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This review focuses on modern nonlinear optical microscopy (NLOM)

methods that are increasingly being used in the field of tissue engineering

(TE) to image tissue non-invasively and without labelling in depths unreached

by conventional microscopy techniques. With NLOM techniques, biomaterial

matrices, cultured cells and their produced extracellular matrix may be visual-

ized with high resolution. After introducing classical imaging methodologies

such as mCT, MRI, optical coherence tomography, electron microscopy and

conventional microscopy two-photon fluorescence (2-PF) and second harmo-

nic generation (SHG) imaging are described in detail (principle, power,

limitations) together with their most widely used TE applications. Besides

our own cell encapsulation, cell printing and collagen scaffolding systems

and their NLOM imaging the most current research articles will be reviewed.

These cover imaging of autofluorescence and fluorescence-labelled tissue and

biomaterial structures, SHG-based quantitative morphometry of collagen I and

other proteins, imaging of vascularization and online monitoring techniques in

TE. Finally, some insight is given into state-of-the-art three-photon-based ima-

ging methods (e.g. coherent anti-Stokes Raman scattering, third harmonic

generation). This review provides an overview of the powerful and constantly

evolving field of multiphoton microscopy, which is a powerful and indispen-

sable tool for the development of artificial tissues in regenerative medicine and

which is likely to gain importance also as a means for general diagnostic

medical imaging.
1. Introduction
Tissue engineering (TE) has become an emerging field for regenerative medi-

cine, and bringing together patient cells and biocompatible artificial scaffolds

for the production of matrix and subsequent revascularization has been often

coined as ‘the holy grail’ on the path to tissue repair and personalized medicine

[1]. The cell-centric approach of seeding cells onto a supportive scaffolding

material has by far been the most broadly investigated attempt to reconstruct

tissues or repair rather smaller defects [2,3].

One major constraint of this approach, however, has been the creation of

artificial organotropic environments within small-scale bioreactors to promote

cell proliferation into a simplified organomimetic construct, yet largely without

vascularization or the complex cellular–matrix coupling usually found within

the body [4]. To promote an adequate microenvironment, not only is the

continuous development of more biocompatible scaffold compositions a
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key requisite, but also the provision of more extended

scaffold architectures and designs to account for the three-

dimensional aspect of cell seeding and proliferation [5]. In

the human body, the extracellular matrix (ECM) and its

characteristic cytokine and growth factor profiles may

change during spread of precursor cells. These chemical

and physical microenvironments may alter the signalling be-

haviour of ingrowing cells to steer their maturation and

differentiation potency [6–8]. This seems to play an impor-

tant role not only during the early differentiation phase of

organogenesis, but may also serve as a reprimable pro-

gramme during wound healing later in life [9,10]. Other,

more unconventional recent TE approaches, suggest omitting

the retrieval of source cells for external seeding and aim to

use the patient’s own cells and cytokine environment to

populate an implanted external scaffold [11]. In any case,

the structural requirements towards the implemented scaf-

folds regarding biocompatibility, durability, ‘homing

suitability’, cellular attractibility and mechanical resistance

need to be met and are constantly being improved. On the

other hand, it is likewise important to confer reliable par-

ameters for the cell–scaffold interaction, desirably online

and for extended time periods.

Microscopy technologies probably represent the most ade-

quate means to fulfil such criteria, with light microscopy even

having the advantage of not interfering with the biological

sample (cells and scaffolds) for a wide range of wavelengths

and illumination intensities. Our knowledge of biomaterials,

their composition and interaction has evolved tremendously

from the application of modern microscopy techniques. One

major constraint when it comes to imaging scaffolds and

cells seeded within, is the limited penetration depth for

most microscopy techniques. Laser confocal microscopy or

transillumination microscopy to study the cell–scaffold inter-

faces or to count cells or follow their trajectory during scaffold

population require the use of thin samples or suffer from

spatial resolution, respectively.

Multiphoton microscopy (MPM) has overcome most of

those constraints and allows imaging deep into the scaffolds,

for example, with slicewise optical sectioning and three-

dimensional reconstruction, to study the vertical migration

or seeding of lacunae within scaffolds with respect to an

extended cytomatrix architecture. For MPM, even some

specialized optical effects can be used to enable label-free

imaging of cells within scaffolds for the least manipulation

of the preparation [12,13]. Such novel optical technologies

are most promising to study and optimize TE strategies

both ex vivo and in vivo.

This review will provide a state-of-the-art overview

of current developments at the interface of regenerative medi-

cine and optical metrology. We give an overview of the recent

advances in optical technologies that have been implemen-

ted in TE as a novel tool to study cell–matrix architecture

of the living preparation. We also give a comparison of multi-

photon imaging with other conventional microscopy

techniques and highlight their respective advantages and

disadvantages. Finally, we present some applications of

MPM from our laboratories using examples from Bioglass

materials and alginate-encapsulated cells and scaffolds that

have been fabricated with tissue plotter technologies. With

such novel approaches, we give an outlook on putative

future directions that might have a vast impact on the field

of TE and regenerative medicine.
2. Imaging techniques in the scaffold design and
development

During the development of functional tissue constructs, four

factors need to be controlled:

— Cells. Cell number, viability, growth, morphology, differ-

entiation, cell–matrix interactions.

— ECM proteins. Composition, amount, fibre size and spatial

orientation.

— Scaffold. Surface topography, inner structure, nanoparticle

distribution in composites.

— Post-implantation processes. Tissue integration, biomaterial

degradation and vascularization.

In order to develop custom-tailored and optimized functional

tissue implants, a number of techniques are required to both

monitor the biomaterial backbone and the cell and tissue be-

haviour before and after implantation [14].

Scaffold transparency is a major issue in the imaging of

TE constructs [5]. Most scaffolds possess a high degree of

opacity that could derive from high porosities (e.g. fabrica-

tion by particulate leaching or gas foaming), multiple

internal surfaces (multi-layered or multi-surface architectures),

incorporation of micro- and nanoparticles (nanocomposites) or

highly diffracting components such as in biopolymer-based

hydrogels. Some scaffolds become highly opaque as a result

of increasing mineralization during maturation (bone TE con-

structs [15]). Light in the UV and visible range (300–700 nm)

used for microscopy imaging penetrates such opaque

materials only superficially [16] and seeded cells further

enhance light diffraction. Because of this, traditional imaging

methods relied on physical sectioning (histology) to enable

images of the inner micro-architecture, thereby destroying

the constructs. Some methodologies, however, overcome

this procedure by enabling optical sectioning and three-

dimensional reconstruction.

In this section, the most important two- and three-

dimensional imaging modalities used in scaffold design

and development are discussed. Each one of these methods

has its strengths and limitations and allows imaging within

certain spatio-temporal boundaries. The techniques differ lar-

gely not only in their invasiveness to the biological material,

their imaging speed and ability to create three-dimensional

views, their biological specificity, imaging depth and

resolution, but also in terms of costs and time and effort

(table 1).

2.1. Tomography methods: mCT, MRI and optical
coherence tomography

Useful imaging methods derived from medical diagnostics

are tomography-based techniques, the most prominent

being computer tomography (CT) and magnetic resonance

imaging (MRI) and optical coherence tomography (OCT).

These techniques have proved to be powerful in the vali-

dation of TE scaffolds [20]. Common to these methods is

their ability to scan larger objects, to represent them in

three-dimensional and—compared with other available tech-

niques—greatly enhanced imaging depth.

