
rsif.royalsocietypublishing.org
Research
Cite this article: Sheldon RE, Baghdadi M,

McCloskey C, Blanks AM, Shmygol A, van den

Berg HA. 2013 Spatial heterogeneity enhances

and modulates excitability in a mathematical

model of the myometrium. J R Soc Interface

10: 20130458.

http://dx.doi.org/10.1098/rsif.2013.0458
Received: 20 May 2013

Accepted: 19 June 2013
Subject Areas:
computational biology, systems biology

Keywords:
uterus, myometrium, gap junction, modelling,

Fitzhugh – Nagumo, parturition
Author for correspondence:
Rachel E. Sheldon

e-mail: r.e.sheldon@warwick.ac.uk
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2013.0458 or

via http://rsif.royalsocietypublishing.org.
& 2013 The Author(s) Published by the Royal Society. All rights reserved.
Spatial heterogeneity enhances and
modulates excitability in a mathematical
model of the myometrium

Rachel E. Sheldon1,3, Marc Baghdadi1, Conor McCloskey3, Andrew M. Blanks3,
Anatoly Shmygol3 and Hugo A. van den Berg2

1MOAC Doctoral Training Centre, and 2Systems Biology, University of Warwick, Coventry CV4 7AL, UK
3Division of Reproductive Health, Warwick Medical School, Coventry CV2 2DX, UK

The muscular layer of the uterus (myometrium) undergoes profound changes

in global excitability prior to parturition. Here, a mathematical model of the

myocyte network is developed to investigate the hypothesis that spatial het-

erogeneity is essential to the transition from local to global excitation which

the myometrium undergoes just prior to birth. Each myometrial smooth

muscle cell is represented by an element with FitzHugh–Nagumo dynamics.

The cells are coupled through resistors that represent gap junctions. Spatial

heterogeneity is introduced by means of stochastic variation in coupling

strengths, with parameters derived from physiological data. Numerical simu-

lations indicate that even modest increases in the heterogeneity of the system

can amplify the ability of locally applied stimuli to elicit global excitation.

Moreover, in networks driven by a pacemaker cell, global oscillations of exci-

tation are impeded in fully connected and strongly coupled networks. The

ability of a locally stimulated cell or pacemaker cell to excite the network is

shown to be strongly dependent on the local spatial correlation structure of

the couplings. In summary, spatial heterogeneity is a key factor in enhancing

and modulating global excitability.
1. Introduction
The myometrium is the muscular layer that constitutes the bulk of the uterine

wall. It is a syncytium of interconnected smooth muscle cells, forming an excit-

able medium [1], i.e. a nonlinear dynamical system that can propagate signals

over long distances without damping. In the myometrium, these propagating

signals trigger phasic contractions [2]. The behaviour of the myometrium as

an excitable medium is thought to be influenced by the spatial variations in

the excitability of individual muscle cells as well as the strength of their inter-

connections [3]. The modulation of global excitation by network heterogeneity

may play an important role in the myometrium during pregnancy. Sufficient

coupling is needed for excitation to spread, but this coupling need not be uni-

form, or even exist between all cells. The aim of this paper is to examine how

spatial heterogeneity, in particular local variations in cell connectivity, affects

global excitability. Furthermore, we study the ability of pacemaker cells to

drive the network as a function of its spatial heterogeneity.

In the rodent (as in most mammals), the myometrium consists of an inner

circular layer and an outer longitudinal layer of smooth muscle cells [4]. In

humans, these layers are less distinct [5]. Through most of pregnancy, the myo-

metrium remains in a predominantly quiescent state as the fetus develops [6].

However, in the days leading up to parturition, contractile activity in the myo-

metrium undergoes major changes which prepare the uterus for labour [6]. This

activation phase involves molecular changes that lead to an increase in contrac-

tion frequency, when compared with mid-gestation [7]. A key characteristic of

this phase is a profound change in the connectivity between the myometrial

smooth muscle cells.
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If a stimulus is applied to a smooth muscle cell, its mem-

brane potential undergoes a depolarization before eventually

returning to the quiescent resting value. An excitable cell exhi-

bits an all-or-nothing response: a cell either responds with a

full excursion of the membrane potential, or barely at all. In par-

ticular, when the stimulus exceeds an excitability threshold, the

response is an action potential whose magnitude is independent

of the size of the (suprathreshold) stimulus. A consequence of

this all-or-nothing behaviour is that a stimulus of sufficient

amplitude can be reliably propagated across the network.

