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Sensitivity analysis (SA) can aid in identifying influential model parameters

and optimizing model structure, yet infectious disease modelling has yet

to adopt advanced SA techniques that are capable of providing consid-

erable insights over traditional methods. We investigate five global SA

methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube

sampling-partial rank correlation coefficient and the sensitivity heat map

method—and detail their relative merits and pitfalls when applied to a micro-

parasite (cholera) and macroparasite (schistosomaisis) transmission model.

The methods investigated yielded similar results with respect to identifying

influential parameters, but offered specific insights that vary by method.

The classical methods differed in their ability to provide information on the

quantitative relationship between parameters and model output, particularly

over time. The heat map approach provides information about the group sen-

sitivity of all model state variables, and the parameter sensitivity spectrum

obtained using this method reveals the sensitivity of all state variables to

each parameter over the course of the simulation period, especially valuable

for expressing the dynamic sensitivity of a microparasite epidemic model to

its parameters. A summary comparison is presented to aid infectious disease

modellers in selecting appropriate methods, with the goal of improving model

performance and design.

1. Introduction
Mathematical models are widely used to examine, explain and predict the

dynamics of infectious disease transmission, and models of specific diseases of

global import have played a vital role in developing public health strategies for

control and prevention [1–3]. Infectious disease models provide a mathematical

representation of the dynamic transmission cycle, involving interactions between

infected and susceptible hosts that are generally expressed as a set of coupled

ordinary differential equations (ODEs) [3]. Model outputs, the ODE solutions

over a simulation interval, provide a dynamic representation of the transmission

process. Where possible, model parameters are estimated based on experimental

or observational data, and where parameter values have gone unestimated, they

are often set to plausible values or ranges based on analogous systems, statistical

inference or expert opinion [3,4]. Recent advances in computational science and

information technology have made widespread applications of mathematical

modelling possible [2], yet model outputs often have complex, nonlinear relation-

ships with model parameters, and inappropriate choices of parameter values can

lead to bias in model outputs [5,6].

Sensitivity analysis (SA) characterizes the response of model outputs to par-

ameter variation [7], helping to allocate resources to follow-up experimentation

and field study; to isolate major sources of parametric uncertainty; to identify par-

ameters that can be shed to yield a simpler model; to elucidate the plausible range of

system outcomes, for forecasting purposes, when data are not available; and to
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determine the robustness of a modelling study’s qualitative

conclusions [7–10]. Renewed attention to SA is warranted, par-

ticularly as advanced techniques have emerged that are capable

of providing considerable insights over traditional SA methods.

Modern parameter estimation techniques for complex models,

often based upon Bayesian methods using, for example,

Markov Chain Monte Carlo algorithms, cover complementary

territory to SA; following data collection, parameter estimation

ideally results in a joint posterior distribution over all of the

model parameters given the available data. This posterior infor-

mation could then be used to determine the sensitivity of the

model fit—generally a log likelihood—to each of the parameters,

by marginalizing the joint distribution. Much would remain to

be known, however, about the parameter sensitivity of other

model outputs of interest, leaving ample room for useful SA. Per-

forming SA prior to data collection can also benefit our

comprehension of a modelled complex system; indeed, SA can

help to determine what data need be collected in order to most

informatively narrow parameter and output uncertainty [11].

Similar approaches exist in many disciplines and guises, e.g.

elasticity theory in economics and ecology [12,13], response sur-

face methodology [14] and design of experiments [15] each used

in multiple fields.

It should also be noted that SA techniques such as these

may be used to explore the parameter sensitivity of the log-like-

lihood surface itself, with the Fisher Information Matrix

describing gradients on this surface and identifying the most

profitable parameters to measure experimentally [11]. There

is, therefore, both a strong direct and indirect link between

SA and parameter estimation. Here, we focus primarily on

global sensitivity analysis (GSA) methods, which examine the

response of model output variables to parameter variation

within a selected parameter space, at a time when those work-

ing in epidemiological modelling may not be aware of recent

advances in SA. GSA methods include variance-based methods

(e.g. the Sobol’ method and Fourier Amplitude Sensitivity Test)

[16,17], global screening methods (e.g. the Morris method, also

called the elementary effect method) [18,19], sampling-based

methods (e.g. Monte Carlo filtering; Latin hypercube sampling

with partial rank correlation coefficient index, LHS-PRCC) [20]

and others. The recently developed sensitivity heat map (SHM)

method, while not strictly a global method by the above defi-

nition, is capable of exploring the sensitivity of complex

models to many parameters simultaneously and over time

[11] and provides comparable results to those above.

GSA techniques have been broadly applied in systems

biology [11,21], environmental modelling [22,23] and infectious

disease modelling. Examples of recent published infectious dis-

ease models that describe and carry out an SA are shown in

table 1, and, among these, LHS-PRCC [26–28,32] and other

simple sensitivity methods [24,25,31] are frequently used.

GSA methods popular in other mathematical modelling appli-

cations, such as the Sobol’ and Morris methods, have sparsely

been applied to infectious disease models. Observing the short-

age of well-structured SA in such modelling studies, Bailey &

Duppenthaler [30] summarized the range of SA tools available

in the early 1980s. More recently, Okais et al. [5] emphasized the

importance of SA in infectious disease modelling and used a

varicella-zoster model to demonstrate how to conduct univari-

ate and multivariate SA. As new GSA methods emerge that are

capable of providing considerable insight over traditional

methods, adoption by the infectious disease modelling

community will be crucial to the advancement of the field.
Here, we assess and compare the performance of five

GSA techniques—scatter plots, LHS-PRCC, the Morris

method, the Sobol’ method and the SHM method—by apply-

ing them to the previously published microparasite and

macroparasite models and discuss their relative merits and

pitfalls for application to infectious disease models generally.
2. Overview of sensitivity analysis methods for
infectious disease models

2.1. Scatter plots
Scatter plots are occasionally used to visually examine the

correlation between a model output variable and parameters.

An output variable that is sensitive to the selected parameter

will yield an obvious correlation pattern in the scatter plot.

Generally, a Monte Carlo algorithm is used to sample the

parameter space, and multiple scatter plots are drawn illus-

trating the relationship between each parameter and each

output variable of interest [7]. Visual recognition of the corre-

lation between parameter and model output values can be

contingent on the choice of axis scales.

2.2. The Morris method
The Morris method, also called the elementary effects

method, is based on the ratio of the change in an output vari-

able to the change in an input parameter [18]. Given the

general relationship between a model’s output Y and input

parameters X, Y ¼ f (X), the elementary effect of xi can be

expressed as

EEiðXÞ ¼
yjðx1; x2; . . . ; xi þ D; xiþ1; . . . ; xkÞ � yjðXÞ

D
; ð2:1Þ

where X [ ½0; 1�k is a scaled vector of k input parameters, yj

is the state variable of interest, D is a value in the set

f1/( p21), . . . ,1 2 1/( p21)g and p is the number of levels

into which each dimension of the parameter space is divided.

The distribution of EEi(X), denoted Fi, is obtained by repeated

random sampling of X from its k-dimensional, p-level para-

meter space.