CT and MRI are complementary techniques. In CT, X-ray

images are taken from all angles and rendered to three-

dimensional volumes. In comparison with MRI, CT has
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Figure 1. MRI, mCT and OCT imaging. (a) MRI and mCT for the detection of neovascularization. (i) MRI angiography of an implantation site showing an isolation chamber
(red arrow, height 1.2 cm) containing an arteriovenous loop, four weeks after implantation. (ii) Loop region from three spatial directions (red arrows, MIP: maximum
intensity projection). Three-dimensional image of the loop (yellow) showing the blood vessels (green arrow). (iii) Three-dimensional display the explanted and per-
fusion-treated loop imaged with mCT. Number and total length of newly formed vessels can be determined [39]. (b) Use of mCT for scaffold characterization.
(i) Detailed mCT three-dimensional image of a poly-(D,L)-lactate scaffold containing 10% Bioglass. (ii) Colour-coded scaffold micro-architecture: The intermeshing, over-
lapping colour circles, i.e. colour-coded pores (200 – 750 mm) indicate high pore interconnectivity and high porosity [40]. (c) OCT. (I) In vivo OCT scan of a human retina
using 800 nm illumination light. The high axial resolution (3 mm) allows differentiation of the various cell layers and detection of structural aberrations (e.g. in multiple
sclerosis) [41]. (II) Three-dimensional OCT image demonstrating the migration of macrophages through Matrigel-coated porous membranes [42]. (III) Comparison of an OCT
image (i) with photomicrographs of H&E-stained histological sections (ii) of engineered skin based on de-epithelialized acellular dermis. Non-invasive OCT resolves the same
amount of detail as histology at the given optical resolution. Arrows indicate the boundary between the dermal component and the epidermis [43].
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much better lateral resolution (approx. 1 versus 100 mm) [17],

and scan times and image generation are much faster, but it

requires contrast agents and uses ionizing radiation. CT is, in

general, stronger in hard-tissue imaging (bone, teeth or carti-

lage), but it can also be applied to study vascularization

(figure 1a). Micro-CT (mCT), a small-scale CT application, is

commonly used to study scaffold structures (figure 1b). The

X-rays used show a high degree of scaffold penetration. Inter-

esting aspects to be studied are, for example, porosity and pore

interconnectivity, both of which are essential for cellular pen-

etration, vascularization, tissue in-growth and waste removal

and oxygen and nutrient delivery within a cell-seeded scaf-

fold. The technique was further used for determining pore
size distribution of PDLLA–Bioglass composites and other

scaffolds and in studies of collagen, Bioglass and mineral

phases in bone mimetic scaffolds [44–48].

MRI has been used in radiology to visualize internal

structures of the body in detail. It uses nuclear magnetic res-

onance (NMR) to differentially image the distribution of

water molecules in various tissues by applying strong mag-

netic fields. This non-invasive technique is able to scan

large volumes (organ up to whole-body scans), but it requires

additional manual editing of images [20]. MRI provides very

good contrast between the different soft tissues [21] which

renders it especially useful in imaging brain, muscles, heart,

vascularization or cancer. In TE, MRI has been applied for
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studying bone, cartilage or adipose tissue [17], scaffold struc-

tures and implanted tissue grafts [49–51]. Boos et al. [39] have

used both MRI and CT to image newly formed bone in an

arteriovenous loop model in order to assess the volume of

neovascularization (figure 1a(i–ii)). The major drawback of

both CT and MRI is relatively low resolution (fail to resolve

single cells), which limits their biological significance [20].

Another tomography method, OCT, is increasingly being

used in imaging of engineered tissue [52]. OCT is an inter-

ferometry technique using broadband near-infrared (NIR)

light beyond 800 nm. It enables non-invasive and label-free

real-time three-dimensional imaging [22,53,54] and relatively

deep penetration into tissues (up to 2000 mm) compared with

other visible or NIR light techniques ([39]; table 1). In relation

to MRI and mCT, penetration is low; however, what makes

OCT strong is that it resolves structures almost at the cellular

range. OCT has been applied in the detection of structural

changes of the retina (figure 1c(I)) or skin cancer, for instance.

Two techniques can be differentiated, structural and func-

tional OCT. Structural OCT has been used to investigate

how engineered tissue morphology and cell populations

change over time, whereas functional OCT techniques were

rather used to extract information related to tissue elasticity,

fluorescence and spectroscopic properties [23]. Some studies

applied OCT for three-dimensional characterization of poly-

lactate and chitosan scaffolds. In other research work, cell

behaviour, kinetics of cell invasion into collagen gels and

three-dimensional cell models were studied with OCT

(figure 1c(II)) [25,53,54]. By observing the calcification pro-

cess in the gelatine gels, OCT proved useful to mimic bone

regeneration [23,42,49,55–57]. OCT has also been used to

study the cellular growth within TE constructs and three-

dimensional tissue models, including skin models (figure

1c(III)) [25,43]. Optical coherence tomography is strong in

terms of imaging speed (250 megavoxels s21), axial resol-

ution (less than 0.5 mm) and non-invasiveness, which is

ideal for long-term studies [58,59]. Limitations of the tech-

nique are low lateral resolution (typically 5–10 mm), which

makes it difficult to resolve individual cells. However, as

the technique has great potential to be developed further (res-

olution, imaging speed, penetration depth), OCT will become

a powerful complementary technology to MPM [23].
2.2. Transillumination and fluorescence microscopy
The most traditional tool to image cells and tissues is optical

microscopy, with a large number of techniques available.

Common to these techniques is their resolution window which

is determined by the wavelength of the illumination light.

Light microscopes use a transmitted white light spectrum for

image generation. As a versatile, fast and affordable imaging

tool, white light microscopy is frequently used in TE. Besides

basic bright-field illumination [36,60], enhanced contrast

methods such as dark-field illumination, phase-contrast and

differential interference contrast techniques have been applied

[61–64]. White light microscopy is primarily used for routine

analysis (monitoring cell number and morphology after seeding

of scaffolds) and for imaging stained tissue slices (histology [65];

various stains such as H&E, Von Kossa, trichrome, alcian blue

and others are available [39,50,66–71]). A typical study that

makes use of histology was carried out by Gerhardt et al.
[40], who investigated scaffolds after explanation to observe

their degradation, cellular infiltration and vascularization
(figure 2a). The limitations of white light microscopy are low

contrast and low specificity in unstained samples. Opaque scaf-

folds cannot be examined with transillumination microscopy.

In fluorescence microscopy (FM), a sample is illuminated

by light in the near UV or lower visible spectrum to excite

fluorophores within the sample. These are either extrinsically

applied or intrinsically present as autofluorescent molecules.

