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Numerical models of secondary fracture healing are based on mechanoregu-

latory algorithms that use distortional strain alone or in combination with

either dilatational strain or fluid velocity as determining stimuli for tissue

differentiation and development. Comparison of these algorithms has pre-

viously suggested that healing processes under torsional rotational loading

can only be properly simulated by considering fluid velocity and deviatoric

strain as the regulatory stimuli. We hypothesize that sufficient calibration on

uncertain input parameters will enhance our existing model, which uses dis-

tortional and dilatational strains as determining stimuli, to properly simulate

fracture healing under various loading conditions including also torsional

rotation. Therefore, we minimized the difference between numerically simu-

lated and experimentally measured courses of interfragmentary movements

of two axial compressive cases and two shear load cases (torsional and trans-

lational) by varying several input parameter values within their predefined

bounds. The calibrated model was then qualitatively evaluated on the ability

to predict physiological changes of spatial and temporal tissue distributions,

based on respective in vivo data. Finally, we corroborated the model on five

additional axial compressive and one asymmetrical bending load case. We

conclude that our model, using distortional and dilatational strains as deter-

mining stimuli, is able to simulate fracture-healing processes not only under

axial compression and torsional rotation but also under translational shear

and asymmetrical bending loading conditions.
1. Introduction
Numerical simulations are able to predict mechanobiological processes in the

regions of secondary fracture healing. Numerous finite-element (FE) models

have been developed to analyse local mechanical responses to varying loading

conditions assuming either linear elastic or poroelastic material behaviour. Sev-

eral models [1–5] are based on the tissue differentiation hypotheses proposed

by Pauwels [6] which were refined by Carter et al. [7] and Claes & Heigele

[8] using distortional strain and dilatational strain (which is directly related to

hydrostatic pressure [5]) as the determining stimuli for tissue differentiation

and development. By contrast, other models [9–15] use a linear combination

of distortional strain and fluid velocity as determining stimulus, as character-

ized by the hypothesis of Prendergast et al. [16]. Furthermore, Garcia-Aznar

et al. [17,18] use only the distortional strain as stimulus. Isaksson et al. compared

these approaches and concluded that all algorithms were suitable to predict

fracture-healing processes under axial loading [19], whereas the successful

simulation of healing processes under torsional load required the combination

of deviatoric strain and fluid velocity as regulatory stimulus [12].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0389&domain=pdf&date_stamp=2013-07-03
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All numerical models of fracture healing however

depend on many input parameters with considerable degrees

of uncertainty. The choice of tissue material properties, one of

the most important steps in FE model development [20,21],

represents particularly high variability [22]. Parameters

defining the underlying tissue differentiation hypothesis

(e.g. the correlation between strain magnitude and bone

formation rate) are also highly uncertain because they are

based on limited experimental data. Therefore, it is difficult

to decide whether numerical simulation of fracture healing

under torsional loading is only possible by including fluid

velocity as regulatory stimulus or whether models using

distortional and dilatational strains as regulatory stimuli

only need calibration on their uncertain input parameters to

predict the same results.

Our aim was to calibrate the fracture-healing algorithm

previously developed by Simon et al. [5], which is based on

the distortional and dilatational strains as regulatory stimuli,

to be applicable to a greater range of different mechanical con-

ditions, especially predicting fracture healing under axial

compressive as well as under torsional rotational isolated load-

ing. Furthermore, the model should also be able to predict

healing processes under non-axially symmetric loading such

as translational shear or bending.

Therefore, in a first step, we developed an optimization

procedure to calibrate our model input parameters within

acceptable and physiological ranges against several well-

characterized in vivo experiments for axial compression [23],

torsional rotation [24] and translational shear load cases

[25] based on the mechanical responses (i.e. change in inter-

fragmentary movement (IFM) over time). Subsequently, the

ability of the calibrated model to predict physiological

tissue distributions during the simulated healing process

was also qualitatively evaluated. Finally, the ability of the

calibrated model to predict healing processes under further

loading conditions, such as different axial load cases [23] as

well as fracture healing under asymmetrical bending [26],

was checked.