The mean of Fi (denoted m), the mean of jFij (denoted m*;

[19]), and the standard deviation of Fi (denoted s) are the

resulting sensitivity measures of an output variable to a par-

ameter. A large m suggests that the parameter has strong

influence on the output, while a large s suggests either that

the relationship between the parameter and output is non-

linear or the parameter interacts with other parameters [33].

Importantly, when the Fi distribution contains both positive

and negative values, elementary effects may cancel each

other out to produce a small m, but the parameter may still

be influential; thus, the use of the absolute elementary effect,

m*, as a remedy, has been recommended. As the elementary

effect of xi as estimated by the Morris method bears more

resemblance to Dyj/DxijX rather than @yj/@xijX [18], the accu-

racy of the Morris index depends on the smoothness of y
over the parameter domain.

The Morris method takes r(k þ 1) model runs, where r is the

number of trajectories (a sampling path which begins at a

random point and each subsequent point varies only one ran-

domly selected parameter, holding all others constant at the

values from the last point) through the input parameter space

[18] and EE(xi) is calculated at k þ 1 points along each trajectory.
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Although the Morris method is easy to understand, does not

depend on assumptions about the model (e.g. monotonicity)

and is computationally inexpensive, it cannot quantify the

contribution of a parameter to the variability of the output.
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2.3. Latin hypercube sampling-partial rank correlation
coefficient

A measure of the nonlinear, but monotonic, relationship

between two variables, the PRCC is an efficient and reliable

sampling-based SA method that provides a measure of

monotonicity between parameters and model output after

removing the linear effects of all parameters except the par-

ameter of interest [21]. A standard correlation coefficient, r,

for two variables, x and y, is calculated as follows:

r ¼
P

iðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðxi � �xÞ2

P
iðyi � �yÞ2

q ; ð2:2Þ

where fðxi; yi)jxi [ x; yi [ yg are the set of paired, sampled

data, �x is the sample mean of x, and �y is the sample mean of y.

The PRCC determines the sensitivity of an output state

variable to an input parameter as the linear correlation, r,

between the residuals, ðXj � X̂jÞ and ðY � ŶÞ; where Xj is the

rank transformed, sampled jth input parameter, and Y is the

rank transformed output state variable, while keeping all

other parameter values fixed [34]; X̂j and Ŷ are determined

for k samples by the linear regression models

X̂j ¼ co þ
Xk

p¼1
p= j

cpXp ð2:3Þ

and

Ŷ ¼ bo þ
Xk

p¼1
p= j

bpXp: ð2:4Þ

PRCC is often combined with LHS in the conduct of an SA

[21,27]. LHS is a stratified Monte Carlo sampling method

[21,35] that divides each parameter’s range into N equal inter-

vals and randomly draws one sample from each interval. The

method explores the entire range of each parameter and each

interval for each parameter is sampled only once [21,27].

Because of its dense stratification over the input parameter

space and the rapid convergence of the sample mean to the

true population mean as the number of samples increases,

LHS is more efficient—requiring fewer simulations—than a

general Monte Carlo sampling approach [36]. The combined

LHS-PRCC procedure is described fully elsewhere [21,27],

but generally involves: (i) LHS of the parameter space,

(ii) obtaining model output for each set of sampled par-

ameters, (iii) ranking parameter and output values and

replacing their original values with their ranks, and (iv) calcu-

lating the PRCC for each input parameter.
2.4. The Sobol’ method
The Sobol’ method is a variance-based GSA technique

capable of estimating the influence of individual parameters,

or a group of parameters, on the output variables of a non-

linear model [16,37]. Given a model of the relationship

between output variables and parameters, Y ¼ f(X) ¼ f (x1,
x2, . . . , xk) that is square integrable over its unit hypercube

parameter space, the model function a single state variable,

y ¼ f (X), can be decomposed into summands of increasing

dimensionality, known as the high-dimensional model

representation (HDMR; [16])

y ¼ fðXÞ ¼ f0 þ
Xk

i¼1

fiðxiÞ þ
Xk

j.i

fijðxi; xjÞ þ � � �

þ f1;2;...;kðx1; x2; . . . ; xkÞ:

ð2:5Þ

Sobol’ demonstrated that if each term in this expansion

has a zero mean, then the total variance of an output

variable can be decomposed into the HDMR ANOVA,

represented as

VðyÞ ¼
ð

fðXÞ2dX � f0 ¼
Xk

i¼1

Vi þ
Xk

i

Xk

j.i

Vij

þ
Xk

i

Xk

j.i

Xk

h.j

Vijh þ � � � þ V1;2;...;k;

ð2:6Þ

where V(y ) is the variance of the model output y, k is the

number of parameters and Vi1 ;i2;...;is ¼
Ð

f2
i1;i2;...;is dxi1

dxi2 ; . . . ;dxis for a given set of indices, i1, . . . , is. The Sobol’

sensitivity indices are the ratios of the partial variance

given an individual parameter or the interactions of a par-

ameter subset to the total variance. Two Sobol’ indices are

often calculated; the main effects—also called the ‘first-

order index’—and the total effects of a parameter, are

expressed, respectively, as [16]

Si ¼
V½EðyjxiÞ�

VðyÞ ð2:7Þ

and

STi ¼ 1� V½EðyjX�iÞ�
VðyÞ ; ð2:8Þ

where X�i denotes all elements of X except xi. These indices have

the property that Si � STi � 1 and when Si ¼ STi¼ 0; it can be

concluded that f(X) does not depend on xi, while Si ¼ STi ¼ 1

indicates that f(X) depends solely on xi [16].

Considered versatile and effective [38], the Sobol’ method

has several key advantages. The method is independent from

model structure (e.g. linearity and monotonicity); it captures

the effects of individual parameters as well as their

interactions and it provides quantitative information on

the contribution of each parameter to model sensitivity.

A major disadvantage is the high computational cost: given

a model with k parameters and n samples from each par-

ameter, the model must run at least k*(n þ 2) times [7] to

generate sufficient output in order to calculate partial

variances for individual parameters.

2.5. Sensitivity heat map method
Two new graphical techniques have been developed to analyse

the sensitivity of complex models: the SHM and the parameter

sensitivity spectrum (PSS) [11]. An SHM depicts the sensitivity

of each output variable to all (or a subset of) model parameters,

while the PSS shows the sensitivity of all (or a subset of) output

variables to each individual parameter. The methods were

developed to take advantage of the fundamental property of

dynamic systems, where a change in high-dimensional
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parameter spaces will lead to a low-dimensional change in

output variables [11]. Given a set of n ODEs:

dX

dt
¼ fðt;X;KÞ; ð2:9Þ

where X ¼ (x1, . . . , xn) is the vector of state variables, t is

time and K ¼ (k1, . . . , ks) is a vector of parameters, there is a sol-

ution or set of solutions X ¼ g(t, K) for 0 � t � T. A change in

parameter, dK results in a change in the solution, dg such

that dgðtÞ ¼ MdK þOðkdK k2Þ; where M is the linear map

from parameter space Rs to a Hilbert space H (as defined in

[39]). Using the notation of Rand [11], a time-interval normal-

ized (i.e. by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtmþ1 � tmÞ/tN

p
) matrix, M1, composed of the

partial derivatives @gj/@ki at all simulation time points t ¼
ft1, . . . ,tNg is subjected to singular value decomposition

to arrive at values for U, W and fsig, defined below, which

express the sensitivity of output variables to parameters [11].