The fluorophores are detected on the basis of their fluorescence

excitation and emission capabilities. The emission light has a

larger wavelength (lower energy) than the excitation light

(Stokes shift) and is separated and collected by appropriate

beam splitters, dichroic mirrors and emission filters. Unspecific

background owing to cellular autofluorescence is an important

problem that needs to be controlled. A huge increase in image

contrast is gained by the use of laser scanning confocal

fluorescence microscopy (CFM) [25,26]. CFM uses point illumi-

nation and optical sectioning by applying an adjustable

pinhole in the emission light path which lets only fluorescence

from a defined z-plane pass through and excludes any out-of-

focus light [81]. The reduced light intensity is overcome by

sensitive photomultiplier detectors. CFM enables recon-

struction of three-dimensional structures from the obtained

image stacks [82,83]. The major concern about CFM is the

issue of photobleaching and phototoxic effects to cells (inva-

siveness) owing to high laser intensities in the focal plane

and ever present out-of-focus excitation (figure 3b,c) which

complicates long-term imaging. The other major limitation is

low tissue penetration of only around 100 mm [25,27,84]. There-

fore, bright and photostable dyes (e.g. Alexa Fluor, Cy, MFP or

Qdot series) are used in many TE studies [85–88]. CFM is used

to stain both fixed and live cells with nuclear, cytoplasmic,

membrane-bound dyes or—for protein-specific detection—

antibody-coupled dyes [59,64,65,68,69,76] (immunohisto-

chemistry: [39,89]). In principle, any cellular structure can

nowadays be specifically visualized and combinations of

dyes are possible (multicolour imaging, multiplexing) when

spectral overlap is minimal between dyes. To overcome the

artificial exogenous staining of tissues, genetically encoded flu-

orescent proteins (GFP variants) can be expressed [90,91]. FM

and CFM are powerful tools that are used to get an overview

of cell distribution and cell morphology (spreading, surface cov-

erage) of scaffold-seeded cells (figure 2b) [44], to test for the

presence of marker proteins or in cell viability testing with

two-colour stains (calcein and EthD-III) to determine the percen-

tage of dead cells. Another application where CFM is useful is

imaging and modelling of collagen gel networks [82,92].
2.3. Electron microscopy
It has been recognized that for the success of TE knowledge

of nanostructures at the scaffold, cell and ECM level is

required. For example, the critical factor of cell seeding onto

a scaffold is—besides the selected biomaterial—the surface

topography (e.g. roughness), pore size distribution and inter-

connectivity and architecture of included nanofibres and

nanoparticles. Owing to its extremely high resolution, elec-

tron microscopy (EM) has the power to resolve such

nanostructures in detail. In EM, electrons are accelerated

within an ultra-high vacuum (to variable energy, determining

resolution power) and focused onto the specimen that needs

to be stained with electron diffracting atoms.

Two EM methods are distinguished, scanning and trans-

mission electron microscopy (SEM and TEM). SEM uses
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Figure 2. White light, fluorescence and electron microscopy applications in TE. (a) White light images of tissue slices after histological staining. Image of a post-
implantation poly-DL-lactate (PDLL) scaffold after eight weeks, stained with haematoxylin and an antibody against Factor VIII (brown rings) in (i) low and (ii) high
magnification (area marked in (i)). The scaffold was well interspersed with tissue and blood vessels. Key: black arrows: scaffold (opaque material), red arrows: blood
vessels, immuno-localized for factor VIII, yellow arrow: cellular infiltrate [40]. (b) Three-dimensional confocal fluorescence imaging of a bone TE scaffold. GFP-labelled
MSCs seeded on hydroxylapatite (HA) ceramics were imaged at day 7 and analysed for cell polarization and migration into the scaffold ((i) low, (ii) high mag-
nification of squared region in (i)). The scaffold surface is covered with cells deep into single pores which remain open (ii, white arrow). Polarized cells surrounding
the pores give an impression of the inter-connective pore system [71]. (c) SEM and TEM. (I) Bioactive glass scaffolds with uniform alginate-coating (white arrows in
(ii); (i) low, (ii) high magnification SEM images [78]. (II) Attachment of MSCs (white arrows) to the pore walls of a Bioglass scaffold after two weeks of culture
shown with SEM [79]. (III) SEM image from primary human osteoblast-like (HOB) cells on poly-methylmethacrylate (PMMA)/nano-HA scaffold showing normal
osteoblast morphology and attachment to the HA crystals at the scaffolds surface [80]. (IV) EM images of a PCL ( poly-caprolactone)/nanosized HA particles elec-
trospun fibrous scaffold. (i) SEM image, (ii) TEM image of a single fibre with attached HA crystals [75]. (V) Ultra-structural TEM analysis of a human oral mucosal
equivalent. In (i), the basement membrane anchors the epithelium firmly to the lamina propria equivalent (LPE) below (black arrows). (ii) Newly synthesized
collagen I fibrils within the LPE [67].
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raster scanning which provides signals carrying information

about the properties of the specimen surface and its three-

dimensional shape. In order to get a conductive layer, the

samples need to be treated with heavy atoms (gold, platinum

or osmium). SEM has frequently been used to characterize the

micro- and nanostructure of scaffolds. For example, Erol et al.
[78] have produced sintered Bioglass scaffolds (suitable for

bone TE) with an average pore size of 325 mm and a pore

size distribution ranging from 110 to 550 mm and also charac-

terized the scaffolds surface (figure 2c(I)). Likewise, efficiency

of cellular seeding, cell distribution and orientation down to

cell adhesion structures can be imaged in order to evaluate

the scaffold quality (figure 2c(II,III)). Further applications are

the analysis of electrospun nanofibres of various organic poly-

mers (PLLA/PLGA), ECM proteins such as collagen or fibrin

or studies of fibroblasts seeded on GMMA polymers [93].

TEM offers the highest possible magnification and resol-

ution (approx. 10 times higher than SEM; table 1). Owing

to the very low tissue penetration of electrons, TEM requires

ultra-thin sample sections (approx. 60–80 nm) to let electrons

pass through the specimen to acquire transmission images.

Samples need to be fixed, dehydrated and mounted to
stabilize them mechanically in order to allow sectioning

with an ultra-microtome. Sections of biological specimens

require special staining with heavy atom salts (uranyl acetate,

lead citrate) to achieve the required image contrast. Polini

et al. [75] have used TEM for morphometric analyses of

fibre diameter and HA nanoparticle size and distribution

(figure 2c(IV)). TEM was used to study critical tissue sites

(such as barrier membranes) or subcellular morphology

[94]. Kinikoglu et al. [67] analysed human oral mucosa

equivalents and imaged the integrity of epithelial cell

layers, lamina propria and basement membrane (figure

2c(V)). TEM was further used in ultra-structural analysis of

carbon nanotube binding to breast cancer cells [95], of bone

(nanosized HA crystal structure and interaction with collagen

fibres [96]) and in the immunogold applications [97].

However, there are clear disadvantages: a multitude of time-

consuming and costly processing steps are required and the

possibility of processing artefacts persistently remains. The tech-

nique involves the sacrifice of sample viability and for long-term

observations large numbers of tissue slices are required.

An exception to this is electron tomography (ET), a complex

and highly advanced imaging technique. ET was used for
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three-dimensional analysis of tissue–biomaterial interfaces and

for resolving the ultrastructure of actomyosin linkages and

intracellular Ca2þ stores within muscle cells [30,98,99].
3. Multiphoton imaging and its use in tissue
engineering

An advanced optical microscopy technique, which largely

overcomes many of the limitations of the aforementioned
techniques is MPM (in the following, termed also as nonlinear

optical microscopy, NLOM). Nonlinear effects are based on

more than one photon interacting with a molecule within an

extremely short time-period [27,37]. Signal magnitude does

not increase linearly with the number of illuminating photons

(such as normal 1-photon fluorescence, 1-PF—in CFM), but

with its square (second-order processes, two-photon effect)

or third power (third-order process, three-photon effect).