We hypothesize that the resulting model regulated by

local distortional and dilatational strains [4,5] will be able

to predict the course of IFM and tissue distribution over the

healing time of various healing situations under axial com-

pression, torsional rotation, translational shear and bending

loading conditions.
2. Methods
2.1. In vivo experiments
All in vivo data used for simulation in the present numerical study

were taken from previously published experimental studies in

sheep [23–25]. Thus, four different healing situations (case A, B,

C and D) were defined as calibration targets. Cases A and B rep-

resent axial compressive load cases with different magnitudes of

interfragmentary strain (IFS; i.e. case A as stable case with 11%

IFS and case B as flexible case with 39% IFS) described in detail

by Claes et al. [23]. Briefly, this experimental study compared

the healing of a transverse osteotomy under different axial stab-

ilities at the ovine metatarsus. An external fixator allowed a

lower maximal IFM of 0.25 mm in case A, and a higher maximal

IFM of 1.3 mm in case B. The gap size in the loaded situation was

2 mm for both cases. The gap sizes in the unloaded situations

were 2.25 and 3.3 mm for cases A and B, respectively. The axial

load of the metatarsus was assumed to be 1.1 � bodyweight
(BW) according to Duda et al. [27]. With an average BW of 75 kg

[23], the axial load for cases A and B was set to 840 N. Case C rep-

resents a torsional rotation load case performed by Bishop et al.
[24]. Briefly, the sheep underwent a transverse tibial osteotomy

that was fixed with an external fixator adjusted to a 2.4 mm

fracture gap. Daily stimulation of 120 sinusoidal cycles of inter-

fragmentary torsional rotation was applied with a maximum

strain magnitude of 25 per cent corresponding to 7.28 rotation at

a frequency of 0.5 Hz up to a load limit of 1670 N m2 allowing

IFS to decrease with increasing callus stiffness. In contrast to the

shear load case occurring under torsional rotation, case D rep-

resents a translational shear load case performed by Augat et al.
[25], where sheep underwent a transverse tibial osteotomy with

a fracture gap adjusted to 3 mm. An axially rigid external fixator

allowed a transverse sliding movement of 1.5 mm at the centre

of the mid-diaphyseal osteotomy. The average body weight was

78 kg [25], which according to Heller et al. [28], results in maximal

shear loads of approximately 200 N.
2.2. Numerical fracture-healing model
We used a previously published fracture-healing model which is

described in detail elsewhere [4,5]. Briefly, this algorithm combines

FE and fuzzy logic methods to simulate fracture-healing processes

over time in an iterative loop. The three-dimensional geometries of

idealized diaphyseal osteotomies and their healing regions in the

ovine metatarsus (for cases A and B, geometry according to

Claes & Heigele [8]) and tibia (for cases C and D, geometry accord-

ing to Isaksson et al. [12]) were implemented and meshed in

ANSYS (ANSYS Inc., Canonsburg, PA) using 10-node tetrahedral

elements with linear elastic material properties. The respective fix-

ation behaviour was separately implemented using a nonlinear

force–displacement function. Additionally, the mechanical behav-

iour of the bone–fixator system as well as the load and boundary

conditions were defined to represent the initial state for seven

input variables. These were, two mechanical stimuli (distortional

strain and dilatational strain derived from the strain tensor),

three state variables of the element itself (local blood perfusion,

cartilage and bone fractions) and two state variables of the adjacent

elements (perfusion and bone fraction). Tissue composition

(a mixture of three tissue types: woven bone, fibrocartilage and

connective tissue), material properties and blood supply were

assigned to each of the FEs. For the resulting Young’s modulus

Ej of each element j, the following rule of mixtures was used:

Ej ¼ Econn þ cexpcart
cart ðEcart � EconnÞ þ cexpbone

bone ðEbone � EconnÞ; ð2:1Þ

where Econn, Ecart and Ebone are Young’s moduli for connective

tissue, cartilage and bone, respectively; ccart and cbone are the

respective tissue fraction for cartilage and bone within one

element; expcart and expbone are the exponents of the respective car-

tilage and bone fractions. These variables were subjected to the

optimization procedure (cf. table 1).

Subsequently, the local mechanical stimuli (dilatational and

distortional strain components) are calculated in an iterative loop,

which together with the current tissue composition and blood

supply are used as input to a fuzzy logic controller (fuzzy logic

toolbox in MATLAB (v. 7.11, R2010b), The MathWorks Inc., Natick,

MA). A set of 20 linguistic fuzzy logic rules [3,5] controls how the

tissue composition and vascularization for each FE within the heal-

ing region changes depending on local mechanical and biological

stimuli. The rules are partly based on the mechanoregulatory

model proposed by Claes & Heigele [8] and represent intramem-

braneous ossification, chondrogenesis, endochondral ossification,

revascularization and tissue destruction. In the present model,

rules concerning the chondrogenesis process were modified for

an improved representation of the tissue differentiation hypothesis

of Claes & Heigele [8]. Modifications included the enlargement of

the range from +30 per cent in Simon et al. [5] to +50 per cent



Table 1. Ranges and literature data for the 12 input parameters included in the step 1-calibration process. Asterisks denote parameters that are not included in
the calibration.