Rand shows that, at a minimum of average error, there exists a

unique sequence of positive numbers s1 � . . . � ss, a unique

set of orthonormal vectors fVig in Rs and a unique n-dimen-

sional orthogonal time-series basis set fU1ðtÞ, . . . , UnðtÞg in

H, such that a small change in dg(t, K) is given by

dgðtÞ ¼
P

i si½
P

j Wijdkj� þOðkdK k2Þ; where Wij are the

elements of W ¼ V21, and V ¼ [V1, . . . ,Vn] [11]. Thus, the

effect of a single parameter on the system, the PSS, is expres-

sed by @gðtÞ/@kj ¼
P

i siWijUiðtÞ, while the SHM for state

variable gi(t) is depicted as siðmaxj jWijjÞUiðtÞ. Compared

with other SA methods, this highly computationally efficient

approach allows the modeller to observe the sensitivity charac-

teristics of the set of all output variables, instead of a single

output variable.
3. Material and methods
3.1. Infectious disease models
A previously described a microparasite (cholera) model [24] and

a macroparasite (schistosomiasis) model [40] were used to exam-

ine the merits of the five SA methods. Microparasites (e.g.

bacteria and viruses) generally replicate within hosts at a rapid

rate and are able to generate an epidemic in a short period of

time. Characteristics of the microparasite epidemic curve (the

time course of the infected population) are often studied using

ODE models. Macroparasites are generally larger and longer

lived than microparasites; they include parasitic helminths and

certain vector-borne diseases. Macroparasites generally cannot

carry out their full life cycle within a single host, and their trans-

mission is often sustained over time, achieving steady-state,

endemic disease dynamics capable of rising from low levels

rapidly, akin to a microparasite epidemic curve, but then rising

or declining from the endemic equilibrium very slowly [1].
3.1.1. Cholera model
A microparasite model describing the transmission dynamics of

cholera in Haiti in 2010 was previously used to examine the

potential effect of interventions on cases of cholera and mortality

[24]. This model was slightly modified for the present analysis by

excluding the effects of vaccination, leading to a final model with

six ODEs and 16 parameters

dSðtÞ
dt
¼ mNðtÞ þ vRðtÞ � aSðtÞ BLðtÞ

KL þ BLðtÞ

� aSðtÞ BHðtÞ
KH þ BHðLÞ

� mSðtÞ; ð3:1Þ
dIðtÞ
dt
¼ ð1� pÞaSðtÞ BLðtÞ

KL þ BLðtÞ
þ ð1� pÞaSðtÞ

� BHðtÞ
KH þ BHðtÞ

� ðmc þ mþ ð1� uÞgþ uglÞIðtÞ;

ð3:2Þ
dAðtÞ

dt
¼ paSðtÞ BLðtÞ

KL þ BLðtÞ
þ paSðtÞ BHðtÞ

KH þ BHðtÞ

� ðmþ gÞAðtÞ;
ð3:3Þ

dRðtÞ
dt
¼ðð1�uÞgþuglÞIðtÞþgAðtÞ�ðmþvÞRðtÞ; ð3:4Þ

dBHðtÞ
dt

¼ ðcuþ ð1� uÞÞ js

W
IðtÞ þ jA

W
AðtÞ � xBHðtÞ; ð3:5Þ

and
dBLðtÞ

dt
¼ xBHðtÞ � dBLðtÞ; ð3:6Þ

where N(t) is the total population, S(t) the susceptible population,

A(t) the asymptomatic population, I(t) the infected population,

R(t) the recovered population and BH(t) and BL(t) are the concen-

tration of high-infectious cholera and low-infectious cholera,

respectively, in environmental reservoirs. Model parameters are

summarized in table 2 and are fully described elsewhere [24].

The model was run in Matlab (R 2011b) for 60 time steps with

each parameter set, as described later.

3.1.2. Schistosomiasis model
A macroparasite model describing the transmission of schistoso-

miasis was previously used to simulate the worm burden in

human hosts and the density of infected snails in China

[40,41]. For the present analysis, the model was simplified to

two state variables and 14 parameters as follows:

dWðtÞ
dt

¼ bc� mWðtÞ � pWðtÞ; ð3:7Þ

dZðtÞ
dt
¼ rmx� 1ZðtÞ; ð3:8Þ

e ¼ 0:5hgnWðtÞf; ð3:9Þ

m ¼ ae
b

ð3:10Þ

and c ¼ sZðtÞa
b

; ð3:11Þ

where W(t) is the average population worm burden, Z(t) is the

density of infected snails and e, m and c are parasite eggs released

into environment, miracidia density and cercaria density,

respectively. Model parameters are summarized in table 2 and

fully described elsewhere [40,41]. The model was run in

Matlab (R 2011b) for 300 time steps with each parameter set, as

described later.

3.2. Set-up of parameter space and distribution
Parameter values and ranges were adopted from previous work

[24,40,41], and unspecified parameter ranges were assigned by

dividing (lower bound) and multiplying (upper bound) the par-

ameter point estimate by 2. A uniform distribution was assigned

to parameters where the distribution was unspecified [21]. All

sensitivity analyses were run in Matlab (R 2011b) unless other-

wise indicated, and model outputs were sampled at every time

step (when examining sensitivity over time) and near the peak

level of infection at the 15th simulation step (when examining

sensitivity at a single point in time).

3.3. Sensitivity analysis
The primary model outputs of interest for the sensitivity analyses

were the infected population, I(t), in the microparasite model

and the worm burden, W(t), in the macroparasite model.



Table 2. Parameter definitions and ranges for the cholera and schistosomiasis models.

model parameter (units) symbol value range code

cholera model rate of contaminated water consumption a 0.1 0.05 – 0.2 p1

Low-infectious (LI) V. cholera infectious dose

(cells)

kL 105 5 � 104 – 2 � 105 p2

Hyperinfectious (HI) V. cholera infectious dose

(cells)

kH 2000 1000 – 4000 p3

rate of decay of HI to LI V. cholera ( per day) x 1 0.5 – 2 p4

death rate of V. cholera in the environment

( per day)

d 0.033 0.0167 – 0.0667 p5

natural birth/death rate ( per day) m 4.49 � 1025 2.25 � 1025 –

8.98 � 1025

p6

mortality rate, symptomatic cholera mc 0.0194 0.0097 – 0.0388 p7

recovery rate, cholera ( per day) g 0.2 0.1 – 0.4 p8

proportion of cases asymptomatic patient p 0.79 0.6 – 0.9 p9

rate of excretion of V. cholera, symptomatic

patient (cell/day)

jS 1.3 � 1011 6.5 � 1010 – 2.6�1011 p10

rate of excretion of V. cholera, asymptomatic

patient (cell/day)

