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Past influenza pandemics appear to be characterized by multiple waves of

incidence, but the mechanisms that account for this phenomenon remain

unclear. We propose a simple epidemic model, which incorporates three fac-

tors that might contribute to the generation of multiple waves: (i) schools

opening and closing, (ii) temperature changes during the outbreak, and

(iii) changes in human behaviour in response to the outbreak. We fit this

model to the reported influenza mortality during the 1918 pandemic in 334

UK administrative units and estimate the epidemiological parameters. We

then use information criteria to evaluate how well these three factors explain

the observed patterns of mortality. Our results indicate that all three factors

are important but that behavioural responses had the largest effect. The par-

ameter values that produce the best fit are biologically reasonable and yield

epidemiological dynamics that match the observed data well.
1. Introduction
The 1918 influenza pandemic was the deadliest pandemic in history. An estimated

50–100 million people were killed worldwide, and one-third of the world’s popu-

lation is estimated to have been infected [1]. The incidence of influenza and the

resultant mortality exhibited multiple waves during the 1918 pandemic, with

many regions experiencing up to three peaks in mortality [2–5]. For example,

figure 1 shows the pattern of mortality in the UK during the 12 month period

beginning in June 1918; three distinct waves are evident throughout the country

during this single year. The recent influenza pandemic in 2009 also displayed

multiple waves of incidence in many Northern Hemisphere countries [6–11].

Identifying the processes that give rise to multiple pandemic waves is impor-

tant for public health. This problem has consequently attracted much attention,

with several mechanisms being proposed, including viral evolution (which mod-

ifies transmissibility, immunological escape or both), environmental change

(primarily weather conditions) and behavioural change of people in response

to the pandemic [12,13]. Several statistical analyses of data from past pandemics

have identified potential causes of mortality patterns. For example, Chowell et al.
[14] found that death rates during the 1918 pandemic in the UK were 30–40%

higher in cities and towns when compared with rural areas; and Pearce et al.
[15] found that the occurrence of epidemic waves in the UK in 1918 was associ-

ated with patterns of socioeconomic status and age, potentially as a result of prior

immunity within some age groups. An analysis by Andreasen et al. [3] suggests

that immunological history might play a role. As many of these authors have

noted, however, these results are strictly correlative and a combination of statisti-

cal analysis and mechanistic mathematical modelling is required to establish a

causal relationship between such factors and the occurrence of multiple waves.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.1345&domain=pdf&date_stamp=2013-07-10
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Figure 1. Three pandemic waves swept the UK during 1918 – 1919. The 334 administrative units that we studied within England and Wales are marked on the map
(a); the largest 12 cities are identified by name and with solid (red) dots (the size of which indicate the population size rank of the city). The intensity plot (b)
shows the spatio-temporal pattern of the pandemic throughout the country (which we divided into 150 latitudinal bins). Panel (c) on the top right shows the daily
central England temperature (CET in 8C) and weekly influenza mortality in London (in hundreds). (Online version in colour.)
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Several previous studies have taken a mechanistic

approach to the 1918 pandemic. Mathews et al. [16] made a

number of different hypotheses, fit associated mechanistic

models to survey data from 12 localities in the UK, and

explained multiple waves using waning of immunity derived

from prior exposure. Bootsma & Ferguson [17] focused on

two waves of influenza mortality in 1918 in 16 US cities;

their results suggested that transmission rate variations

owing to public health measures and individual behavioural

responses to high mortality could have caused the autumn

and winter waves in the USA. Chowell et al. [5] studied the

two waves of influenza notifications in Geneva, Switzerland,

and used a two-strain model to explain multiple waves.

Influenza wave studies outside the context of the 1918 pan-

demic include Camacho et al.’s [18] study of two waves of

influenza-like-illness cases in a period of two months on a
tiny island (with 284 inhabitants) in 1971 and Matrajt &

Longini’s [19] investigation of the 2009 pandemic in the UK

and USA.