parameter literature review

bounds

low up

Young’s modulus, Etiss in MPa

cortical bone*, Ecort 10 000a; 15 750b; 17 400c; 20 400d 15 750

woven bone, Ebone 6000e; 201f; 540 – 8300g; 4000h; 1381 – 2380i 500 9000

cartilage, Ecart 3.1j; 200k; 5 – 39l; 20 – 76m 5 50

connective tissue, Econn 0.99n; 1.9o; 3p; 0.5 3

Poisson’s ratio, ntiss

cortical bone*, ncort 0.39c; 0.36d; 0.325q 0.325

woven bone, nbone 0.23r; 0.32s 0.26 0.39

cartilage, ncart 0.174t; 0.4u; 0.35v; 0.47w; 0.46x 0.26 0.49

connective tissue, nconn 0.4p; 0.167y 0.26 0.49

fuzzy thresholds, D.decthr in % between ‘decrease’ and ‘stay unchanged’ for change in

blood perfusion, D.decperf 247.5 22.5

bone concentration, D.decbone 247.5 22.5

cartilage concentration, D.deccart 247.5 22.5

fuzzy thresholds, D.incthr in % between ‘stay unchanged’ and ‘increase’ for change in

blood perfusion*, D.incperf ¼2D.decperf

bone concentration*, D.incbone ¼2D.decperf

cartilage concentration, D.inccart 2.5 47.5

exponent values in the rule of mixture, exptiss

woven bone, expbone 1 5

cartilage, expcart 1 5
aHuman femoral metaphysis [29].
bPoroelastic properties of human cortical bone [30].
cHuman cortical bone [31].
dBovine cortical bone [31].
eAssumption for ovine stiff callus tissue [8].
fIndentation modulus for rat callus woven bone [32].
gPoroelastic properties of the human calcaneus [33].
hApparent elastic modulus of ovine callus woven bone [34].
iPreliminary results for ovine bony callus tissue [35].
jIndentation modulus for rat callus chondroid tissue [32].
kApparent elastic modulus of ovine callus fibrocartilage [34].
lPreliminary results for ovine callus fibrocartilage [35].
mHuman fibrocartilaginous callus tissue [36].
nIndentation modulus for rat callus granulation tissue [32].
oCanine fibrous tissue at bone – cement interfaces [37].
pInitial connective tissue within ovine fracture callus [8].
qPoroelastic properties [38].
rHuman calcaneus [33].
sBovine cancellous bone [39].
tArticular cartilage after equilibrium [40], applied as linear elastic material properties in a computational model by Witt et al. [41].
uCanine articular cartilage [42].
vCartilaginous tissue in rabbit spinal fusion [43].
wAssumptions for cartilaginous non-ossified callus tissue [44].
xBovine articular cartilage [45].
yApplied in a computational model using poroelastic material properties [14].

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130389

3

and automatically adjustable thresholds between different mem-

bership functions of the three different fuzzy logic output

variables (according to figure 1 and see below). With this iterative
healing model, experimental healing situations under different iso-

lated loading conditions, such as axial compression [23], torsional

rotation [24], translational shear [25] and asymmetrical bending
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Figure 1. Membership functions as defined by Simon et al. [5]. (a) For the
fuzzy logic output parameters change in blood perfusion, change in elements’
cartilage and bone fractions. Values for the thresholds D.decthr, D.incthr

between the single membership plateaus were subject to the optimization
procedure. (b) For the dilatational strain in the underlying tissue differen-
tiation hypothesis of Claes & Heigele [8], where the threshold of negative
destructive dilatational strain was changed from 25% to 23% during
the step 2-adjustment.
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[26], were simulated. The respective in vivo mechanical and

geometrical conditions (i.e. fracture gap size, initial IFM, fixator

stiffness and loading magnitudes) were adopted from the respect-

ive experimental publications. The outcomes of the model were

quantitatively (course of IFM over healing time) and qualitatively

(course of tissue distribution over healing time) compared with

the respective experimental data.
2.3. First step: model calibration on interfragmentary
movements