NLOM requires very high photon densities of defined wave-

length in the focal point of the microscope, whereas outside
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the focal volume, photon density rapidly decreases [32]. This

means that there is an intrinsic pinhole effect and pinhole size

is largely determined by the numerical aperture (NA) of the

objective by which photons are focused [100]. Excitation wave-

lengths used in MPM are two to threefold longer than in 1-PF

with the consequence of deeper penetration of tissues with

high opacity due to less diffraction. The benefit of confined exci-

tation (only localized bleaching) and deeper tissue penetration

applies to all nonlinear optical techniques (figure 3).

Examples for NLOM are applications based on different

physical principles such as fluorescence (two- and three-

photon excited fluorescence, 2-PF, 3-PF), second and third

harmonic generation (SHG, THG) and coherent anti-Stokes

Raman scattering (CARS). These imaging techniques allow

label-free, minimal- or non-invasive, deep-tissue imaging

suitable for long-term investigations. The principal possibility

of simultaneous excitation of two or more photons (nonlinear

effects) was predicted by Göppert-Mayer [101]. Shortly after

the invention of the first lasers, the two-photon effect was

experimentally proved [102], but it lasted until pulsed sub-

picosecond mode-locked laser systems were developed that

the effects could be applied to microscopy [103]. SHG was

first used in microscopy to image collagen I without any

kind of staining [104] and thus was one of the earliest

forms of biological nonlinear microscopy demonstrated.

Even earlier, CARS, one of the most complex forms of non-

linear imaging based on the three-photon effect, was

developed [105].

In the context of scaffold design and development, ima-

ging methods are required to visualize, test and control the

direction in which the scaffold develops, both before and

after implantation into the body. NLOM unites a number of

beneficial features that enable detailed views into regions

deep inside scaffolds and engineered tissues [35]. In this chap-

ter, the most common NLOM techniques will be explained

and results from our laboratories and from current TE-related

research articles will be presented and discussed.
3.1. Technical requirements
In principle, MPMs are specialized laser scanning microscopes.

To generate nonlinear optical effects, multiple photons of iden-

tical wavelength need to be present at virtually the same time

(10–18s or 1 as) at the location of electronic excitation. This is

only possible with pulsed NIR lasers that generate extremely

high photon fluxes (1020–1030photons cm22 s) [27] during pul-

sing. The most widely used NIR lasers are mode-locked Ti : Sa

lasers (700–1050 nm) with ultra-short pulses (approx. 150 fs)

with extremely high energy intensity and high repetition

rates of typically 80–100 MHz [32]. The average power of

such lasers, however, is comparably low allowing non- or

least-invasive biological imaging.

State-of-the-art MPMs use beam shapers to create tailored

pulse shapes and wavefronts for optimized excitation. As

mentioned, in MPM, excitation wavelength is roughly two to

threefold longer than emission. This instance requires optical

components with advanced properties. Components such as

beam splitters, dichroic mirrors, lenses or objectives need to

be widely transmittant in the NIR (excitation part) and even-

tually UV (emission part). For effective excitation, objectives

with high NA are required to focus photons to a confined

focal volume (approx. 1 fl or 1 mm3). MPM also requires

highly sensitive non-descanned photomultiplier detectors to
maximize photon counts. These detectors are, therefore,

located close to the sample and separated by a minimum of

optical components to maximize collection efficiency.

An expansion of excitation wavelength range further into

the NIR (up to 1300 nm and beyond) is possible using an opti-

cal parametric oscillator (OPO), which uses the NIR laser for

pumping. The resulting wavelengths allow the imaging of

red dyes (2-PF), proteins (via tryptophane fluorescence) and

certain UV-excited molecules (3-PF) and THG applications

(§3.5). Multifocal MPM is another application that allows

high-speed imaging with multiple foci at a time splitting up

the primary beam into up to 64 beamlets [31,106,107].

3.2. Two-photon fluorescence microscopy
In contrast to CFM, in 2-PF microscopy, two near-simultaneous

photons of half the energy (double the wavelength) are

required for excitation which is confined other than present

all along the light cone of the illuminating light (figure 3a,b).

As shown in a cartoon in figure 3c, a single cell within a

tissue (here a skeletal muscle myofibril) may be selectively

excited using 2-PF. Bleaching and phototoxicity is a major pro-

blem in 1-PF, which uses high-energy visible light. In 2-PF and

even more so in 3-PF, the energy of NIR photons is much lower

causing much less photobleaching outside the focal volume.

This less-invasive approach enables engineered tissues to be

observed longer without major detriments to overall viability.

The 2-PF excitation photons will penetrate tissues easier

(around sixfold compared with CFM) due to less diffraction

and cause fluorescence at depths of 1000 mm and deeper

depending on tissue transparency. Ustione & Piston [27] visu-

alized structures deep within the mouse neocortex with a

side projection reconstructed from fluorescence image stacks

(figure 3d).

3.2.1. Autofluorescence imaging
Cells and tissues contain intrinsic fluorescent molecules excit-

able in the whole visible light spectrum (e.g. enzymatic

co-factors such as NADH and flavins) generating autofluo-

rescence (AF). Compared with fluorescent stains, these

fluorophores are much less bright and stable and thus,

rapidly bleach out with confocal microscopy producing

phototoxicity-caused cell stress. With 2-PF, however, these

endogenous molecules can be imaged with high contrast

with overall low photobleaching. In figure 4a, the most

important autofluorescent molecules are listed with large

differences in their two-photon excitation efficiency with

700–800 nm being the most effective range for most mol-

ecules (i). The corresponding fluorescence shows that there

is a large spectral overlap at 400–600 nm (ii). Figure 4b
demonstrates the power of two-photon AF in tissue imaging

[108]. The comparison of MPM images (i, 2-PF) and histology

sections (ii) proves that in ovarian tissue, 2-PF delivers an

endogenous contrast that is comparable to conventional his-

tology staining. Furthermore, images (iii) and (iv) present

some highly contrasted details of extracellular fibrous com-

ponents. These findings demonstrate that 2-PF is a powerful

tool for imaging native tissues.

In TE studies, 2-PF was applied for imaging cellular AF

caused by NADH, FAD and other flavoproteins as well as

lipofuscin [74,109]. Apart from structures surrounding the

nucleus (e.g. mitochondria, lysosomes or ribosomes), very

often, the ECM can be imaged as well, for example elastin
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fibres [63]. In a study by Dittmar et al. [110], two-photon AF

was used to assess cell viability which is an important par-

ameter in TE to evaluate the effect of environmental

conditions on cell behaviour. Live and dead cells could be

distinguished spectrally, and viable cells showed predomi-

nantly blue fluorescence (peak emission around 470 nm),

whereas dead cells appeared to mainly emit green fluorescent

light (approx. 560 nm).