jA 1.3 � 108 6.5 � 107 – 2.6 � 108 p11

rate of waning of natural immunity ( per day) v 0.00137 0.00055 – 0.0055 p12

proportion symptomatic individuals receiving

antibiotics

Q 0.08 0.04 – 0.16 p13

relative rate of shedding, receiving antibiotics c 0.52 0.26 – 1.04 p14

relative rate of recovery, receiving antibiotics l 2.3 1.05 – 4.6 p15

size of water reservoir (L*day) W 5.3 � 1010 5.3 � 109 – 5.3 � 1011 p16

schistosomiasis

model

snail density in a village (snails per square metre) x 20 10 – 40 q1

human population in a village n 200 100 – 400 q2

snail habitat area in a village (m2) a 20 000 10 000 – 40 000 q3

surface water area in a village (m2) b 20 000 10 000 – 40 000 q4

snail infection r 0.000005 0.0000025 – 0.00001 q5

per capita snail mortality ( per day) 1 0.003 0.0015-0.006 q6

cercarial production ( per infected snail) s 50 25 – 100 q7

human infection in a village ( per cercaria per day) b 0.01 0.0005-0.002 q8

per capita worm mortality ( per day) m 0.00091 0.00046 – 0.00182 q9

egg production ( per worm pair per gram stool) h 5 2.5 – 10 q10

stool production (g) g 100 50 – 200 q11

worm mating probability f 0.4 0.2 – 0.8 q12

miracidial production ( per egg) a 0.01 0.005 – 0.02 q13

chemotherapy intervention in a village p 0.05 0.025 – 0.1 q14
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Recall, however, that the SHM method evaluates all output

variables simultaneously.

3.3.1. Scatter plots
For both models, 1000 samples from a uniform distribution of

each parameter range were generated and used as simulation

inputs to obtain the output values of interest. Scatter plot

matrices were drawn showing the relationship between each

parameter and the output variable of interest at a single time

point (the 15th time step).
3.3.2. The Morris methods
For both models, each parameter range was divided into six

levels ( p ¼ 6, D ¼ 0.6). A total of 100 trajectories of 17 points

and 15 points, respectively, were built for the cholera model

and schistosomiasis model, as described elsewhere [18]. For

each parameter, 1700 and 1500 samples were generated for

the cholera and schistosomiasis models, respectively. Model

outputs were then obtained for each parameter set, and

Morris indices, including m, m* and s, were calculated as

described earlier.
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Figure 1. Scatter plots illustrating the relationship between the cholera model infected population size, I, examined at the peak of the epidemic (t ¼ 15)
and parameters.
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3.3.3. Latin hypercube sampling with partial rank correlation
coefficient index

Using Latin hypercube sampling, 100 samples from a uniform

distribution of the parameter ranges of both models were

taken. Model outputs were obtained and the parameter and

output values were transformed into their ranks. PRCCs were

calculated following the procedures described previously [21].

PRCC falls between 21 and þ1, with an absolute value

of PRCC close to 1 indicating the parameter has a strong

impact on the model output.

3.3.4. The Sobol’ method
Using Latin hypercube sampling, 100 samples were drawn from

a uniform distribution of each parameter range for both models.

Samples were permuted randomly 100 times yielding 10 000 par-

ameter sets that were used in models runs. The first order of the

Sobol’ index was calculated as described earlier.

3.3.5. The sensitivity heat map method
The software package SASSY [42] was used to analyse the ODE

models and to generate SHMs and PSS within Matlab (R2011b).

After carrying out a limit cycle simulation using the Matlab

ODE45 solver, model output was obtained for 60 time steps for

the cholera model and 300 time steps for the schistosomiasis

model, and the derivatives of model variables with respect to

model parameters for all simulation time points were entered into

a partial derivative matrix. Following the previous work [11],

singular value decomposition of the partial derivative matrix was

used to generate SHM and PSS, respectively. For SHMs, the sensi-

tivity strip of each output variable was sorted from high to low by

its maximum value and scaled by a ratio of its maximum value to
the maximum value of the colour bar to produce the sensitivity

strip scale.
4. Results
A typical epidemic curve of the infected population size in

the cholera model and the endemic curve of the worm

burden in the human host in the schistosomiasis model are

shown in the electronic supplementary material, figure S1,

generated using the parameter values listed in table 2. The

epidemic (cholera) curve rises sharply, quickly peaking at

day 6 and dropping back to baseline after day 30. By contrast,

the endemic (schistosomiasis) curve has a blunt peak at day

50 followed by a slow decline, illustrating the sustained

burden of long-lived macroparasites in human hosts.

Cholera model scatter plots (figure 1) show the variation in

the infected population size with changes in parameters when

examined at the peak of the epidemic (time step 15). Model

sensitivity to p8 and p9 is evident, but sensitivity to other par-

ameters is unclear. The Morris index (figure 2) concurs, finding

that p8 and p9 exert the strongest influence on the infected

population size. However, the Morris index also identifies par-

ameters p1, p15, p7, p13 and p16 as influential. The PRCC index

provides a measure of the relative influence of these par-

ameters (as well as the direction of the relationship), agreeing

in the ranking of important parameters with the Morris

index. Finally, the Sobol’ sensitivity index indicates that par-

ameters p8, p9 and p1 most strongly influence infected

population size when evaluated near the peak population.
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Figure 2. Sensitivity of the infected population size to changes in parameters in the cholera model as indicated by (a) the Morris index, m*, (b) the PRCC index and
(c) the Sobol’ index, Si.
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When the sensitivity index for an output variable is

examined over the time course of the simulation, the relative

importance of parameters is shown to vary widely depend-

ing on the time point of inspection (figure 3). For the

cholera model, the Morris index shows p9, p8 and p1 to

be the most influential parameters on the infected popu-

lation size, but their relative importance changes during

the simulation, where for instance p8 overtakes p1 and p9
in importance after day 10. However, the index values of

these parameters all decline after day 10 and are close to

0 at the end of simulation. The PRCC and the Sobol’ indices

also show variation in parameter sensitivity; however, these

indices cannot meaningfully be interpreted over time. Both

PRCC and Sobol’, for instance, suggest that p12 has no

influence on the infected population size state variable at

the beginning of the simulation, but then has influence

later in the simulation period (figure 3). Yet, neither

measure is indexed to some unchanging value (e.g. a pertur-

bation of the parameter of interest as in the Morris method

or unit change in infected population). Thus, without

accounting for the overall variation of the infected popu-

lation size over the simulation period (see the electronic

supplementary material, figure S1a), these indices cannot

be interpreted as indicating that p12 is more important

later in the simulation than at early time points. If this vari-

ation is taken into account—i.e. that the state variable is
small near the end of the outbreak—the influence of p12
might not in fact be high.

The sensitivity of each cholera model output variable to all

parameters as a whole is shown by the SHM in figure 4a. The

colour strip indicates the product of the first singular value (s1)

and the first principle component ( pc1) of the derivative of the

solution (the state variable) to the parameter (U1j). Thus, by

comparison of the scale ratio for each sensitivity strip, it is

clear that state variables BH, BL and I are much more sensitive

to parameters as a whole than are A, S and R. Looking at indi-

vidual state variables, sensitivity differs widely across the

simulation time period. For BH, A, I and S, sensitivity is highest

early in the simulation interval, during the epidemic peak.

High sensitivity of BL is achieved in the middle of the simu-

lation, versus late in the period for R. This is because BL

gradually peaks in the middle period and then decreases,

while R reaches and remains at its highest value in the late

period. Figure 4b shows the sensitivity of output variables as

a whole to each individual parameter, confirming parameter

p9 as most influential when evaluated simultaneously across

all state variables. Interestingly, parameter p1, individually

important for determining the infected population size

(figure 2) is of limited importance when sensitivity is examined

together for all state variables (figure 4b).