A total of 12 model-specific general input parameters were con-

sidered for calibration purposes. Beneath them were six material

parameters: Young’s modulus (Etiss) and Poisson’s ratio (ntiss),

each for woven bone (Ebone, nbone), cartilage (Ecart, ncart) and con-

nective tissues (Econn, nconn). Additionally, within the three fuzzy

logic output variables, four membership function thresholds

(between ‘decrease’ and ‘stay unchanged’, D.decthr, as well as

between ‘stay unchanged’ and ‘increase’ D.incthr, for the

change in blood perfusion (D.decperf, D.incperf ) and the changes

in elements’ cartilage (D.deccart, D.inccart) and bone fraction

(D.decbone, D.incbone); cf. Figure 1) were included and, excepting

the change in cartilage fraction, positive and negative thresholds

were varied symmetrically. Finally, two exponents of the rule of

mixtures exptiss were subject to the calibration process (expbone,

expcart; cf. equation (2.1)). The literature was reviewed to deter-

mine material parameter values that best represented the

mechanical behaviour of the involved tissues. Because the

reviewed data show large variability, the lower (lo) and upper
(up) bounds of the parameter ranges were defined to largely

cover these observed parameter uncertainties (table 1).

For calibration on mechanical data, an optimization pro-

cedure was performed to minimize the difference between

simulated IFM and experimental IFM of the four load cases A,

B, C and D by variation of the general input parameter values

within their respective bounds (table 1). This led to a minimum

value of the objective function (2.2), defined as the average rela-

tive quadratic deviations between measured mean IFM (u.EXPi)

and simulated IFM (u.FEi) at the in vivo measurement time

points i, scaled by the respective standard deviation. Each load

case is normalized to the number of its respective time-points.

Therefore, the objective was to minimize

GðDuiÞ ¼
1

9

X9

i¼1

ðDuA
i Þ

2

sA
i

þ 1

9

X9

i¼1

ðDuB
i Þ

2

sB
i
þ 1

5

X5

i¼1

ðDuC
i Þ

2

sC
i

þ 1

8

X8

i¼1

ðDuD
i Þ

2

sD
i

; ð2:2Þ

with

Dui ¼ u:EXPi � u:FEi ð2:3Þ

subject to

u:FEi ¼ f ðEtiss; ntiss;D:thr; exptissÞ ð2:4Þ

and

Elo
tiss�Etiss�Eup

tiss; n
lo
tiss�ntiss�n

up
tiss; D:declo

thr�D:decthr�D:dec
up
thr;

D:inclo
thr�D.incthr�D:inc

up
thr; explo

tiss�exptiss�exp
up
tiss

)

ð2:5Þ

where subscript ‘tiss’ stands for the different tissues connective

tissue, cartilage and bone; and subscript ‘thr’ stands for the

fuzzy thresholds of blood perfusion, bone and cartilage fractions.

Cortical bone is much stiffer than the other materials, with well-

established material properties, which were therefore excluded

from the optimization process, according to Isaksson et al. [22].

All IFM and standard deviations were normalized to their initial

in vivo values to allow comparability between the different cases.

The software package optiSLang (Dynardo GmbH, Weimar,

Germany) was used to minimize the objective G by applying

the particle swarm optimization (PSO) method [46–48]. Briefly,

this nature-inspired stochastic optimization method creates a

‘population’ of individual designs (single sets of stochastically

determined parameter values), equally spread out all over the

parameter space. Each iteration creates a new ‘generation’ of the

population by modifying the parameter values of the individual

designs influenced by the ‘global best design’ (i.e. parameter set

leading to the smallest objective value in the history of the whole

population) and the ‘best design’ of its own history. A population

of 32 individual designs was used for each generation. To define

the start population, Latin hypercube sampling (LHS; [49]) was

used to evenly distribute 150 designs over the design space, assum-

ing uniform distribution for each parameter. Thirty-two designs

with the smallest objective values were chosen as the start popu-

lation for the following PSO process. The stop criteria were

defined as reaching a maximum of 35 generations or no update of

the global optimum for six generations, whichever came first [50].
2.4. Second step: model evaluation on
tissue distribution

In the optimization process, the model was exclusively calibrated

against mechanical data from the respective experiments using

IFM as the quantitative indicator. To ensure a physiological predic-

tion of the spatial tissue distribution over the healing time, the

simulated courses of tissue developments were qualitatively evalu-

ated based on histological data from the underlying experiments.
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compared with the in vivo data for the four calibration load cases (mean+ s.d.). Where available, data from the single sheep are also shown (small dashed lines).
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Unfortunately, the evaluation was rather limited, because his-

tological data were available only for the eighth healing week for

all investigated load cases and additionally for the fourth healing

week for the torsional loading case. Therefore, we compared our

simulated tissue distributions with generally accepted typical pat-

terns for predominant axial loading [51] and predominant shear

loading [52] for further corroboration. Vetter et al. [51] defined

six different healing stages based on histological data after two,

three, six and nine weeks. We compared our predictions of the

axial load cases A and B to these stages, not regarding stage VI,

because remodelling is not covered by our model. Fracture healing

under translational shear with very large IFM was histologically

investigated by Peters et al. [52] at two, three, six and nine weeks

of healing. These findings were compared with the results of the

simulated translational shear load case D.