Cellular AF imaging using 2-PF is frequently used in TE

studies. In our laboratories, we have extensively studied

cells in alginate-based hydrogels which represent very prom-

ising biocompatible and degradable biomaterials, especially

in bone TE (details of all materials and methods used can

be found within the electronic supplementary material)

[111–114]. An additional compound in hybrid (composite)

scaffolds is bioactive glass, especially Bioglass 45S5, which

supports bone formation and angiogenesis [115,116]. We

have studied cellular autofluorescence in different bio-

material combinations and matrix architectures. Among these

encapsulated cells (diameter: 300–600 mm), cells printed

in three dimensions and cells grown on two-dimensional

hydrogel films have been investigated. The AF images in

figure 5a(i) show encapsulated cells in pure alginate that

were roundish and did not interact with the biomaterial,

whereas cells in alginate-RGD (20� image below) were

adherent (through the RGD domain) with clearly visible

cell edges. In alginate-RGD capsules containing nanosized

Bioglass, calcification occurred and cells were induced to

undergo osteogenesis (images ii, large non-transparency vis-

ible in the transmission image). These results demonstrate
that 2-PF AF imaging has the power to resolve cellular details

even within highly non-transparent and relatively large cap-

sules. In another three-dimensional cultivation approach, we

have produced cell-loaded hydrogel scaffolds of defined geo-

metries with the aim to imitate tissue architectures with cell

plotter technologies [117,118]. In our studies, the osteo-

sarcoma cell line MG-63 was embedded in alginate–gelatin

blend material and printed in a defined array of strains

(diameter: 200 mm, spacing: 600 mm). The transmission

image in figure 5b depicts a section of one of the scaffolds

with cells grown to a large density. The AF images resolve

the subcellular localizations of AF signals near the nucleus

(likely the endoplasmic reticulum, mitochondria and protein

containing vesicles). Both encapsulated and printed cells are

protected from environmental stress and can be cultured for

extended time periods in non-invasive studies of three-

dimensional tissue formation without staining and with

almost no bleaching. Close to the pores, the cells have a

strongly stretched morphology. Another culturing approach

is shown in figure 5c. MG-63 cells were grown on alginate–

gelatin hydrogel films for four weeks. We used this simplified

two-dimensional system to image the formation of ECM

fibres. Cellular AF imaging is very easily possible (40�
image), but also fibrous structures could be detected above

the cell layer (z: þ10 mm) indicating the production of the

ECM (40� image, arrows pointing to fibrous network).

Not only tissue but biomaterials can also be imaged and

characterized using two-photon AF. In a study by Chen et al.
[109], the selected chitosan scaffold material showed strong

AF that could be applied for the study of cell–biomaterial
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Figure 5. Two-photon AF images of cells in different scaffold designs. MG-63 cells grown in different biomaterial combinations and architectures (excitation at 790 nm).
(a) Hydrogel capsules. The scheme shows the process of droplet formation by pressure-driven extrusion of hydrogel solution from a specially designed syringe. The
gelation of alginate occurs with droplet contact with the CaCl2 solution. (i) Cells in alginate (Alg) capsules after two weeks: cells do not attach to alginate. Image
(63�) of a rounded cell. The 20� image below shows a cell encapsulated in alginate-RGD (Alg-RGD). Cells spread out, cell edges can be identified. (ii) Cells encap-
sulated in alginate-RGD/nano-Bioglass after five weeks in culture. Capsules are almost non-transparent; however, 2-PF still allows AF imaging of cell distribution and
morphology deep inside the capsule. (b) Prints of cells in alginate – gelatin blend hydrogels (80 : 20), cultivated for six weeks. The pores between the gel strands are
partially closed due to gel fluidity. Spatial organization of cells with subcellular AF localization is visible (40� zoom). (c) Cells on alginate – gelatin blend films (80 : 20)
after four weeks in culture. Adherent cells cover wide areas of the surface. Above the cell layer, regions with fibrous structure were detected (ECM fibres).

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130263

10
interactions (described in §3.3.1). Rice et al. [119] character-

ized silk fibroin (in the form of fibres, scaffolds, hydrogels

and films) and studied the effect of hydration/dehydration,

gelation time and biomechanical treatment (compression

and stretching) on the autofluorescence (and SHG) signals.

An interesting finding was that AF imaging of the silk scaf-

fold morphology provided comparable information to SEM

analysis, which is classically used to study scaffold structures.

Other results demonstrated that 2-PF and SHG were highly
sensitive to the hydration, overall b-sheet content and to

the molecular orientation of the sample. These findings have

implications for understanding and tracking the remodelling

of degradable biomaterials under dynamic conditions both

in vitro and in vivo. Sun et al. [36] imaged a number of scaffold-

ing materials (PGA, open-cell PLA, nylon, Collagraft, collagen

scaffold) and spectrally resolved and quantified AF signals in

three wavelength-specific channels: a blue (435–485 nm), a

green (500–550 nm) and a red (550–630 nm). The materials
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produced spectral patterns of signal intensity which were

ratiometrically analysed. By this, it was possible to clearly

differentiate the biomaterials based solely on their signal

intensity distributions.
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3.2.2. Imaging of labelled structures
Two-photon fluorescence is also frequently used to image

labelled scaffolds and tissues at larger depth. Most dyes excit-

able with 1-PF can also be applied for 2-PF; however, two-

photon cross sections and thus, excitation efficiency may

vary strongly. Design of 2-PF dyes is therefore based on

appropriate theoretical considerations [120]. Many conven-

tional fluorescent dyes have a much broader and differently

shaped excitation spectrum when excited with pulsed NIR

lasers instead of visible lasers used in 1-PF excitation

(figure 6a versus figure 6b). As a consequence, spectra of

many dyes largely overlap (B). The reasons for these changes

are represented in quantum mechanical selection rules that

apply for 2-PF other than for 1-PF. While emission spectra

mostly look the same between 1-PF and 2-PF, two-photon

excitation spectra are shifted more or less towards shorter

wavelengths. In figure 6c, this effect is demonstrated by a

list of frequently used fluorophores.

Fluorescent dyes that have frequently been applied in

TE studies are DNA stains (DAPI, Hoechst, propidium

iodide, SYTO) [13,122], membrane stains (DiA, DiI, DiO,

BODIPY) [38,123] or cytoplasmic stains such as calcein, Cell-

Tracker blue or CFDA [85,124,125], but also actin labelling

with labelled phalloidin [61,85] as well as organelle markers

(MitoTracker for mitochondria or LysoTracker for lysosomes)

are widely being used [74]. An interesting approach is the

use of fluorescent semiconductor nanocrystals (Qdots or

Qtracker) with excellent optical and spectral properties [86].

Qtracker is taken up irrespective of the cell type, shows low

cytotoxicity, remains inside the cells for extended time

periods and is detectable even in very low concentrations.

After loading Qtracker into the cells [126], cell migration

can easily be tracked with 2-PF [127]. An important advan-

tage over conventional labels is that Qdots greatly simplify

multicolour experiments, because different Qdot types can

be excited with a single wavelength and their emission wave-

lengths are related to the diameter of the semiconductor

crystal [128,129].

Staining of encapsulated cells with conventional fluorescent

dyes such as DAPI (nuclear stain) or calcein (cytoplasmic

stain) has been performed in our laboratories using 2-PF

(figure 6d ). This dye combination is frequently used for

live–dead cell screening (DAPI stains dead, calcein live

cells). In figure 6d–i, alginate-RGD-encapsulated and DAPI-

stained cells are shown together with a three-dimensional

reconstruction image from a stack of 30 images. This allows

the determination of the number and three-dimensional dis-

tribution of dead cells within the capsules. High-resolution

reconstructions are possible with very low z-interlacing dis-

tances (e.g. 0.3 mm). Owing to their spectral separation,

DAPI/calcein double-stained cells are simultaneously excited

at 1000 nm (2-PF of calcein at 500 nm, 3-PF of DAPI at

333 nm).

