically significant, they were inconsistent among

study sites for both life stage transitions. The differences in

the variation explained between life stages were most often

less than 1 per cent and represented less than a 20 per cent

relative increase or decrease. This contrasts with the greater

than twofold differences in the variation explained by the

environment between trees of different size classes or devel-

opmental stages in previous analyses [15,16]. Overall, the

amount of habitat structuring observed for the adult commu-

nities is similar to the amount that would be expected based

on random survival of individuals at earlier life stages.

Within BCI, our analysis uncovered a pattern of slightly

greater habitat structuring of the adult tree community
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community. Quadrats of similar colour have similar community composition (lower Bray – Curtis dissimilarity), while absolute colour is irrelevant. Maps of BCI, Huai
Kha Khaeng, Khao Chong and La Planada are in electronic supplementary material, figure S1. (Online version in colour.)
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compared with saplings and juveniles, regardless of how sub-

communities were determined. This result contradicts both

patterns reported for the BCI dataset by Kanagaraj et al.
[15]. When sub-communities were delineated using recruit-

ment and reproductive-size status, they found that habitat

structuring was very strong for juvenile trees and weak for

recruiting trees and reproductive adult trees using MRT

analysis. When trees were divided into sub-communities

based on dbh, the habitat structuring decreased from small

(13.5% of the variation explained) to large trees (1.8% of vari-

ation explained) for the 2005 census. It is likely relevant that

MRT models with different groups were compared (the

number of groups and the distribution of quadrats among

groups was an important component of the interpretation)
and that the CVRE obtained from an MRT analysis has a

high degree of variability (figure 2b), even when using the

same census and environmental data. However, the discre-

pancy between our results and those of Kanagaraj et al. [15]

is certainly affected by the fact that they did not control for

differences in the number of stems among life-history stages.

Most often, changes in the effect of environmental vari-

ables across tree size classes were small, with the notable

exception of Korup, where there was a large increase in the

effect of habitat heterogeneity over the transition from saplings

to juveniles determined using rigid dbh cutoffs. However, this

difference was drastically reduced when size classes were

determined on a relative basis, controlling for community

composition. This indicates that the change in the amount of
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variation explained between sapling and juvenile trees may be

attributed to differences in community composition of the

sub-communities of trees determined by absolute dbh.

The maps of community structure among saplings, juven-

iles and adults reveal remarkably consistent community

structure and composition across tree life stages (figure 4;

electronic supplementary material, figure S1). It appears that

changes in the significant species–habitat associations found

among different life stages of trees [23] may not have important

community-level consequences. Other studies comparing the

presence or the absence of significant species–habitat associ-

ations across life stage focused on differences between

seedlings and trees (more than 1 cm dbh; [21,22]), and thus

cover different life stages than are examined here. Although

these maps present qualitative rather than quantitative evi-

dence, they indicate strong consistency in species–habitat

relationships over tree life stages.

We believe that it would be over-interpretation to claim

each statistically significant change in the amount of variation

explained by the environment as evidence of habitat filtering

or negative density dependence. Instead, we present a more par-

simonious argument: in the absence of consistent increases in

habitat structuring across study sites for either life stage tran-

sition, or method of determining sub-communities, we argue

that habitat filtering is not an important driver of tree mortality

among trees larger than 1 cm dbh. This is not to say that habitat

suitability is not important for trees after they reach this size

threshold; indeed, environmental change may cause habitat-

related mortality among trees larger than 1 cm dbh, as has

been demonstrated for BCI [37,38], but it is unclear whether

this type of habitat-related mortality may be considered habitat

filtering. Overall, we found no evidence that saplings occupy

habitats that would not be suitable for adults of the same species,

with habitat filtering narrowing their distributions through

time, nor did we find evidence that density-dependent mortality

acts to decrease habitat structuring of communities as they age.

These conclusions are further supported by community maps

showing strong similarity in community composition and struc-

ture among saplings, juveniles and adults for all seven study

sites (figure 4; electronic supplementary material, figure S1).

Our results show that species–habitat associations are

established by the time trees reach 1 cm dbh, indicating that
habitat filtering occurs during earlier life stages—seedling

establishment and the seedling–sapling transition. Some

experimental studies have documented results consistent

with strong habitat filtering at the seed, seedling or small sap-

ling stages [39–41]. For example, Engelbrecht et al. [42] found

that drought sensitivity at the seedling stage for 48 native tree

and shrub species was correlated with distribution patterns

across the isthmian rainfall gradient in central Panama, as

well as the soil moisture gradient within the BCI 50-ha plot.

Similarly, Fine et al. [43] marshalled strong evidence through

reciprocal seedling transplant experiments that combined

abiotic (soil type) and biotic (herbivory) filters determine

species distribution patterns. Our analysis points to the

unique importance of these early life stages in shaping the

emerging forest community, but more experimental studies

are needed to characterize the role of early-stage habitat

filtering in tropical forests.
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