For adjustment of the simulated courses of tissue distributions

to the in vivo findings, a subsequent manual modification was

performed on those simulation parameters that could not be

included in the calibration process owing to their small impact

on the IFM. In this analysis, we identified the threshold of negative

destructive dilatational strain in the underlying tissue differen-

tiation hypothesis [8] and changed it from 25 per cent to 23 per

cent (figure 1b).

2.5. Third step: model corroboration on various loading
conditions

In addition to the four load cases included in the calibration pro-

cess, five other well-documented in vivo groups with axial

compressive load cases (V1–V5) taken from experiments of the

group of Claes et al. [23,53] were simulated. To check the

models’ validity regarding the simulation of mechanical outcomes,

simulated IFMs were compared with respective in vivo results.

These experiments were performed according to load cases A

and B, with variations of the gap sizes and initial IFMs, listed in

figures 4 and 5.
To examine the models’ ability to be transferred to completely

different loading situations, fracture healing under bending was

also simulated. Thus, case V6 represents an asymmetrical bending

load case performed by Hente et al. [26], who achieved active

cyclic bending displacement using a unilateral external fixator

over a 2 mm ovine tibial osteotomy. The resulting IFM was pure

compression to a reduced gap size of 1 mm at one side and dis-

traction to a widened gap of 3 mm at the other side of the

fracture gap. An actuator generated a maximal bending moment

of 22.5 Nm.
3. Results
3.1. First step: model calibration on

interfragmentary movements
The 32 best designs from the LHS representing the initial popu-

lation showed objective values of 2.59 to 6.16. The following

optimization process converged after no update of the global

optimum for six generations reaching a total of 29 generations

(928 designs) and improved the objective value to 0.39 for the

optimal design (no. 706) with the following calibrated material

parameters: for woven bone, cartilage and connective tissue

Young’s moduli were 538, 28 and 1.4 MPa, respectively, and

the Poisson’s ratios were 0.33, 0.3 and 0.33, respectively. For

blood perfusion, bone fraction and cartilage fraction, the

fuzzy thresholds between ‘decrease’ and ‘stay unchanged’

were 222 per cent, 247.5 per cent and 228 per cent, res-

pectively, and the threshold between ‘stay unchanged’ and

‘increase’ for cartilage fraction was 23 per cent. The exponents

for the rule of mixtures were found to be 4.5 and 3.1 for bone

and cartilage fractions, respectively. Figure 2 shows the simu-

lated course of IFM of the calibrated design for the four
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in vivo load cases that were subject to the optimization process

(dashed lines). For all four calibration load cases, the simulated

course of IFM is in reasonable accordance with the respective

in vivo data.

3.2. Second step: model evaluation on
tissue distribution

For both axial load cases, evaluation of the simulated change

of tissue distribution over the healing time (figure 3, first

two columns) revealed that according to the in vivo results

of Vetter et al. [51] physiological patterns can be predicted

as follows. Initial intramembranous bone formation was
predicted periosteally but not in the gap. Subsequently, the

bone propagates into the peripheral callus region where dis-

tinct cartilage is formed starting around week 2 (figure 3, first

row of diagrams—dashed lines). Around week 3, this carti-

lage bridges between the two opposite sides of the callus

and gives rise to endochondral ossification and thus, bony

bridging in the extracortical region starting at week 4 for

case A and around week 5 for case B. Later on, bone is also

formed within the gap (figure 3, second row of diagrams,

dashed lines) around week 5 for case A and around week 6

for case B. Endosteal bone formation starts slightly around

week 2 for both cases and the callus is completely filled

with bone at week 5 for case A and at week 7 for case B
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(figure 3, last row of diagrams, dashed lines). It is generally

accepted that callus size increases with increasing IFM (i.e.

decreasing fixation stiffness) [17,54–56]. Accordingly, a larger

callus was formed in the flexible load case B, which is visible

in the remaining connective tissue within the extracortical

region of case A. In contrast to the in vivo findings, our model

predicts large amounts of intramedullary cartilage for both

cases at early healing time points. After adjusting the threshold

of negative destructive dilatational strain (figure 1b), less intra-

medullary cartilage was predicted, especially for the large

compression case B, whereas the small compression case A

still showed amounts of intramedullary cartilage (figure 3,

second row of callus sketches).