Applying the five methods to the schistosomiasis model

yields several interesting contrasts. The Morris, PRCC and
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Figure 3. The temporal variation of the sensitivity of the infected population size to key parameters in the cholera model indicated by (a) the Morris index m*,
(b) the PRCC index and (c) the Sobol’ index Si. Sensitivity to all model parameters is shown in the electronic supplementary material, figure S2.
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Sobol’ indices all indicate the importance of parameters q3,

q4, q6, q7 and q14. Though both models show temporally

varying sensitivity indices, the sensitivity indices of the

most important parameters in the schistosomiasis model

are, unlike the cholera model (figure 3), approximately con-

stant later in the simulation (figure 5). The SHM for the

schistosomiasis model (figure 6a) shows that the worm

burden state variable is considerably more sensitive to

model parameters, when taken as a whole, than the infected

snail density variable. That the worm burden is highly sensi-

tive to model parameters from days 40 to 120, and is

subsequently slightly less sensitive afterward, is consistent

with the results of traditional sensitivity methods as shown

in figure 5 and corresponds to the endemic curve of the

worm burden which reaches its peak at day 40 and is

stable through the remainder of the simulation (see the elec-

tronic supplementary material, figure S1b). Finally, the PSS

(figure 6b) reveals that both state variables, considered

together, are sensitive to q3, q4, q6, q7, q8 and q14. These

PSS-determined sensitive parameters correspond, with the

exception of q8, with the results of traditional methods

applied only to worm burden (figure 5).
5. Discussion
We described five GSA methods and examined their rela-

tive merit in identifying important parameters and

characterizing their influence in two infectious disease

mathematical models. The methods yielded similar results

with respect to identifying influential parameters, but

offered different insights as to the importance of parameters

over the simulation period, as well as different information

when applied to microparasite versus macroparasite

models.
Scatter plots offer a straightforward way to visualize the

relationship between parameters and output variables, pro-

viding a natural starting point for SA [7,21]. The Morris,

LHS-PRCC and Sobol’ methods can provide more definitive

information, effectively distinguishing between parameters

that are of high versus negligible importance. The Morris

method is mainly used as a screening technique for identify-

ing important parameters [7,35], while the PRCC index,

ranging from 21 to þ1, provides specific qualitative infor-

mation on the relationship between an output variable and

a parameter—as well as indicates whether the relationship

is concordant or discordant—after controlling for the influ-

ence of other parameters [21]. Based on the Sobol’ first-

order sensitivity index, Si, four parameters were found to

be the primary contributors to the variance of the infected

population size in the cholera model, and five were found

to greatly influence worm burden in the schistosomiasis

model. The Sobol’ index, a variance decomposition approach,

also captures the influence of the interaction among par-

ameters on a model output [7]. The first-order sensitivity

index, Si, reflects the contribution of each parameter to the

variance of the output variable, while the total effect index,

STi
, takes both individual contributions and interaction effects

into account [7,38]. An exploration of the interaction effects

was outside the scope of our application of the Sobol’

index, and thus the total effect index was not calculated.

The temporal variation of state variable sensitivity to par-

ameters is rarely addressed in infectious disease modelling

studies. Modellers should explore this temporal effect, as

their conclusions about the importance of particular par-

ameters, or the robustness of their findings, may be

mistaken if sensitivity is examined only at one time point.

If, for instance, sensitivity is evaluated at a point following

the epidemic peak, parameters that were instrumental to

the rising epidemic curve may appear irrelevant. The
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Morris method can provide some information about tem-

poral variation in a single parameter’s sensitivity over the

simulation period, being as the index is based on the ratio

of the change of an output to the change of an input par-

ameter, the latter of which can be kept constant over the

period calculated. However, the index is sensitive to the mag-

nitude of the state variables over the course of the simulation,

and thus must be interpreted with care when examined

over time.

By contrast, the Sobol’ method cannot provide a meaning-

ful comparison of the change in sensitivity of an output

variable to a parameter over the course of simulation. The

Sobol’ sensitivity index for a particular parameter represents

its contribution to the total variance of the system at the time

point evaluated. If examined over time, a change in the index

may be related to a change in the importance of the par-

ameter or a change in the output variance, and these two

possibilities cannot be distinguished. Likewise, the PRCC

method does not allow for quantitative comparison of a

single parameter’s influence at two time points, because the

calculation ranks parameters and state variables at a point

in time; the rank, residual of a rank and the resulting PRCC

of a particular parameter at one time point has no direct

relationship to those at another time point. Modellers should

thus be cautious about applying variance decomposition-
based methods to quantitatively compare model sensitivity

at multiple time points.

The SHM method, and the associated graphical objects

SHM and PSS, offer considerable benefits over traditional

techniques. This method efficiently handles models with

high-dimensional parameter spaces and many state variables.

SHM offers a powerful view of state variable sensitivity over

time to many parameters taken together [11]. The sensitivity

strips clearly show the time period when a state variable is

sensitive to model parameters as a whole, information that

traditional methods do not provide. Such an examination of

sensitivity over time is of particular value to the modeller

interested in, say, the change in timing of particular events

occurring over the course of the epidemic. PSS, on the

other hand, summarizes the importance of individual par-

ameters when considering all, or a set of, model state

variables. This view may be of particular use in agent-

based or network transmission models, where modellers

are most interested in how parameters influence the model

system as a whole, rather than the sensitivity of a specific

state variable as defined for a particular network node or

agent [21,43].

Alternatively, the simultaneous sensitivity of several state

variables (e.g. infectious state variables of the cholera model,

I(t), BH(t) and BL(t)), to a single parameter may also be of
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interest. Since the index for each parameter is constant, PSS

avoids the complicated application of traditional SA methods

at a single time point. When a model has only a few state

variables and parameters, the strengths of SHM methods

still hold as shown by SA of the schistosomiasis model

with only two state variables. By comparison of figures 5

and 6, the same parameters were generally identified as

important in the schistosomiasis model by both SHM

methods and the traditional methods. However, the former

more flexibly examines the sensitivity associated with dif-

ferent parameter or output subsets and provides more

information about sensitivity than the latter. To our knowl-

edge, the SHM method has not yet been applied to

infectious disease models, and future work should consider

the insights these powerful techniques can provide on both

autonomous and non-autonomous systems [44].

In the development and evaluation of infectious disease

models, our results can inform the selection of SA methods

for aims such as model refinement, understanding model

sensitivity over time, apportioning sensitivity across complex

parameter spaces and intervention evaluation. If model

refinement through improved parameter estimation is the

research objective, PSS can be used to show the relative

importance of each parameter over the period of simulation.

The approach is particularly valuable if such model refine-

ment is aimed at a time-specific goal (e.g. improved

estimation of the peak population time). After the most criti-

cal parameters have been identified through these means, the

feasibility of their refinement through additional data
collection or experimentation can subsequently be deter-

mined. A modeller interested in examining model

sensitivity at one point in time to parameters and their inter-

actions may choose the Sobol’ method, whose chief

advantage is the ability to tease out the model’s response to

a single parameter when all interactions are accounted for

[45]. This apportioning of output sensitivity to a specific par-

ameter may be useful when, for instance, multiple

interventions are compared by examining the output’s

response to each altered parameter as separate first-order

effects, and as total effects including the parameter’s inter-

actions [46]. On the other hand, a modeller interested in

identifying when a parameter achieves maximum influence

may benefit from the Morris method, which can provide

information about the variation of sensitivity over the simu-

lation interval. To our knowledge, the Morris method has

not been applied in this fashion, and we hope to prompt its

application in such infectious disease modelling contexts.