Pacemaker cells, by contrast, do not require an external

stimulus, but exhibit periodic excitations that drive neighbouring

non-pacemaker cells. The presence of specialized pacemaker cells

in myometrial tissue is much disputed [8–11]. If present, it is

likely that the pacemaker cells are not anatomically distinct

from non-pacemaker cells and have no fixed location in the

uterus [12]. Rather, they would occur dispersed within the

matrix of non-pacemaker cells. Therefore, the cells can only be

recognized through patterns of electrical activity: a slow depolar-

ization of the smooth muscle membrane which results in the

generation of an action potential [13]. The oscillation frequency

of a pacemaker cell dictates the rate of uterine contractions.

In order to generate action potentials, a myometrial cell

maintains transmembrane gradients of several ionic species

by means of active transport across the cell membrane. In

humans, the action potential is initiated by an inward, depolar-

izing current carried by calcium ions [2]. Post-excitation, the

cells enter a refractory period, during which they are tempor-

arily unable to become excited [14]. Electrical coupling

between myometrial smooth muscle cells is maintained

by intercellular channels through which ions and certain

metabolites can pass from one cell to another. Each channel

consists of two connexons, one contributed by each of the com-

municating cells; furthermore, each connexon is a complex of

six connexin proteins [15]. A gap junction is a cluster of such

channels joining two cells electrically. Myometrial gap junc-

tions vary in number over the course of gestation; in fact, an

increase in the number of gap junctions in myometrial tissue

is indicative of the onset of labour [1]. Moreover, the precise

nature of the conditions that stimulate the expression of gap

junctions is of considerable clinical importance and an under-

standing of these conditions may ultimately aid early diagnosis

and improve management of pre-term labour [16].

Heterogeneity has long been known to be a factor in the

spatial patterns of activation in excitable systems [17]. In

particular, electrical heterogeneities can play a role in cardiac

arrhythmias and cause a decrease in propagation velocity

through the tissue. The propagation of excitation in spatially

extended systems through spiral waveforms has been well

studied [18,19]. Here, we focus on a question which has recei-

ved much less attention: whether spatial heterogeneity in

connectivity is sufficient to modulate global excitability. We

use a mathematical model to investigate how the global

excitation of the myometrium is affected by the spatial

heterogeneity of the system. Benson et al. [20] analysed a

heterogeneously coupled model which is based on FitzHugh–

Nagumo dynamics, but this was a continuum-model in which

the coupling between cells was not represented explicitly. Spatial

heterogeneity was found to assist the transition between quies-

cence and excitability. However, heterogeneity in coupling

alone was not observed to produce synchronous activity. Follow-

ing these authors, we use the FitzHugh–Nagumo model [21,22]

and introduce heterogeneity by generating stochastic coupling
structures based on several statistical distributions. These include

empirical distributions obtained from experiments performed on

myometrial cells taken from mice at the 15th and 18th day of

pregnancy (i.e. towards the end of gestation). In addition, we

investigate how spatial heterogeneity of the intercellular connec-

tions modulates the ability of a pacemaker cell to drive the

network.
2. Material and methods
Both in silico and in vitro methods were employed. Myometrial

tissue was simulated in a mathematical network model to deter-

mine the effect of spatial variations of coupling strengths on the

spread of excitation. Since coupling depends on cell capacitance,

as explained later, cell capacitance values were taken from pregnant

mouse myometrium to define a statistical distribution for coupling

values, which was used to construct an asymmetrically coupled

model. Furthermore, data from pregnant mouse myometrial cells

were used to simulate statistical variation in resting membrane

potential for each cell. These physiologically realistic spatial

statistics were also used to determine the efficacy of pacemaker cells.

2.1. Experimental methods
2.1.1. Electrophysiological measurements
Animals used were C57BL/6 mice which were time-mated

(within a 2 h period) to generate pregnancies with an accurate

gestational age. Mice were sacrificed by carbon dioxide inhala-

tion at gestation day 15 or 18, time points towards the end of

pregnancy. Strips of myometrium from the longitudinal layer

(2 � 2 � 20 mm) were dissected from freshly isolated uteri in

ice-cold physiological saline. The strips were washed in Ca2þ

and Mg2þ-free HBSS (Fisher Scientific) at 378C for 10, 20 and

30 min sequentially. This was followed by a 45-min incubation

in HBSS containing Liberase TM (Roche) at a final concentration

of 0.13 units ml21. Digestion was terminated by several dilutions

with fresh HBSS. Cells were dispersed by slow trituration

through a wide-bore fire polished glass pipette in HBSS solution.