Our group recently [20] fit mechanistic models to mor-

tality data from the 1918 influenza pandemic in London,

UK, and compared seven different dynamical mechanisms

that might account for multiple waves. We found that tem-

poral changes in the transmission rate provide the most

plausible explanation. Here, we attempt to identify the

most plausible biological, social or environmental processes

that could account for temporal changes in transmission

rate in 1918. The processes we consider are as follows.

— Schools opening and closing. It has been found that closing

schools for summer vacations had a large effect on structur-

ing the 2009 influenza pandemic in the Northern
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Hemisphere. Closing schools in June contributed strongly

to attenuating the first wave and re-opening schools in

September appears to have triggered the second wave in

the autumn [11,21–23]. In 1918, influenza incidence was

highest in children and young adults ([24], figure 1),

suggesting that the pattern of school terms may have

been important in structuring the 1918 pandemic.

— Weather changes. Much recent work has indicated that

atmospheric conditions such as temperature and humid-

ity play a significant role in influenza transmission

[11,25,26].

— Human behavioural responses. Restriction of human contact

patterns affects infectious disease transmission. In the

USA in 1918, regions that differed in the public health

measures that were employed also differed in the tem-

poral pattern of mortality [17]. In Australia in 1918,

social distancing measures appear to have substantially

reduced the influenza clinical attack rate [27].

We use dynamic transmission models to investigate

whether transmission of influenza in the UK was affected by

the above processes. We use sequential Monte Carlo methods

[28,29] to construct statistical fits of our dynamic models to a

1918 mortality dataset that covers 334 administrative units in

the UK (333 distinct areas in England and Wales, including

the boroughs of London, and London as a whole).
2. Material and methods
We obtained information about UK school terms in 1918 from

available historical documents. The beginning of the twentieth

century was a time of considerable change in the UK educational

system. Many schools were free, and most free schools were

compulsory, up to around the age of 13. Unfortunately, we do

not have detailed information on school closures for every city.

In many agricultural regions, schools were closed each year for

the harvest for four to eight weeks in July or August. In some

non-agricultural regions, schools were closed from approximately

mid-July to mid-August owing to the summer wave of pandemic

influenza. The 1918 harvest was a great success and required a

great deal of labour (see the electronic supplementary material).

Influenza transmission is also affected by weather; in particu-

lar, influenza virus survival is reduced when absolute humidity

is high [26]. In 1918, peak mortality in London corresponded to a

low-temperature event [30]. Since humidity records are not avail-

able, we use a measure of temperature (which is strongly

correlated with absolute humidity) to model climatic effects on

transmission rate.

Previous work [31] has indicated that, during the 2009 influ-

enza pandemic, people changed their daily activities to reduce

the risk of infection. Human behavioural responses to epidemics

and pandemics have received much attention in recent years,

and a variety of ways to incorporate such responses into epidemic

models have been proposed [32–36]. Here, we assume a simple

relationship between transmission rate and a measure of recent

mortality, similar to the approach of Bootsma & Ferguson [17].

We specify the transmission process with a simple continu-

ous-time compartmental stochastic epidemic model; we use

particle filtering and likelihood-based inference [29] to test our

model and estimate the parameters.

(a) Data
We used reported weekly influenza deaths during the 1918–1919

pandemic in 334 administrative units of England and Wales

obtained from Johnson [37]. We also used the central England
daily temperature obtained from the UK Met Office (http://

www.metoffice.gov.uk).
(b) Model
Our model is a simple susceptible-infectious-recovered frame-

work with added variables for mortality and perception of

risk. The mean field limit of our stochastic model is

_S ¼ � b

N
SI; ð2:1aÞ

_I ¼ b

N
SI � gI; ð2:1bÞ

_R ¼ ð1� fÞgI; ð2:1cÞ
_D ¼ fgI � gD; ð2:1dÞ
_M ¼ gD and ð2:1eÞ
_P ¼ gD� lP: ð2:1fÞ