If a modeller aims to achieve specific goals defined as cri-

teria on output variables, such as limiting the size of the

infected population; the targeting of specific parameters

that impact goal achievement are of interest, and PRCC

can be particularly valuable [21] and has been applied to several

infectious disease models in this fashion [26–28,32]. Other ana-

lyses have highlighted, through SA methods such as PRCC, the

most effective times or parameters for efficient intervention

[9,10], or the need for additional experimental data to aid

research (e.g. estimates for host mixing rates [8]). Since PRCC

indicates the degree of monotonicity between an output
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Figure 6. (a) SHM and (b) PSS of worm burden (W) and snail density (Z) for the schistosomiasis model, following previous work [11].
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variable and a specific parameter in a model, preliminary exam-

ination the behaviour of the model is necessary [27]. Traditional

scatter plots roughly screen the relationships between model

outputs and parameters and may be used for a preliminary

assessment. Otherwise, more powerful techniques, such as

flow-based scatter plots, may be more suitable for the

complexity typical of infectious disease models [47].

In resource poor settings, models, coupled with SA, may

be used as a first step towards understanding control options.

Whether by means of modelling behavioural interventions,

biomedical interventions or through evaluation of social con-

ditions and their impact on the disease system, infectious

disease models have been used by decision-making bodies

to explore and evaluate various policy options [48]. Where

data are meager, SA can be used to identify key parameters

upon which to focus limited data collection resources.

Alternatively, an identified sensitive parameter may highlight

a mechanism in the modelled system most suitable for

cost-effective intervention. Prioritized parameters can also

inform more efficient uncertainty analysis; assumed variation

in only the most important parameters could be investigated

to simulate the range of probable outcomes. GSA has also

been used formally to aid in experimental design, to deter-

mine which parameters to focus upon when resources are

scarce, and this has been achieved by analysing gradients of

the model log-likelihood surface with respect to previously

collected data [11]. This approach may lead to a fertile part-

nering of parameter estimation and SA methods, for

model/data pairs with complex likelihoods.

Computation time is a final important point of comparison

between SA methods. The SHM and PSS methods exhibit
highly optimized and efficient computation [11], while the

computational requirements of traditional methods depend

on the number of model runs, which itself is contingent on

the number of parameters and how exhaustive the parameter

space is sampled. The computational cost of the Sobol’ method

is the highest among the four traditional SA methods, and the

more model runs undertaken, the more accurate the Sobol’

index is [7,38].

We conclude by pointing out interesting insights that

emerge from a comparison of the terms that appear in R0

for the cholera model, and the relative importance of these

and other parameters based on the SA findings. Examination

of R0 (equation (5.1)) produced by the next generation

method [49] indicates that KL, d, g, p, jS, jA, w and l, ( p3,

p5, p8, p10, p11, p12, p15) are potentially influential terms.

R0 ¼
1

w

� �
pjA

mþ g
þ ðcuþ ð1� uÞÞjS

mc þ mþ ð1� uÞgþ ugl

� �

� 1

kHx
þ 1

kLd

� �
: ð5:1Þ

The SA results indicate that p1, p8, p9 and p12 are impor-

tant parameters and the remaining parameters have limited

influence. Thus, SA has effectively narrowed the set of par-

ameters worthy of additional scrutiny when compared with

the qualitative conclusions a modeller might have reached

based on a simple examination of R0. Of course, at times,

R0 is the model output of interest and is itself subjected to

SA [9].

By comparing the application of five GSA methods to two

infectious disease models, we have explored the strengths,



Table 3. Comparison of five GSA methods.

scatter
plots

the Morris
method LHS-PRCC

the Sobol’
method

the SHM
method

How easily understood is the concept behind the

method?

easily easily medium medium difficult

Can the method rank the importance of

parameters?

no yes yes yes yes

Can the method measure the variation of

sensitivity over time?

no yes no no yes

Can the method show the sensitivity of the full

model system?

no no no no yes

Can the method show the sensitivity to all

parameters simultaneously?

no no no no yes

Can the method attribute the variance of a model

output to each parameter?

no no no yes no

Can the method show the interaction effects on

the sensitivity between parameters?

no no no yes no

Can the method show the direction of sensitivity?a yes no yes no no

Is the method easy to carry out? (e.g. difficulty to

calculate and present results)

easy medium slightly

difficult

slightly

difficult

easyb

What is the relative computation cost? low medium medium high low
aThe direction of sensitivity refers to whether the change in parameters and the change in model outputs are concordant or discordant.
bExecution is greatly facilitated by the SASSY Matlab package.
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weaknesses and appropriate uses of GSA methods in the con-

text of infectious disease models, and our assessments are

summarized in table 3. While we found the LHS-PRCC and

the SHM method to be the most widely applicable to infec-

tious disease models, all five SA methods explored here can

support improvements in model performance and design, if

the method selected is consonant with the modeller’s goals.

As the acquisition of data on dynamic disease transmission

phenomena expands, and the demand for models to analyse

and interpret these data increases, modellers need to quickly

understand what the main ‘levers’ of influence are in models

that potentially contain dozens or even hundreds of par-

ameters. Through comparison of the research questions

being addressed, the model’s structure and the characteristics
of the SA methods investigated here, modellers can make

informed SA choices that support their research aims and

advance the productive application of mathematical models

to infectious disease systems.

Acknowledgements. This manuscript was considerably strengthened by
the critical remarks of four anonymous referees. Thanks, also, to
Chloe Robbins and the rest of the Remais Lab. This work was sup-
ported in part by the Ecology of Infectious Disease program of the
National Science Foundation under grant no. 0622743, by the Chemi-
cal, Bioengineering, Environmental, and Transport Systems Division
of the National Science Foundation under grant no. 1249250, by the
National Institute for Allergy and Infectious Disease (K01AI091864)
and by the Global Health Institute at Emory University. The funders
had no role in study design, data collection and analysis, decision to
publish or preparation of the manuscript.
References
1. Anderson RM, May RM. 1991 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
University Press.

2. Grassly NC, Fraser C. 2008 Mathematical models of
infectious disease transmission. Nat. Rev. Microbiol.
6, 477 – 487.

3. Keeling M, Rohani P. 2007 Modeling infectious
diseases in human and animals. Princeton, NJ:
Princeton University Press.

4. Hooker G, Ellner SP, Roditi LD, Earn DJD. 2011
Parameterizing state-space models for infectious
disease dynamics by generalized profiling: measles
in Ontario. J. R. Soc. Interface 8, 961 – 974. (doi:10.
1098/rsif.2010.0412)

5. Okais C, Roche S, Kurzinger ML, Riche B, Bricout H,
Derrough T, Simondon F, Ecochard R. 2010
Methodology of the sensitivity analysis used for
modeling an infectious disease. Vaccine 28,
8132 – 8140. (doi:10.1016/j.vaccine.2010.09.099)

6. Moore JL, Liang S, Akullian A, Remais JV. 2012
Cautioning the use of degree-day models for
climate change projections in the presence of
parametric uncertainty. Ecol. Appl. 22, 2237 – 2247.
(doi:10.1890/12-0127.1)
7. Saltelli A, Ratto M, Andres T, Campolongo F,
Cariboni J, Gatelli D, Saisana M, Tarantola S. 2008
Global sensitivity analysis. The primer. Chichester,
UK: John Wiley & Sons.