According to histological data for the torsional load case C,

at four weeks, our results show woven bone formation extra-

cortically and connective tissue within the gap zone (figure 3,

third column). At week 8, bony bridging occurred extra- and

intercortically likewise to the in vivo results, whereas bone for-

mation was also predicted for the intramedullary callus. No

cartilage developed at all, whereas in vivo data showed little

cartilaginous tissue. As described in the respective radiogra-

phical analysis of Bishop et al. [24], our simulation of the

torsional load case C predicts extracortical bone formation

close to the cortical corners next to the gap starting around

week 3. The effects of changing the threshold of negative

destructive dilatational strain were negligible.

In consistent with the experimental findings for the trans-

lational shear load case D, we found less bone than in a

comparable axial load case (according to case B) at week 8

(figure 3, fourth column). Fibrous tissue was dominant

along the line where the callus joins from opposite sides of

the osteotomy. The experimental findings of Peters et al.
[52] for translational shear load cases with large IFM

showed good accordance with simulated tissue distributions

as follows. At week 2, we simulated bone formation on the

periosteal cortical surface at some distance of the gap. This

increases at week 3, whereas the gap is still filled with

connective tissue and little bone formation occurs intrame-

dullary. At week 6, the periosteal and intramedullary callus

size is increased, fibrous tissue is predominant in the gap.

At week 8 and later, bony bridging occurred basically extra-

cortically and moved towards the gap, some intramedullary

bridging started. Adjusting the threshold of negative des-

tructive dilatational strain had negligible influences on the

predicted healing patterns.

Furthermore, the step 2-adjustment of the model regard-

ing a more physiological prediction of tissue distribution

for the axial load cases had no or negligible influences on

both, the predicted tissue distributions for torsional rotation

as well as translational shear load cases (figure 3, second

row, last two columns), and the simulated courses of IFM

over the healing time for all load cases (figure 2).

3.3. Third step: model corroboration on various
loading conditions

Corroboration of the calibrated fracture-healing simulation

model was performed on five additional axial compressive

load cases with regard to the mechanical responses using

IFM as indicator as well as comparison of the change in

spatial tissue composition over healing time (figures 4 and 5).

For load cases V1 to V3, our simulated change of IFM

over the healing time is in good accordance with the in vivo
data; however, a trend towards too fast healing predictions

is visible. The step 2 adjustment was able to slightly correct

this trend. The gradient of IFM decrease for load cases V2

and V4 is larger than mean in vivo courses. This leads to

early healing time points which however are observed for

single sheep in the case V2, whereas not for case V4.

Respective tissue compositions show typical patterns

of secondary bone healing under axial compressive loading

(figure 4) according to Vetter et al. [51]. However, in the

cases with small IFM (V1, V2, V4), large amounts of intrame-

dullary cartilage are formed, whereas for large IFM (case V3

and V5), this cartilage formation is not visible, according to

respective in vivo results [34]. For the large gap size of

9.9 mm in combination with a large initial IFM of 3.99 mm

in case V5, the calibrated design leads to a delayed healing

or non-union (figure 5). Assuming that the given healing

zone with a maximal callus index (mCI; i.e. the relation

between the outer diameters of the healing zone and the corti-

cal bone tube, which represents the possible maximal size of a

callus) of 2 is too small for healing under these conditions

(figure 5, upper right), a larger healing zone with mCI of 3.5

was applied. The resulting course of IFM showed good accord-

ance with the in vivo data. Furthermore, the corresponding

tissue composition develops as expected, with extracortical

endochondral ossification and bony bridging around eight

weeks. The effective callus index (i.e. relation between the

outer diameters of the actual developed bone and the cortical

bone tube) was approximately 2.7 (figure 5, bottom right).