Here, S, I and R represent the numbers of susceptible, infectious

and recovered individuals, respectively. We model mortality

using two variables: D represents individuals, who are no

longer infectious and on track to die from the effects of influenza,

while M models those who have died of influenza; this approach

allows us to incorporate the delay between a normal recovery

time and the typical time of death. P represents the public per-

ception of risk. It increases when people die, and decays

naturally, meaning that perception of risk diminishes over time

in the absence of influenza deaths. P in turn affects the trans-

mission rate b (as specified below). N ¼ S þ I þ R þ D þM is

the total population (assumed to be constant).

The case fatality proportion (CFP) is f, and g, g and l denote

the rates at which individuals leave the I, D and P compartments,

respectively; thus g21, g21 and l21 are the mean infectious

period (fixed at 4 days [38]), the mean time from loss of infec-

tiousness to death (fixed at 8 days [17]) and the mean duration

of impact of deaths on public perception (to be estimated). The

transmission rate b is given by

bðt;PÞ ¼ b0 � e�jTðtÞ � ½1þ aHðtÞ� � 1� PðtÞ
N

� �k
; ð2:2Þ

b0 is the baseline transmission rate. T(t) denotes the temperature

and j is the amplitude of the response of transmission rate to

temperature changes. The quantity 1þ aH(t) represents seasonality

of transmission associated with the school calendar [39–42], where

a is the amplitude of school-term forcing and H(t) takes a fixed

positive value on school days, the value 21 during vacations,

and its integral over a year is zero. The final factor represents

human behavioural responses to deaths, where P(t) is the percep-

tion of risk as specified in (2.1f ) and k is a parameter controlling

the strength of the response.
(i) Temperature T(t)
We obtained the daily temperature for central England from the

UK Met Office (http://www.metoffice.gov.uk). Unfortunately,

humidity data is not available, but we expect absolute humidity

to be closely correlated with air temperature [11].
(ii) School calendar H(t)
The UK had several types of schools, and the detailed patterns of

school calendars are very complicated (see http://www.educatio-

nengland.org.uk/). Here, we assume that school closure dates

between June 1918 and June 1919 consisted of three parts: a har-

vesting season (between 23 June 1918 and 15 October 1918) with

floating start and end dates (to be estimated for each locality),

two weeks over the Christmas/New Year period (23 December

1918 to 5 January 1919) and one week around Easter (15 April

http://www.metoffice.gov.uk
http://www.metoffice.gov.uk
http://www.metoffice.gov.uk
http://www.metoffice.gov.uk
http://www.metoffice.gov.uk
http://www.educationengland.org.uk/
http://www.educationengland.org.uk/
http://www.educationengland.org.uk/


Table 1. Maximum-likelihood estimates for the parameters of our model (2.1) for the 50 largest administrative units in England and Wales. (R0 is the basic
reproduction number. a is the amplitude of school-term forcing. j is the intensity of the effect of temperature variation. l21 is the time scale of behavioural
response. f is the case fatality proportion (CFP). k is the intensity of behavioural response. See §2 for details. A similar table for all 334 administrative units is
given in the electronic supplementary material.)

parameter 2.5% 1st quarter median 3rd quarter 97.5%

R0 1.82 2.02 2.26 2.59 3.10

a 0.130 0.260 0.314 0.411 0.649

j (1/8C) 0.016 0.043 0.057 0.071 0.085

l21 (days) 4.90 8.50 11.20 13.30 21.00

f (CFP) 0.0043 0.0060 0.0071 0.0083 0.0167

k 695.1 935.4 1117.3 1491.6 2254.1

school close date 23-06-1918 23-06-1918 01-07-1918 06-07-1918 13-07-1918

school open date 25-07-1918 12-08-1918 30-08-1918 12-09-1918 01-10-1918

initial susceptibles 0.704 0.715 0.806 0.859 0.891

initial infectives 0.00025 0.00108 0.00206 0.00386 0.00755
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1919 to 23 April 1919). We assume transmission was lower during

vacations and higher when school was in session.