8. Buhnerkempe MG, Eisen RJ, Goodell B, Gage KL,
Antolin MF, Webb CT. 2011 Transmission shifts
underlie variability in population responses to
Yersinia pestis infection. PLoS ONE 6, e22498.
(doi:10.1371/journal.pone.0022498)

9. Chitnis N, Hyman JM, Cushing JM. 2008
Determining important parameters in the spread of
malaria through the sensitivity analysis of a

http://dx.doi.org/10.1098/rsif.2010.0412
http://dx.doi.org/10.1098/rsif.2010.0412
http://dx.doi.org/10.1016/j.vaccine.2010.09.099
http://dx.doi.org/10.1890/12-0127.1
http://dx.doi.org/10.1371/journal.pone.0022498


rsif.royalsocietypublishing.org
JR

SocInterface
10:20121018

14
mathematical model. Bull. Math. Biol. 70,
1272 – 1296. (doi:10.1007/s11538-008-9299-0)

10. McLeod RG, Brewster JF, Gumel AB, Slonowsky DA.
2006 Sensitivity and uncertainty analyses for a
SARS model with time-varying inputs and outputs.
Math. Biosci. Eng. 3, 527 – 544. (doi:10.3934/mbe.
2006.3.527)

11. Rand DA. 2009 Mapping global sensitivity of
cellular network dynamics: sensitivity heat maps
and a global summation law. J. R. Soc. Interface 5,
S59 – S69. (doi:10.1098/rsif.2008.0084.focus)

12. Benton TG, Grant A. 1999 Elasticity analysis as an
important tool in evolutionary and population
ecology. Trends Ecol. Evol. 14, 467 – 471. (doi:10.
1016/S0169-5347(99)01724-3)

13. Samuelson PA, Nordhaus WD. 2010 Microeconomics,
19th edn. Boston, MA: McGraw-Hill Irwin.

14. Myers RH, Montgomery DC, Anderson-Cook CM.
2009 Response surface methodology: process and
product optimization using designed experiments,
3rd edn. Hoboken, NJ: Wiley.

15. Montgomery DC. 2013 Design and analysis of
experiments, 8th edn. Hoboken, NJ: John Wiley &
Sons, Inc.

16. Sobol IM. 1990 On sensitivity estimates for
nonlinear mathematical models. Matematicheskoe
Modelirovanie 2, 112 – 118. [In Russian.]

17. Saltelli A, Tarantola S, Chan KPS. 1999 A
quantitative model-independent method for global
sensitivity analysis of model output. Technometrics
41, 39 – 56. (doi:10.1080/00401706.1999.10485594)

18. Morris MD. 1991 Factorial sampling plans for
preliminary computational experiments.
Technometrics 33, 161 – 174. (doi:10.1080/
00401706.1991.10484804)

19. Campolongo F, Cariboni J, Saltelli A. 2007 An
effective screening design for sensitivity analysis of
large models. Environ. Model. Softw. 22,
1509 – 1518. (doi:10.1016/j.envsoft.2006.10.004)

20. Helton JC, Davis FJ. 2002 Illustration of sampling-
based methods for uncertainty and sensitivity
analysis. Risk Anal. 22, 591 – 622. (doi:10.1111/
0272-4332.00041)

21. Marino S, Hogue IB, Ray CJ, Kirschner DE. 2008 A
methodology for performing global uncertainty and
sensitivity analysis in systems biology. J. Theor. Biol.
254, 178 – 196. (doi:10.1016/j.jtbi.2008.04.011)

22. Hamby DM. 1994 A review of techniques for
parameter sensitivity analysis of environmental-
models. Environ. Monit. Assess. 32, 135 – 154.
(doi:10.1007/BF00547132)

23. Yang J. 2011 Convergence and uncertainty analyses
in Monte-Carlo based sensitivity analysis. Environ.
Model. Softw. 26, 444 – 457. (doi:10.1016/j.envsoft.
2010.10.007)

24. Andrews JR, Basu S. 2011 Transmission dynamics
and control of cholera in Haiti: an epidemic model.
Lancet 377, 1248 – 1255. (doi:10.1016/S0140-
6736(11)60273-0)

25. Zhang J, Jin Z, Sun G, Zhou T, Ruan S. 2011 Analysis
of Rabies in China: transmission dynamics and
control. PLoS ONE 6, e20891. (doi:10.1371/journal.
pone.0020891)

26. Gubbins S, Carpenter S, Baylis M, Wood JLN, Mellor
PS. 2008 Assessing the risk of bluetongue to UK
livestock: uncertainty and sensitivity analyses of a
temperature-dependent model for the basic
reproduction number. J. R. Soc. Interface 5,
363 – 371. (doi:10.1098/rsif.2007.1110)

27. Blower SM, Dowlatabadi H. 1994 Sensitivity and
uncertainty analysis of complex-models of disease
transmission—an HIV model, as an example. Int.
Stat. Rev. 62, 229 – 243. (doi:10.2307/1403510)

28. Porco TC, Blower SM. 1998 Quantifying the intrinsic
transmission dynamics of tuberculosis. Theor. Popul.
Biol. 54, 117 – 132. (doi:10.1006/tpbi.1998.1366)

29. Ellis AM, Garcia AJ, Focks DA, Morrison AC, Scott TW.
2011 Parameterization and sensitivity analysis of a
complex simulation model for mosquito population
dynamics, dengue transmission, and their control.
Am. J. Trop. Med. Hyg. 85, 257 – 264. (doi:10.4269/
ajtmh.2011.10-0516)

30. Bailey NTJ, Duppenthaler J. 1980 Sensitivity analysis
in the modeling of infectious-disease dynamics.
J. Math. Biol. 10, 113 – 131. (doi:10.1007/
BF00275837)

31. Hethcote HW, Vanark JW, Karon JM. 1991 A
simulation-model of AIDS in
San Francisco. 2. Simulations, therapy, and
sensitivity analysis. Math. Biosci. 106, 223 – 247.
(doi:10.1016/0025-5564(91)90078-W)

32. Legrand J, Sanchez A, Le Pont F, Camacho L,
Larouze B. 2008 Modeling the impact of
tuberculosis control strategies in highly endemic
overcrowded prisons. PLoS ONE 3, e2100. (doi:10.
1371/journal.pone.0002100)

33. Saltelli A, Tarantola S, Campolongo F, Ratto M. 2004
Sensitivity analysis in practice: a guide to assessing
scientific models. Chichester, UK: John Wiley & Sons.

34. Hamby DM. 1995 A comparison of sensitivity
analysis techniques. Health Phys. 68, 195 – 204.
(doi:10.1097/00004032-199502000-00005)

35. McKay MD, Beckman RJ, Conover WJ. 1979 A
comparison of three methods for selecting values of
input variables in the analysis of output from a
computer code. Technometrics 21, 239 – 245.