Single myometrial cells were filtered through a 200 mm gauze

and stored in HBSS for use within 6 h.

The cell membrane was perforated using the antibiotic ampho-

tericin B (600 mg ml21) [23]. Cell capacitance was measured in the

enzymatically isolated smooth muscle cells using the membrane

test facility of the Axopatch 700B amplifier (Axon Instruments).

Repetitive square voltage pulses of DVm ¼ 10 mV were applied

from the holding potential of –60 mV and the current response

was measured. The integral of the current as a function of time

over the decay phase equals the unloaded charge Qc which is

related to the step change in voltage by Qc¼ CmDVm, whence

Cm can be calculated. Electronic supplementary material, table S1

lists the cell capacitance data obtained in our experiments.

Transmembrane potentials were recorded with an amplifier

(Axopatch 700B; Axon Instruments) and a Digidata 1440a com-

puter interface running pCLAMP 10.2 software (Molecular

Devices, Sunnyvale, CA, USA). Resting membrane potential

values were taken as the mean potential (mV) for the 5-s

period immediately after an action potential has occurred.

2.1.2. Data analysis
For the 18-day cell capacitance data, a distribution was fitted

as follows. The coefficient of variation was calculated as j1 ¼

s18/m18, where m and s are the mean and s.d. of the experimen-

tal data, respectively. The data were normalized by the average

value, giving a normalized mean of 1 and a normalized s.d. of j1.

A lognormal distribution can be characterized by two par-

ameters l and t such that the mean is equal to exp(l þ t2/2)



Table 1. Parameter values used in the simulations in §§3.1 – 3.7 with
the exception of e in §3.6 which is scaled according to the modal point of
the cell capacitance distributions.

parameter A a g w0 v0 e

value 3 3 0.05 0.4 0.4 0.2
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and the variance equals expf2l þ t2g(expft221g). These

parameters satisfy the following system:

1 ¼ elþðt
2=2Þ

and j2
1 ¼ e2lþt2 ðet2 � 1Þ:

9=
; ð2:1Þ

The non-dimensional cell capacitance for 18-day pregnant mouse

data was found to be distributed as eZ, where Z follows a normal

distribution with mean –0.03551 and s.d. 0.2665.

The 15-day data were analysed in a similar fashion. The coef-

ficient of variation was defined as j2 ¼ s15/m15 using the mean

and s.d. of the experimental data. However, the data were

normalized by the 18-day mean m18, with normalized mean

a ¼ m15/m18. Hence

a ¼ elþðt
2=2Þ

and j2
2 ¼ e2lþt2 ðet2 � 1Þ:

9=
; ð2:2Þ

The non-dimensional cell capacitance for 15-day pregnant mouse

data was found to be distributed as eZ, where Z follows a normal

distribution with mean –0.2114 and s.d. 0.3073.

2.2. Myometrial network model
The myometrial network model consists of excitable elements

interconnected by resistors representing gap junctions. Hetero-

geneity is introduced in the form of random variations in the

strength of the cell-to-cell couplings. We use various statistical

models to generate the networks, including two based on cell

population statistics taken from the mice data.

2.2.1. Cell model
The Hodgkin–Huxley model of electrogenic cell activity, pro-

posed in 1952, forms the basis for the study of excitable

systems [14,24–27]. While the Hodgkin–Huxley model has

four state variables, FitzHugh pointed out that the essential

dynamical properties are captured by a two-dimensional sim-

plified model [21], for which Nagumo proposed an electric

analogue circuit [22]. The simplified model is an excitation–

relaxation oscillator with a fast (‘excitation’) state variable v that

corresponds to the cell’s membrane potential and a slow (‘recov-

ery’) variable w that corresponds to gating kinetics which

repolarize the excited cell. The following ordinary differential

equations describe this two-variable model:

d

dt
vðtÞ ¼ 1

e
AvðtÞð1� vðtÞÞðvðtÞ � aÞ � wðtÞ � w0 þ I ð2:3aÞ

and

d

dt
wðtÞ ¼ vðtÞ � gwðtÞ � v0; ð2:3bÞ

where I is the input current and A, a, g, w0, v0 and e are positive

parameters. The values shown in table 1 were used in the simu-

lations presented in §§3.1–3.7, with the exception of e which

was scaled according to cell capacitance in §3.6.