For additional corroboration on other mechanical loading

conditions, the adjusted design was used to simulate an

asymmetrical bending load case performed by Hente et al.
[26]. They documented only the amount of bone formation

after six weeks of healing under active bending and detected

significantly higher amounts of bone and callus formation

on the compression side, as noted by Pauwels [6] before

(figure 6, left column of diagrams). The simulation predicts

development of cartilage followed by endochondral ossifica-

tion on the compression side, whereas ossification on the

distraction side was less and had intramembranous character

exclusively starting from the periosteal periphery of the heal-

ing region (figure 6, centre and right column of diagrams and

top right callus sketches). Bridging was predicted in the

endosteal region of the compression side after six weeks of

healing (figure 6, top right callus sketches), as described for

the in vivo evaluation of Hente et al.
4. Discussion
The work presented included three steps to gain a higher

level of validity for numerical predictions of bone healing

processes under highly diverse loading conditions. Confirm-

ing our hypothesis, our numerical fracture-healing model

regulated by local distortional and dilatational strains [4,5]

was able to predict the course of IFM and tissue distribution

of different healing situations under axial compression, tor-

sion, shear loading and bending after calibrating the input

parameters within reasonable ranges.

During the first step, the model was calibrated based on

automated parameter optimization processes on the IFM,

because callus stiffness is the most clinically relevant factor for

monitoring the healing process and directly depends on the

course of IFM over the healing time. Within previous published
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ranges for the input parameter values, the optimization process

detected model-specific optima for the simulation of four differ-

ent load cases. Numerical models can thereby be adjusted by
finding appropriate values for those input parameters typically

related to high uncertainties. Primarily, the calibration pro-

cedure delivers more accurate values especially for function-
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defining parameters (i.e. rule of mixtures and fuzzy member-

ship functions) which were generally based on previous

assumptions. The benefit of the first step calibration method

presented is the ability to quantitatively decide on the basis of

the respective outcome whether or not other mechanisms of

the model need to be considered to improve the predictions.

For optimization purposes, a nature-inspired particle swarm

algorithm was used due to the high complexity and nonlinear-

ity of the problem [57]. This procedure is characterized by a

direct calculation method, which in contrast to approximation

or deterministic methods such as response surface algorithms

[58,59] requires numerous design calculations and thus, is

more expensive. On the other hand, the optimization results

are definite solutions of the respective problem and are not

based on mathematical approximations.

The applied calibration method was not aimed at the

determination of reliable material properties for the involved

tissues. However, we used the large variability for each of

the material parameters shown by literature data to define

bounds representing physiological ranges for each tissue

property. All resulting parameter values are located
sufficiently between their upper and lower bounds, except

Young’s modulus of bone, which is (still physiologically)

close to its lower bound, as well as the fuzzy threshold between

‘decrease’ and ‘stay unchanged’ for bone fraction, which is

the lower bound. Owing to the use of uniform distributed

parameter values within their bounds, also the bounds

themselves represent reasonable values, provided they were

defined physiologically. The resulting mechanical properties

for cartilage represent the behaviour of fibrocartilage, which

is usually found in fracture-healing areas. These results are

not comparable with mechanical properties of hyaline articular

cartilage (i.e. Young’s modulus much smaller, Poisson’s ratio

much higher).

The calibration method presented requires data of well-

characterized and defined in vivo load cases to converge to

reasonable parameter values. Furthermore, only isolated load

cases with clinically relevant IFM were considered. For axial

compression, several experimental datasets were available,

particularly from Claes et al. [23]. For torsional rotation, the

experiments were rare and only one load case from Bishop

et al. [24] was sufficiently accurate to be retrievable for
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calibration. Similarly, only one well-documented in vivo con-

dition of translational shear was available from Augat et al.
[25]. However, we strived for predictions of fracture healing

under load cases that were as diverse as possible. Therefore,

we chose compressive as well as shear load cases (including

two different shear conditions) for the calibration and corrobo-

rated the resulting model on further compressive load cases

and bending, although the experimental data of the latter

were limited to radiographical evaluations only.

The calibration procedure had to exclusively focus on the

IFM, because other possible objectives, such as histological

or radiographical data for tissue distribution, could not

be implemented in the automatic optimization procedure

owing to the lack of respective quantifiable experimental

data. This shortcoming was attended in the second step,

where the model was evaluated concerning a physiological

prediction of spatial and temporal tissue distribution during

the healing process. These evaluations were performed on

the histology data of the underlying in vivo experiments and

additional findings of Vetter et al. [51] and Peters et al. [52].

Based on these investigations, we detected non-physio-

logical amounts of intramedullary cartilage formation in

the large axial compression load case in our simulations.

By increasing the threshold of negative destructive dilata-

tional strain from 25 per cent to 23 per cent (figure 1b)

within the underlying tissue differentiation hypothesis of

Claes & Heigele [8], we were able to limit cartilage develop-

ment to areas of smaller strains (i.e. 23% up to 20.85%).