36. Helton JC, Davis FJ. 2003 Latin hypercube sampling
and the propagation of uncertainty in analyses of
complex systems. Reliab. Eng. Syst. Safety 81,
23 – 69. (doi:10.1016/S0951-8320(03)00058-9)

37. Sobol IM. 2001 Global sensitivity indices for
nonlinear mathematical models and their Monte
Carlo estimates. Math. Comp. Simul. 55, 271 – 280.
(doi:10.1016/S0378-4754(00)00270-6)
38. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto
M, Tarantola S. 2010 Variance based sensitivity
analysis of model output. Design and estimator for
the total sensitivity index. Comp. Phys. Commun.
181, 259 – 270. (doi:10.1016/j.cpc.2009.09.018)

39. Domijan M, Rand DA. 2011 Balance equations can
buffer noisy and sustained environmental
perturbations of circadian clocks. Interface Focus 1,
177 – 186. (doi:10.1098/rsfs.2010.0007)

40. Liang S, Maszle D, Spear RC. 2002 A quantitative
framework for a multi-group model of
Schistosomiasis japonicum transmission
dynamics and control in Sichuan, China. Acta
Trop. 82, 263 – 277. (doi:10.1016/S0001-
706X(02)00018-9)

41. Liang S et al. 2007 Environmental effects on
parasitic disease transmission exemplified by
schistosomiasis in western China. Proc. Natl Acad.
Sci. USA 104, 7110 – 7115. (doi:10.1073/pnas.
0701878104)

42. Brown P, Rand DA. 2012 Using the Global
Sensitivity GUIs. See http://wsbcwarwickacuk/
software/indexhtml.

43. Segovia-Juarez JL, Ganguli S, Kirschner D. 2004
Identifying control mechanisms of granuloma
formation during M-tuberculosis infection using an
agent-based model. J. Theor. Biol. 231, 357 – 376.
(doi:10.1016/j.jtbi.2004.06.031)

44. Remais J, Zhong B, Carlton EJ, Spear RC. 2009
Model approaches for estimating the influence of
time-varying socio-environmental factors on
macroparasite transmission in two endemic regions.
Epidemics 1, 213 – 220. (doi:10.1016/j.epidem.
2009.10.001)

45. Mokhtari A, Frey HC. 2005 Sensitivity analysis of a two-
dimensional probabilistic risk assessment model using
analysis of variance. Risk Anal. 25, 1511 – 1529.
(doi:10.1111/j.1539-6924.2005.00679.x)

46. Busschaert P, Geeraerd AH, Uyttendaele M, Van
Impe JF. 2011 Sensitivity analysis of a two-
dimensional quantitative microbiological risk
assessment: keeping variability and uncertainty
separated. Risk Anal. 31, 1295 – 1307. (doi:10.1111/
j.1539-6924.2011.01592.x)

47. Chan YH, Correa CD, Ma KL (eds) 2010 Flow-based
Scatterplots for Sensitivity Analysis. In IEEE Symp. on
Visual Analytics Science and Technology Salt Lake
City, UT, 25 – 26 October 2010. New York, NY: IEEE.

48. Griffin JT et al. 2010 Reducing Plasmodium falciparum
malaria transmission in Africa: a model-based
evaluation of intervention strategies. PLoS Med. 7,
e1000324. (doi:10.1371/journal.pmed.1000324)

49. van den Driessche P, Watmough J. 2002
Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease
transmission. Math. Biosci. 180, 29 – 48. (doi:10.
1016/S0025-5564(02)00108-6)

http://dx.doi.org/10.1007/s11538-008-9299-0
http://dx.doi.org/10.3934/mbe.2006.3.527
http://dx.doi.org/10.3934/mbe.2006.3.527
http://dx.doi.org/10.1098/rsif.2008.0084.focus
http://dx.doi.org/10.1016/S0169-5347(99)01724-3
http://dx.doi.org/10.1016/S0169-5347(99)01724-3
http://dx.doi.org/10.1080/00401706.1999.10485594
http://dx.doi.org/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1016/j.envsoft.2006.10.004
http://dx.doi.org/10.1111/0272-4332.00041
http://dx.doi.org/10.1111/0272-4332.00041
http://dx.doi.org/10.1016/j.jtbi.2008.04.011
http://dx.doi.org/10.1007/BF00547132
http://dx.doi.org/10.1016/j.envsoft.2010.10.007
http://dx.doi.org/10.1016/j.envsoft.2010.10.007
http://dx.doi.org/10.1016/S0140-6736(11)60273-0
http://dx.doi.org/10.1016/S0140-6736(11)60273-0
http://dx.doi.org/10.1371/journal.pone.0020891
http://dx.doi.org/10.1371/journal.pone.0020891
http://dx.doi.org/10.1098/rsif.2007.1110
http://dx.doi.org/10.2307/1403510
http://dx.doi.org/10.1006/tpbi.1998.1366
http://dx.doi.org/10.4269/ajtmh.2011.10-0516
http://dx.doi.org/10.4269/ajtmh.2011.10-0516
http://dx.doi.org/10.1007/BF00275837
http://dx.doi.org/10.1007/BF00275837
http://dx.doi.org/10.1016/0025-5564(91)90078-W
http://dx.doi.org/10.1371/journal.pone.0002100
http://dx.doi.org/10.1371/journal.pone.0002100
http://dx.doi.org/10.1097/00004032-199502000-00005
http://dx.doi.org/10.1016/S0951-8320(03)00058-9
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/j.cpc.2009.09.018
http://dx.doi.org/10.1098/rsfs.2010.0007
http://dx.doi.org/10.1016/S0001-706X(02)00018-9
http://dx.doi.org/10.1016/S0001-706X(02)00018-9
http://dx.doi.org/10.1073/pnas.0701878104
http://dx.doi.org/10.1073/pnas.0701878104
http://wsbcwarwickacuk/software/indexhtml
http://wsbcwarwickacuk/software/indexhtml
http://wsbcwarwickacuk/software/indexhtml
http://dx.doi.org/10.1016/j.jtbi.2004.06.031
http://dx.doi.org/10.1016/j.epidem.2009.10.001
http://dx.doi.org/10.1016/j.epidem.2009.10.001
http://dx.doi.org/10.1111/j.1539-6924.2005.00679.x
http://dx.doi.org/10.1111/j.1539-6924.2011.01592.x
http://dx.doi.org/10.1111/j.1539-6924.2011.01592.x
http://dx.doi.org/10.1371/journal.pmed.1000324
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/S0025-5564(02)00108-6

	Sensitivity analysis of infectious disease models: methods, advances and their application
	Introduction
	Overview of sensitivity analysis methods for infectious disease models
	Scatter plots
	The Morris method
	Latin hypercube sampling-partial rank correlation coefficient
	The Sobol&rsquo; method
	Sensitivity heat map method

	Material and methods
	Infectious disease models
	Cholera model
	Schistosomiasis model

	Set-up of parameter space and distribution
	Sensitivity analysis
	Scatter plots
	The Morris methods
	Latin hypercube sampling with partial rank correlation coefficient index
	The Sobol&rsquo; method
	The sensitivity heat map method


	Results
	Discussion
	Acknowledgements
	References