(iii) Fitting
The model was simulated stochastically using the standard

Euler-multinomial approach [29,43]. The simulated weekly

mortality was sampled using a negative binomial distribution

with the mean equal to the weekly increment in the M class.

Thus, measurement error was assumed to be negative binomially

distributed (with a tunable over-dispersion parameter c [43]).

We made the following assumptions about the unknown par-

ameters: all parameters are non-negative; the CFP is between 0

and 1; the amplitude of school-term forcing is between 0 and 1;

the start/end dates of school summer vacation are bounded by

the beginning of the time series (23 June 1918) and 15 October

1918; the initial susceptible proportion is between 70 and 90%;

the initial infected proportion is above 0.01%; the initial death

list class (D) and death impact class (P) are empty. We fixed the

mean infectious period and the mean time from loss of

infectiousness to death to be 4 days and 8 days, respectively.

In the electronic supplementary material, we show that using a

lower initial susceptible proportion, or a shorter infectious

period (2.5 days), does not substantially affect our results.

We fit the model by finding the maximum-likelihood values

of the parameters using the iterated filtering method of Ionides

and co-workers [28,44,45]. This likelihood-based inference frame-

work has been used in several publications by both our group

[11,29] and other groups [18].
3. Results
Table 1 presents maximum-likelihood parameter estimates

for our best-fit model (which includes school closures,

weather changes and behavioural responses); this table is

based on the 50 largest administrative units in England and

Wales (see the electronic supplementary material for a similar

table based on all 334 administrative units). The iterated fil-

tering algorithm [28,29] that we used converged well and

provided biologically reasonable estimates for the vast

majority of localities. In table 1, we report the basic reproduc-

tive number of the time-averaged system, R0 ¼ kbl/g, where

kbl represents the time average of the transmission rate b(t)

with P ¼ 0 in equation (2.2) [46]. The estimated value of R0
agrees with previous estimates [38]. The estimated CFP, f,

is smaller than published values, e.g. f ¼ 0.02 in [38]; thus,

compared with previous work, our fits suggest a larger

number of non-fatal infections.

While we have little information about other parameter

values, our estimates seem reasonable. For example, the esti-

mated amplitude (a) of school-term forcing suggests that the

transmission rate was reduced by approximately 40% during

school vacations. The estimated temperature intensity ( j)

suggests that a 108 increment in temperature reduced the

transmission rate by 43%. The estimated vacation start and

end dates are in the range discussed in §1. The differences

among estimated start/end dates for different cities are prob-

ably owing to real differences among cities. (The 95% CIs for

estimates of all parameters for the 12 largest cities are given in

the electronic supplementary material.)

We investigated the importance of our three explanatory

factors (behavioural response, school calendar and climate) by

calculating how much the fit of the model is degraded when

each is removed. Figure 2 shows a histogram of the change

in the Akaike Information Criterion (DAICc) between the full

model and models missing each factor in turn, for the largest

50 of the 334 administrative units (results for all 334 units are

shown in the electronic supplementary material). All three

explanatory factors have mostly very large DAICc values,

implying that all were important factors in determining the

course of the epidemic. Behavioural response was the most

important factor, with uniformly large DAICc in the 50 largest

cities. The importance of school terms and temperature

changes is more variable across cities, but overall fairly high.

The variability is probably owing to problems of limited

data, noise and conflation among predictor variables.