Two-photon fluorescence was used to image and quanti-

tatively characterize the microstructure and cell–substrate

interactions within microporous scaffold substrates fabricated

from synthetic biodegradable polymers [130]. The authors
seeded GFP-labelled fibroblasts in Texas red-labelled poly-

(DTE/DTO) carbonate blend scaffolds of varying porosity

and studied the spatial distribution of micro- and macro-

porous regions and cell morphology patterns (e.g. cytoskeletal

organization). Parameters such as porosity, pore size and dis-

tribution, strut size, pore interconnectivity and orientation of

both macro- and micro-scale pores were quantified and vali-

dated. Two-PF enables image acquisition from depths larger

than 100 mm with high signal-to-noise ratio and reduced

photobleaching. NLOM is a promising integrated platform

for imaging of cell–material interactions within the interior

of polymeric biomaterials.

As the success of TE depends largely on the rapid and effi-

cient formation of functional blood vessel architectures, some

authors used 2-PF to image and analyse scaffold vascularization

[131]. PLLA scaffolds (Matrigel-enriched with basement mem-

brane proteins) were seeded with human endothelial and red

fluorescent protein (RFP)-expressing smooth muscle cells and

implanted subcutaneously into immune-deficient mice. In vivo,

endothelial and vascular smooth muscle cells assembled a

patent microvasculature that anastomosed with the host circula-

tion during the first week of implantation. After two weeks,

animals were injected with FITC-labelled lectin to selectively

label endothelial cells. Multiphoton fluorescence angiographic

analysis of the intra-scaffold microcirculation showed a uniform,

branched micro-vascular network. Three-dimensional image

reconstruction analysis of smooth muscle cell distribution

implants was non-random and displayed a preferentially

perivascular localization. The results show that 2-PF can

be applied for imaging scaffold vascularization in an in vivo
TE context.

3.3. Second harmonic generation microscopy
SHG has many features in common with 2-PF (penetration

depth); however, no energy is deposited in the sample

(100% energy conversion; figure 3a), and no bleaching or

heating effects should occur even with high laser powers or

in long-term observations [132]. Nevertheless, the required

high laser intensities may cause photodamaging effects

derived from still-present AF. SHG is a label-free and

highly specific technique. Its occurrence is connected to

physical features of certain molecules and molecule assem-

blies. SHG-susceptible molecules lack a centro-symmetry

[133,134]. Additionally, they fulfil the phase-matching con-

dition, i.e. the incident and the resulting second harmonic

wave travel with the same velocity. This is because nonlinear

frequency conversion is only efficient in a coherent situation,

when the SHG waves generated by different molecules are in

phase and interfere constructively. This condition is only met

by materials with a high degree of organization and orien-

tation, such as anisotropic crystals or certain structural

protein arrays, i.e. SHG has a very high specificity for these

structures [132,135].

3.3.1. Imaging cellular proteins
Only a limited number of biological structures show strong

SHG susceptibilities. By far, the most important ones are

assembled collagen I fibres [135], myosin II (actomyosin in

muscle cells) and tubulin (basic unit of microtubules, which

are part of the cytoskeleton). By far, the most important struc-

ture used in TE research is represented by collagen [136–138].

The methodology is sensitive to changes that occur in
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resolved subnuclear segmentation (63�). A three-dimensional reconstruction image generated from image stacks allows quantitative analyses of cell number
and distribution. (ii) Calcein-stained cells in alginate cross-linked with gelatin (50 : 50) after six weeks (900 nm). Capsules show a rough and porous surface
and are partially non-transparent. Cells migrate through the border to the outer surface of the capsule (red arrows). The cellular calcein distribution allows
determination of cell morphology (zoom image). 2-PF allows imaging deep within widely non-transparent capsules.
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(PGA) and nylon are shown [36]. (c) SHG imaging of hydrogels from composites of collagen I and micrometre-sized Bioglass (800 nm). (i) Collagen fibres (blue
arrows) as well as mBG are clearly visible (white arrows). Collagen arranges both in thin fibres and thick fibre bundles. In some less bright regions where no fibres
appear (green arrow), the collagen may not be polymerized completely. (ii) Image stack from (i) giving an impression of the three-dimensional structure of the
hydrogel. (iii) Red arrows pointing to the typical wavy fibres formed by collagen I from skin. In (iv), fibre bundles (blue arrows) and single fibres (red arrow) are
shown in detail. Magnification: (a,d), 20�; (b,c), 63�.
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diseases such as sclerodermia or in skin or other epithelial

cancer types [139–141]. Other application examples are the

investigation of heart valves and cardiac [63] or corneal

tissue [142,143]. To image collagen I with SHG, excitation

wavelengths from 720 to 960 nm [62] can be used, and for

detection, a bandpass filter with centre wavelength at half

the excitation wavelength is applied (e.g. a 420/20 filter

when excitation occurs at 840 nm).

Figure 8a shows an interesting approach for long-term

monitoring and quantifying tissue morphogenesis by a com-

bined 2-PF/SHG approach [109]. Scaffold and cells were

imaged by two-photon AF and collagen I with SHG (both

excited at 760 nm). The authors grew human MSCs on chito-

san scaffolds and, after TGF-b3 stimulation, followed the

process of chondrogenesis via the timeline of collagen I pro-

duction (SHG). After one week, initial fibre production

became visible, and after two weeks, fibre distribution and

arrangement could be imaged in detail. Bundles of collagen

I fibres produced by the cells inside chitosan domains

extended into adjacent domains, and massive collagen pro-

duction was detected after seven weeks. The authors

showed that overall collagen production in the scaffold per-

iphery was much stronger than in deeper regions (up to

30 mm), which was explained with limited cell seeding in

deeper scaffold regions. Quantitative determination of SHG

further demonstrated that the saturation point of collagen

production was reached between days 11 and 14. The results

showed that qualitative and quantitative multiphoton
analysis is an effective technique for non-invasive micro-

scopic examination and monitoring of the quality of

engineered tissues. Both scaffold–tissue interaction and the

status of synthesized collagen matrix could be imaged without

labelling or the use of histological procedures.

SHG imaging of myosin II has been applied to study

heart or skeletal muscle tissue [123,144], and imaging of

microtubules has been used for the visualization of cell pro-

liferation (interphase and mitotic cells), cancer cells and the

axons of neurons [145,146]. In figure 7a, SHG images high-

light myosin II and collagen I structures in isolated mouse

muscle fibres. In image (i), extracellular collagen I fibres sur-

rounding the muscle cells can be seen and in image (ii), the

highly ordered structure of the actomyosin becomes visible,

in which the SHG effect originates from the biocrystalline

structure of the anisotropic bands (A bands) of the sarcomeres

(myosin rods).
3.3.2. Biomaterial imaging
For TE purposes, collagen I is often used as a scaffolding

material to provide seeded cells with an artificial ECM. By

using self-assembled hydrogels, collagen I networks and

their properties can be studied in detail with and without

cells. Here, interesting parameters are collagen assembly,

fibre length and thickness, pore size distribution and

mechanical and rheological properties of the hydrogels

[82,137,148]. Some authors have studied the aspect of cell
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behaviour in collagen I hydrogels. For example, Lee et al.
[149] have revealed that invading endothelial cells anisotropi-

cally alter three-dimensional collagen matrices by a combined

approach of SHG and 2-PF imaging. Yannas et al. [150]

review the processing and characterization of collagen-

based scaffolds in detail.