The equations were solved using the NDSolve function in

Mathematica, which uses a Livermore Solver for Ordinary Differ-

ential Equations approach. Results were numerically stable

under variation in step size.

The behaviour of an isolated cell with the input I ¼ 0 is

shown in a phase-space diagram (figure 1a). Whereas the null

isocline of w is a straight line, the null isocline of v is a cubic poly-

nomial with an unstable branch in the middle, indicated as a

dashed line. In the region left of this unstable branch, the

phase point tends towards the left stable branch and ultimately

towards the intersection of the null isoclines, which forms a

stable stationary point. To the right of the unstable branch, the

phase point tends rapidly towards the right stable branch,

where the slow dynamics of w will drive it upwards until the
branch point is attained. The rapid dynamics of v subsequently

drives the phase point back to the left stable branch.

Excitation corresponds to an excursion along the right stable

branch. To reach this branch from the stationary point, a pertur-

bation (Dv) has to be applied on v. If this perturbation is

insufficient to move the phase point beyond the unstable

branch, the phase point rapidly relaxes back to the equilibrium

(figure 1b), whereas sufficiently large perturbations trigger a sub-

stantial response (figure 1c). The unstable branch of the null

isocline _vðtÞ ¼ 0 thus represents a threshold for excitation.
2.2.2. Lattice model
The individual excitable cells were coupled together through resis-

tors into an n � n lattice, as illustrated in figure 2a. The lattice was

modelled with closed boundary conditions. The resistors represent

the gap junctions between any two adjacent cells. The equivalent

resistance of the gap junction can be calculated on the basis of the

properties of the individual connexon channels. Let the individual

connexon have a resistance ri (figure 2b). Suppose that the gap junc-

tion between a given pair of cells consists of n connexons. Because

the connexons conduct in parallel, Kirchoff’s law for parallel resis-

tors determines the total resistance R of the gap junction (figure 2c)

1

R
¼ 1

r1
þ 1

r2
þ � � � þ 1

rn
: ð2:4Þ

If the connexons have equivalent resistance, ri ; r and R ¼ r/n.
2.2.3. Coupling constants
A coupling constant K is assigned to each gap junction and

defined as follows. The cell membrane is modelled as a capacitor

in parallel with a resistor, as indicated in figure 2d. Let Qi denote

the membrane charge of cell i, Ci the cell capacitance and Vi the

membrane potential. These quantities are related by

dQi

dt
¼ Ci

dVi

dt
: ð2:5Þ

The gap junctional current between two cells i and j is given by

(Vj – Vi)/Rij. Define the coupling constant between cells i and j as

Kij ¼ (CiRij)
21 and consider a cell connected to four other cells in

a rectangular grid, as shown in figure 2d. The gap junctional cur-

rent for the central cell is a sum of four gap junctional currents

1

Riþ1;j
ðViþ1;j � Vi;jÞ þ

1

Ri;jþ1
ðVi;jþ1 � Vi;jÞ þ

1

Ri�1;j
ðVi�1;j � Vi;jÞ

þ 1

Ri;j�1
ðVi;j�1 � Vi;jÞ;

where (i,j ) denotes the location of the cell on the grid. Hence the

voltage dynamics for cell (i,j ) is given by

d

dt
V ¼ 1

Ci;jRiþ1;j
ðViþ1;j � Vi;jÞ þ

1

Ci;jRi;jþ1
ðVi;jþ1 � Vi;jÞ

þ 1

Ci;jRi�1;j
ðVi�1;j � Vi;jÞ þ

1

Ci;jRi;j�1
ðVi;j�1 � Vi;jÞ þ

ICh

Ci;j
;

ð2:6Þ

where ICh is the total current carried by the ion channels of cell

(i, j ). The coupling values between any two adjacent cells are
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Figure 1. Axes labels v and w represent the non-dimensionalized excitation current and recovery current, respectively. (a) Local dynamics described by equations
(2.3a,b). The dashed-dotted line represents the null isocline _wðtÞ ¼ 0, and the curve represents the null isocline _vðtÞ ¼ 0. The dashed section of the curve is the
unstable branch. The fixed point of the dynamics is at P, where the null isoclines meet. Parameters are given in table 1. Trajectories (b) and (c) shown as thick, solid
lines, vary depending on the initial perturbation from the equilibrium point P. (b) A small perturbation quickly relaxes back to rest. (c) A large perturbation triggers
a substantial response. An initial rapid excitation (1) is followed by a period in which the system remains in an excited state (2). After a rapid relaxation (3), the
system enters a refractory period in which no further excitation can take place (4), before regaining excitability as it returns to its rest state (5). (d ) Local dynamics
described by equations (2.3a,b) for a pacemaker cell. Parameters as in table 2. P is an unstable fixed point, causing continuous re-excitation of the cell after a
refractory period. (Online version in colour.)
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as follows:

Kiþ1;j ¼
1

Ci;jRiþ1;j
; Ki;jþ1 ¼

1

Ci;jRi;jþ1
; Ki�1;j ¼

1

Ci;jRi�1;j

and Ki;j�1 ¼
1

Ci;jRi;j�1
:

ð2:7Þ

The coupling value is rendered dimensionless in accordance with

the scaled equations for dynamics of the cell network (equations

(2.3a,b). As defined here, K is a rate constant. Dimensionless time

t in the FitzHugh–Nagumo model is defined by t ¼ R1t/D,

where D is the damping coefficient that captures the inertia of

the system induced by the gating kinetics, as shown by FitzHugh

[21], dimensional time is represented by t, and R1 is the passive

resistance of the nonlinear current device of the circuit, represented

as a tunnel diode by Nagumo et al. [22]. Dimensionless coupling is

defined as k ¼ D/R1K. The dimensionless equations governing the

dynamics of the cell in the (i, j)th position are as follows:

d

dt
vi;jðtÞ ¼ Ii;j þ

1

e
Avi;jðtÞð1� vi;jðtÞÞðvi;jðtÞ � aÞ � wi;jðtÞ � w0

þ ki�1;jðvi�1;jðtÞ � vi;jðtÞÞ þ kiþ1;jðviþ1;jðtÞ � vi;jðtÞÞ
þ ki;j�1ðvi;j�1ðtÞ � vi;jðtÞÞ þ ki;jþ1ðvi;jþ1ðtÞ � vi;jðtÞÞ

ð2:8aÞ

and

d

dt
wi;jðtÞ ¼ vi;jðtÞ � gwi;j � v0: ð2:8bÞ

Here Ii,j is the input current applied to cell (i, j). To render the remain-

ing parameters dimensionless, define e ¼ R2
1Ci;j/D; where R1 is the

passive resistance of the nonlinear element, Ci,j is the capacitance of

cell (i, j) and D is the damping coefficient. The quantities R and D are
incorporated into the excitable element depicted in figure 2d. The

other parameters were scaled in accordance with the derivation

given by Keener & Sneyd [28], as detailed in appendix A.
2.2.4. Initial conditions and activation clusters
The initial conditions for each cell correspond to the resting

membrane potential and are given by the real solution to the

following simultaneous equations:

wi;jð0Þ ¼ Avi;jð0Þð1� vi;jð0ÞÞðvi;jð0Þ � aÞ � w0 ð2:9Þ

and

wi;jð0Þ ¼
vi;jð0Þ � v0

g
: ð2:10Þ

A perturbation Dv, representing a short-lasting influx of charge, is

applied to the cell at the centre of the lattice, displacing it from its

stationary point. The cells that become excited as a consequence of

this initial perturbation constitute an activation cluster. The ratio of

the number of cells in the cluster to the total number of cells in the

simulated lattice is used as a measure of the strength of activation.
2.2.5. Spatial structuring
Both homogeneously coupled and heterogeneously coupled cell

networks are considered. In the spatially homogeneous case, all

couplings are equal, i.e. ki,j ¼ k 8(i, j ), whereas in the spatially

heterogeneous case, the cell–cell couplings kij are allowed to

vary with i,j. Two further subcases can be distinguished: (i) sym-

metric coupling, i.e. ki,j ¼ kj,i 8(i, j ) and (ii) asymmetric coupling,

where ki,j = kj,i.



Ri, j–1

(i,j–1)

i–1, j

i+1, j

i, j–1 i, j+1i, j

(i–1, j)
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cell 1 Cell 2
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ri

(a)

(d) (e)
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Figure 2. (a) Schematic of the lattice. Cells are referred to using i, j coordinates; the resistance between cells is denoted by R. The resistances are converted into
dimensionless coupling values as detailed in §2.2.3. (b,c) The resistance of a gap junction. (b) The resistance ri across an individual connexon (consisting of six
connexins). (c) A number of connexons link the two cells. The individual connexons act in parallel, giving an equivalent resistance R. (d ) Electrical circuit diagram
representing the current flow between connected cells. Cell (i, j ) is the cell of interest, coupled to four surrounding cells; R represents the resistances in gap
junctions. The circuit at cell (i, j ) represents a basic model of an excitable system [28]. Ve represents the external potential, Vi represents the internal potential,
Ci,j is the cell capacitance, the excitable element represents the recovery current and the nonlinear current – voltage device (I ) represents the fast current.
(e) Asymmetry in coupling due to different cell sizes k1 . k2.
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2.2.5.1. Symmetrical coupling: the Bernoulli lattice
To simulate symmetrical coupling, the value ki,j¼ kj,i is determined

probabilistically by

ki;j ¼
k with probability p
0 with probability 1� p;