Model simulations for the three largest cities are shown in

figure 3. Four models are shown: (i) the best model, in which

transmission is modulated by all three factors (human behav-

ioural response, school terms and temperature), (ii) a model

without behavioural responses, (iii) a model without school

terms, and (iv) a model without temperature change. The

full model provides an excellent match of simulations to the

observed mortality. The other three models show relatively

poorer fits in all cities, especially the model without

behavioural responses.
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Figure 2. Histograms of (a) DAICc (no behavioural response), (b) DAICc (no response to school holidays), (c) DAICc (no response to temperature) for the 50 largest
administrative units in England and Wales. A similar figure for all 334 administrative units is given in the electronic supplementary material. (Online version
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Figure 3. Simulations compared with observed weekly mortality in 1918. We show: the best model, forced by three factors (human behavioural response, school
terms and temperature); a model with no behavioural effects; a model with no school terms and a model with no temperature effects. With estimated parameter
values for each model, 1000 simulations were generated (1000 � 46 weekly data points) and displayed using box-plots (one box-plot for each week), compared
with observed weekly influenza mortality (46 weeks, solid (red) curve). The three rows show results for three UK cities. The four columns show the four types of
model. (Online version in colour.)
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4. Discussion
Disentangling the interactions of causal factors underlying pat-

terns of spread in historical epidemics is a difficult problem, in
part due to data limitations. Here, we have used a mechanistic

transmission model and likelihood-based inference to investi-

gate factors underlying the three-wave shape of the 1918

influenza epidemic in England and Wales. Building on our
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earlier finding that changes in transmission rate are the most

likely dynamical explanation for the multiple waves, we

explored three possible mechanisms that could underlie such

change: behavioural change, seasonal weather, and changes

in mixing patterns owing to harvest and holidays.

Our main model does not consider the possible effects of

viral evolution affecting either infectiousness or immunity

(via antigenic change in the virus). Because the periods of

time are short, and the proportion of the population infected

in the first wave was small [47], these seem unlikely to affect

our main conclusions. Nevertheless, in a model in the electronic

supplementary material, we explore the potential effects of anti-

genic change of the pandemic virus. The fit of this model (as

measured by AICc) is worse than our main model in most cities.

Since we lack detailed information on both individual-

level and public health responses to the 1918 pandemic in

England and Wales, we modelled behaviour change using a

simple dynamic response function that assumes transmission

goes down as the number of ‘recent’ deaths—measured using

a timescale that is fitted by the model—goes up.

We modelled seasonal effects using temperature, since we

had an available temperature time series, and we expect

temperature to be strongly correlated with absolute humidity

[11]. We modelled school and harvest effects using holiday

dates inferred from historical documents and summer

vacation dates fitted by our model.

We fitted a simple mechanistic model and obtained reason-

able parameter estimates. We found that the observed three-

wave pattern of pandemic influenza in the UK in 1918 is best

explained by accounting for all three factors. Without behav-

iour change, the model is unable to explain the occurrence of

all three waves. In particular, the decline of the second wave

in the winter followed by a resurgence can only be explained

by behavioural response, at least in our framework. The end

of the first wave, after a relatively small number of deaths, on

the other hand, is more likely to be due to climate or school-

term effects. These two effects can substitute for each other to

a certain extent, but our model shows that accounting for
both does a much better job of explaining the observed pat-

terns, suggesting that both mechanisms were in fact important.

For each of the explanatory factors that we considered (be-

havioural response, school terms and weather), we chose a

simple function designed to capture its approximate effects.

These choices are certainly not perfect, but the weekly

death data are not rich enough to support more complicated

models, or to allow us to compare simple models with confi-

dence. In principle, we could obtain more information about

some of our parameters from other sources (e.g. about school

vacations, time distributions from infection to mortality, the

response of influenza virus to temperature), reducing the

number of parameters that need to be fitted.

In the electronic supplementary material, we present sen-

sitivity analyses of our assumptions concerning the mean

infectious period, the mean time from infection to death

and the initial susceptible proportion. Our main results are

robust to changes in the values of these parameters. Our esti-

mate of the CFP does depend on the degree of initial

susceptibility (a smaller initially susceptible proportion

yields a higher CFP).

We conclude that behavioural changes, temperature

trends and school closure all contributed to the observed

three-wave mortality patterns in the UK during the 1918

influenza pandemic, and that behavioural changes had the

largest effect.
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