In SHG imaging experiments, we have used collagen I—

micrometre-sized Bioglass 45S5 composite hydrogels that

represent a promising biomaterial combination in bone TE

[15]. In figure 7c(i–iv), both collagen I and Bioglass were

resolved with micrometre resolution. Collagen I was present
either as thin fibres and fibre bundles of varying thickness

(i,iv). Images (iii) and (iv) give an impression of the collagen

network and the typically wavy fibre form known from col-

lagen in skin (iii). By stacking multiple images (ii), typical

fibre lengths could be determined (by three-dimensional

reconstruction). Fibre length is an important parameter of

hydrogel rheological properties and for optimizing cell

growth in hydrogels. We have also produced and imaged

freeze-dried scaffolds (sponges, foams) from collagen I with

and without micrometre-sized Bioglass, which can be cross-

linked and seeded with target cells [151–153]. We obtained
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SHG images from these scaffolds (figure 7b(i)) and by using

three-dimensional stacks and reconstructions, it was possible

to characterize the scaffolds porous structure (not shown).

Similar findings were obtained by Sun et al. [36], who

imaged comparable scaffolds (collagen I and Collagraft

bone matrix strip) and additional TE-relevant scaffolding

materials (e.g. PGA, open-cell PLA, nylon; figure 7b(ii))

with SHG. The authors state that the nonlinear optical prop-

erties of the scaffolds will enable us to spectrally and

morphologically distinguish the different types of scaffold

materials investigated. The SHG results demonstrate that

a number of artificial organic polymers are susceptible

to SHG. Further, very interesting and promising SHG-

susceptible biomaterials that are frequently being used in

TE research are cellulose [12,76,141,154], silk [119], gelatin/

collagen gels [13,137] or PHB/PHBHHx [155]. A review by

Dempsey et al. [132] identifies small particles that are

widely used in TE to enhance scaffold mechanical stability

or to track cells (e.g. Bioglass, nanodiamonds, Qdots) are

susceptible to SHG as well.
3.4. Multi-modal and quantitative analysis
A large number of studies have used multiple imaging mod-

alities (2-PF, SHG, CARS) to simultaneously image cells,

ECM and scaffold. Cell arrangement on and within the scaf-

folds, cell–scaffold interactions as well as production and

arrangement of ECM proteins, cell differentiation and tissue

morphogenesis are of common interest in most studies, and

a large number of different biomaterials and cells (primary

cells, cell lines and stem cells) from bone, cartilage, cardiovas-

cular, connective and adipose tissue were used for this

purpose. A large number of studies used NLOM for quantitat-

ive analysis of ECM fibre distribution, effects of biomechanical

treatment or cell metabolic state. This underlines that NLOM

techniques are very powerful and flexible tools beyond

simple structure visualization.

In a study by Brackmann et al. [76] simultaneous SHG/

CARS imaging was applied for visualizing osteoprogenitor

cell three-dimensional arrangement in a microporous cellu-

lose scaffold (cells and scaffold: CARS). Unexpectedly, cells

produce collagen I (marker for osteogenesis, SHG) already

during the first days of growth, which demonstrates that cel-

lulose is a potential scaffold material for bone TE. The

authors state that the combined in situ monitoring with

CARS/SHG is suitable for TE studies. In a comparable

study by Filova et al. [13], a 2-PF/SHG approach was

chosen for analysing production and spatial arrangement of

collagen (SHG) by isolated chondrocytes (labelled with

Cy3-coupled antibody, 2-PF) and spatial cell arrangement

(nuclear staining, 2-PF) in a gelatin–PCL scaffold at 860 nm

excitation wavelength. This novel approach represents a

powerful tool for the analysis of collagen-containing scaffolds

with applications in cartilage TE. Mouras et al. [73] have fol-

lowed the process of MSC differentiation with a combination

of two-photon AF (cells), SHG (collagen I) and CARS imaging

(lipids at 1064 nm, HA crystals at 867 nm). The authors report

that they were able to monitor and quantify the differentiation

into osteoblasts (verified by collagen I and HA formation) and

adipocytes (lipid production).

Taking advantage of differential two-photon AF emission

of NADH/NAD and FAD, Quinn et al. [68] developed cell

metabolic readouts using ratiometric measurements of these
metabolic cofactors. The authors state that it was possible to

reliably determine the metabolic status of cultured cells by

their two-photon AF characteristics. The same principle has

been used for online monitoring of tissue maturation. TE lar-

gely depends on the control of culture conditions and tissue

maturation, and methods for monitoring the effects of stimuli

and induced tissue changes are of key interest. For tracking

stem cell osteogenic differentiation, Rice et al. [74] have used

both two-photon AF (NADH, flavoprotein and lipofuscin con-

centrations) and SHG (collagen I). Redox ratio imaging over

time (calculated from the contributions of NADH and flavins)

changes in cell morphology (AF) and simultaneous SHG pro-

vided information on the status of the osteogenic process. In

addition, lipofuscin was found to be a potential biomarker

for oxidative stress. The authors’ conclusion was that it is

possible to monitor engineered tissues and optimize culture

conditions in a near real-time manner.

Another field for analysis is found in the quantitation of

ECM fibre production and orientation analysis, for example,

in biomechanical studies. In order to improve collagen archi-

tecture and mechanical properties, engineered tissues have to

be mechanically stimulated. In a study by Rubbens et al.
[125], the influence of biomechanical stimulation on growing

myofibroblasts has been analysed using dual-colour Cell-

Tracker blue and fluorescently labelled collagen I markers

(2-PF). The authors quantified collagen fibre organization in

response to varied mechanical stimulation (normal culture

versus an intermittent stretching condition) mimicking the

native biomechanical behaviour, which is a major goal in

cardiovascular TE. Mechanical loading induced collagen align-

ment, which was improved by applying intermittent strain.

Comparable studies have been carried out by Hu et al. [156],

who characterized tissue development under biaxial stretch

using fibroblast-seeded or cell-free collagen gels. The collagen

I fibre orientations (SHG) revealed contributions of applied

stretches, of cell-mediated tractions and matrix remodelling

on the measured fibre distributions. The authors concluded

that the integration of intravital NLOM with novel bioreactors

enables imaging of dynamic tissue properties in culture.

Niklason et al. [136] developed mathematical models of

growth and remodelling of engineered tissues cultured on

polymeric scaffolds and applied NLOM for their verification

(figure 8b). Collagen fibre distributions were quantitatively

analysed in two depths within the tissue over eight weeks of

culture. A cumulative plot of fibre orientations (histogram)

revealed four predominant collagen fibre families that were

centred approximately at 08, +458 and 908 and are consistent

with prior TEM imaging observations and model predictions.
3.5. Three-photon-based nonlinear optical
microscopy techniques

In three-photon excitation, three photons provide one-third

each of the energy required to reach the excited state. Wave-

lengths beyond 1200 nm must be used, which requires an

OPO. The longer wavelengths penetrate tissues even deeper

and are less damaging. However, the higher order of nonlinear-

ity means even weaker signals [157]. Because this consequently

requires higher photon fluxes, three-photon-based technique

has not been used as extensively as the two-photon-based

ones. Relevant techniques for tissue imaging are CARS, THG

and 3-PF microscopy.