This did not influence bone formation, which was not critical

in our findings. Adjustment of this single parameter led to

enhanced predictions of tissue differentiation within the axial

compressive load case B, as expressed by less intramedullary

cartilage development in weeks 2 and 3 (figure 3, second

column), as well as less advanced bony bridging at week

6. Also for load case A, slightly less cartilage is formed

during the first five weeks (figure 3, first column) but still intra-

medullary cartilage appears. This effect is not reported by

Vetter et al. [51], however, the eight-week histology data of

the underlying in vivo experiment [34] show distinct fractions

of endosteal calcified cartilage for case A, but not case

B. Hence, intramedullary cartilage seems to be physiological

for load cases with small initial IFM, but not for load cases

with large initial IFM. Owing to the approximate absence of

cartilage, both shear load cases C and D were not altered by

this modification (figure 3, third and fourth column). Further-

more, this adjustment had negligible influence on the

simulated mechanics (i.e. courses of IFM over the healing

time) for all load cases (figure 2). Because the value of the

adjusted threshold was previously based on assumptions,

our method was able to refine it resulting in more physiological

tissue distribution.

Under torsional loading, we predict intramedullary bone

formation, which was not observed in vivo. However, this

bone formation is plausible under pure rotational loading

because the low local distortional strains, i.e. regions where

bone formation is possible, were located at the axis of rotation

and at the periosteal surface at some distance to the fracture

gap [12]. Therefore, all differentiation hypotheses used in

numerical models for fracture-healing simulations predict

early intramedullary bone formation (cf. figure 6 in Isaksson

et al. [12]). Our calibrated model was not able to impede this

effect, however it appeared later in the healing phase

(figure 3), starting around week 4.
As demonstrated during the third step, the model was

corroborated on also being able to physiologically predict

mechanics and tissue distributions of various other loading

conditions (V1–V6), especially further axial compressive

load cases. The calibrated model represented the respective

healing processes with reasonable accuracy. Only case V4

showed large deviations to the in vivo results, which might

be caused by ill-conditioned experiments, because from our

experience the respective in vivo conditions (i.e. gap size of

2.7 mm and IFS of 19%) should result in faster healing than

experimentally measured. Accordingly, other load cases

with worse conditions (e.g. case B with gap size of 3.3 mm

and IFS of 40%) show faster healing experimentally.

In contrast to models by Garcia-Aznar et al. [17], our model

does not simulate callus growth itself. Instead, within a prede-

fined healing region (filled up with connective tissue), bone is

formed up to a certain level depending on the mechanical con-

ditions. The resulting bony volume represents the expected

effective bony callus size, which cannot exceed the predefined

healing region, quantified by the mCI. It is generally accepted

that callus size increases with increasing IFM (i.e. decreasing

fixation stiffness) [17,54–56], therefore we assumed that for

case V5 the effective callus size will exceed the predefined

size of the healing region because it represents a loading con-

dition with a large gap and large IFS (IFM of 3.99 mm with

gap size 9.9 mm). This might represent a critical size defect

with delayed healing [23]. Hence, we defined a larger healing

area for this case which led to reasonable results (figure 6).

For all the other load cases, additional computations however

showed that there were no differences compared with simu-

lations with larger healing regions, concluding that the mCI

cannot be too large but only too small.

We were also able to simulate secondary fracture healing

under isolated asymmetrical bending according to the res-

pective in vivo data from Hente et al. [26]. This is of specific

interest, because we showed that our model is able to clearly

distinguish between negative and positive pressures on the

opposite sides of the bended fracture callus owing to the use

of dilatational strain as stimulus in the tissue differentiation

hypothesis of Claes & Heigele [8].

In summary, we applied an optimization process to

calibrate input parameters of our existing numerical fracture-

healing model to gain a higher level of validity. Thus, we

showed that the resulting enhanced model is able to predict

fracture-healing processes under various loading conditions.

Other models were able to simulate healing under physiologi-

cal complex loading [4,10], but were not validated against

isolated loading scenarios. To the best of our knowledge,

this is the first time that ovine fracture healing under axially

symmetric as well as asymmetrical isolated loading conditions

has been simulated by one numerical model. On the basis of

our results, models can be enhanced to also predict healing

under complex loading conditions.
5. Conclusion
We were able to confirm our hypothesis that the previously

developed model regulated by distortional and dilatational

strains is able to predict ovine fracture healing processes under

diverse loading conditions (i.e. axial compression, torsional

rotation, translational shear and asymmetrical bending), after

calibration of the input parameters within reasonable ranges.
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