Table 2. NLOM methods: pros and cons. The techniques are widely complementary and may be combined in multi-modal NLOM applications.

2-PF/3-PF SHG/THG CARS

þ autofluorescent molecules can be used

for imaging

high-contrast method without staining chemically selective, imaging of cell and

organelle boundaries (membranes)

very large number of fluorophores may

be imaged including Qdots (almost

like 1-PF)

completely non-invasive technique completely non-invasive technique

excitation spectra broader than in 1-PF:

more flexibility, easier multicolour

applications

no photobleaching, no energy left

behind in tissue

no photobleaching (long-term investigations)

by using antibodies in principle all

molecules may be visualized

large excitation range possible

(flexibility)

excellent imaging of lipid distribution and

osteodifferentiation (hydroxylapatite

formation)

3-PF: additional spectrum of molecules

excitable in the UV accessible; higher

tissue penetration (longer excitation

wavelengths)

SHG: biomaterials can be imaged applicable inside the body (endoscopy)

THG: imaging of interfaces possible,

higher tissue penetration (longer

wavelengths)

2 photobleaching and thermal damage SHG: limited to a low number of

molecules

expensive and high complexity technique

stainings are often required SHG: to image collagen I, the molecule

needs to be highly assembled

limited to small number of observable

molecules
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CARS imaging derives its optical contrast directly from

Raman-active vibrational characteristics of certain molecules

(label-free) and is capable of chemically selective, highly sen-

sitive and high-speed imaging without photobleaching.

CARS microscopy uses two laser beams, a pump beam at fre-

quency vp and a Stokes beam at frequency vS. When the beat

frequency (vp2 vS) matches the frequency of a particular

Raman-active molecular vibration (vvib), the resonant oscil-

lators are coherently driven, resulting in a strong anti-

Stokes signal at vas ¼ 2vp2 vS [158]. The technique was

applied to study osteogenic and adipogenic differentiation

[73], scaffolds and hydrogels [12,76,159,160], vascular and

neurodegenerative diseases [38,161] and drug delivery and

subcellular distribution (reviewed in Strachan et al. [162]).

CARS microscopy has proved useful for mapping lipid com-

partments in various tissues and cells [158,163], protein

clusters [164] and water distributions [161] in cell tissue cul-

tures and has been used with great success for imaging of

many types of lipids (C–H vibration) and phosphates [165].

State-of-the-art CARS microscopes have high enough sensi-

tivity to detect single lipid bilayers [163].

THG imaging is another relevant technology. One advan-

tage of THG over SHG is that the requirement for non-

inversion symmetry of the molecules to be excited is revoked

[27]. This makes THG sensitive for interfaces and heterogene-

ities and for the detection of membranes and membrane-

based organelles, blood vessels and other biological structures

[31,162,166]. Another application is imaging of lipid bodies

which are ubiquitous structures present in many cells and tis-

sues with many different functions. Disorders of lipid

regulation occur in common diseases such as atherosclerosis,

diabetes and steatosis. As lipid bodies are generally non-

fluorescent, their direct imaging with THG offers interesting
perspectives. Debarre et al. [167] have used THG to quantify

lipid metabolism in isolated hepatocytes, but this approach is

relevant to adipocytes and also liver and intestine cells. THG

can further be used to study drug release systems (visualize

uptake mechanisms of pharmaceuticals) and distribution of

nanosized particles (e.g. in skin) and many other applications

[162]. The main benefit of 3-PF is the excitation of molecules

that absorb in the UV (e.g. the amino acid tryptophane at

266 nm), which allows label-free imaging of intrinsic protein

fluorescence [168]. Other authors have used 3-PF for label-free

imaging of neurotransmitters such as serotonin and dopamine,

which has implications for neuronal TE [157,169].

3.6. Nonlinear optical microscopy techniques:
advantages and disadvantages

NLOM techniques have multiple advantages over one-

photon excitation-based CFM. These include the issues of

photobleaching, phototoxicity, significantly enhanced ima-

ging depth in opaque scaffolds, staining requirement and

signal intensity. However, none of the discussed NLOM tech-

niques is perfect, and all methods have their specific

strengths and limitations when compared with each other.

Table 2 gives an overview of all the benefits and problems

encountered with the different multiphoton techniques

explained in this review. Summarized shortly, 2-PF always

produces a certain amount of photobleaching or requires

additional staining, but on the other side, in principle, any

kind of molecule can be addressed and thus, visualized by

using antibody labelling. SHG and CARS, on the other

hand, are basically non-invasive, but altogether quite special-

ized techniques and therefore, limited to a rather low number

of possible applications. The techniques also require
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sophisticated and extensive optical equipment and are thus,

not readily available.
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4. Summary and outlook
The classical methods for visualizing tissues, biomaterials

and scaffolds such as mCT/MRI/OCT and histology in com-

bination with optical and electron microscopy have a number

of limitations concerning invasiveness and artefact pro-

duction, resolution, tissue penetration and requirement

for labelling. Quite often, only the combined use of comp-

lementary methods leads to strong and clear results. NLOM

overcomes many of these problems and enables deep-tissue

imaging with high resolution without destructive labelling

procedures, because intrinsic sources of contrast are used.

NLOM methods are further suitable to track and thereby to

control the development of engineered tissues online in

long-term experiments. NLOM imaging in TE encompasses

a number of techniques for the study of scaffolds (surface

and inner structure), cells (distribution, morphology,

metabolic state, vascularization) and ECM. Multiphoton

fluorescence is used to visualize cells by their natural auto-

fluorescence and to image (immune-)labelled structures.

Label-free and highly specific imaging techniques are SHG

and CARS. SHG is commonly used to image ECM

(collagen I), cytoskeleton (microtubules), myosin II (actomyo-

sin) in muscle cells and a number of biomaterials, whereas

CARS is the method of choice for visualizing membranes

and lipid distributions within cells and tissues. Combinations

of NLOM methods have been successfully applied to study

cell differentiation (osteogenesis, adipogenesis) and tissue

maturation (by abundance and arrangement of collagen I

fibres). Quantification of collagen fibre orientation has been
used as a powerful tool to study the response of engineered

tissues to mechanical loading.

Recent advances in detection schemes (faster and higher-

sensitivity detectors, multifocal imaging), more powerful

laser sources, better optical components, a deeper understand-

ing of contrast mechanisms and more sophisticated analysis

tools will further increase the performance of NLOM imaging.

Especially, THG and CARS, but also spectroscopic techniques

such as fluorescence correlation spectroscopy (FCS) or fluor-

escence lifetime imaging microscopy (FLIM) will become

more important. Progress in the field of biomaterials and pro-

cessing techniques (e.g. tissue and organ printing) will deliver

better scaffolds of higher and more directed functionality

(drug delivery, controlled growth factor release, degradation

and vascularization, cell attraction in vivo that will more

closely resemble native tissue). NLOM imaging will promote

TE with its high degree of experimental flexibility. It can be

used for intravital imaging of tissue development in bio-

reactors, in vivo (multiphoton endoscopy) and with tissue

models (e.g. skin, liver) and models of cancer or atherosclero-

sis. This way, NLOM will improve the study of healthy as well

as malfunctioning tissue. Emerging applications, such as

metabolite and drug imaging or tumour identification, raise

many exciting new possibilities for medicine and biology.
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