�
ð2:11Þ

where the limiting case p¼ 1 represents spatial homogeneity. We

refer to the lattice defined by equation (2.11) as the Bernoulli lattice.

Heterogeneity in the Bernoulli lattice is modulated by varying the

amount of connectivity in the lattice, expressed by the parameter

p representing the probability of a connection existing between

any two given cells.
2.2.5.2. Symmetrical coupling: uniformly distributed
A second type of symmetrical heterogeneity is introduced using a

lattice with connections drawn from uniform distributions. In par-

ticular, the intercellular couplings are modelled as independent

uniform variates on [0.5,10].
2.2.5.3. Spatial correlation in the coupling structure
Distance to the stimulated cell is expressed using the ‘1 (‘city-

block’) measure; electronic supplementary material, figure S1,

labels cells according to their ‘1-distance to the central cell on a

5 � 5 lattice. The correlation function Cr, where r is the ‘1-distance,

is defined as follows:

Cr ¼ kkð�k0 ���kÞð�ki ���kÞl8 i at rlsimulated networks; ð2:12Þ
where ��k denotes the grand mean of coupling over the network and

�ki is the mean coupling of cell i.
2.2.5.4. Asymmetrical coupling: cell capacitances
Asymmetrical coupling is introduced by allowing variation in

cell capacitances (with symmetrical gap junctional conduc-

tances). A larger cell has a larger capacitance, and as a result

will be more weakly coupled to its neighbours since Ki,j ¼

(CiRi,j)
– 1 will be smaller (figure 2e). The model assumes that

the cell capacitance values are independently lognormally dis-

tributed; calculation of realistic parameter values is detailed in

§2.1.2. A resistance value is chosen from within a window of

values that permit global excitability.

The value of the scaled parameter e is proportional to the

capacitance of the cell. Accordingly, in simulations using day

18 data, the value of e is normalized by the modal point of the

18-day distribution. Similarly, e is normalized by the modal

point of the 15-day distribution in day 15 simulations.
2.2.5.5. Variability in resting membrane potential
A normal distribution was fit to the normalized resting mem-

brane potential data. The 18-day data serve as a reference

point. The non-dimensional resting membrane potential for 18-

day pregnant data is normally distributed with mean 1 and

s.d. 0.1615, whereas the non-dimensional resting membrane

potential for 15-day pregnant data is normally distributed with

mean 1.046 and s.d. 0.08737.



Table 2. Parameter values for pacemaker cells.

parameter A a g w0 v0 e

value 3 3 0.1 0.4 0.7 0.2
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Equations (2.9) and (2.10) can be solved simultaneously to

find an expression for the value of v in the steady state. Retaining

only linear terms, we find that the scaled resting membrane

potential �v is proportional to v0 – gw0.

A value vi,j is sampled from the resting membrane potential

distribution for each cell (i, j ) in the network. The dependent par-

ameters g and w0 are then multiplied by vi,j to introduce

variability into the model. Introducing variability through the

parameter v0 produces non-sensical results.

Multiplying g and w0 by vi,j alters the phase portrait for each

cell. We therefore examine the effect of the variability in resting

membrane potential (and so gestation period) on the minimum

perturbation required to excite an isolated cell. Simulations

were run with the only asymmetry being the variation in resting

membrane potential, and also with an asymmetry in the cell

capacitances. Relative cluster sizes were recorded for a range of

coupling strengths and initial perturbations with varying

connectivity p.

An increase in variability in resting membrane potential is seen

as pregnancy progresses. Therefore, by assuming a linear relation-

ship between day 15 and day 18 data, we extrapolate resting

membrane potential variability for time points outside this range

to examine the trend of excitability throughout pregnancy.

2.2.5.6. Pacemaker cells
Activity waves can be initiated by external stimuli (for example,

oxytocin) or by intrinsic activity of spontaneously active cells.

Such cells can be obtained by adjusting the parameters to shift the

position of its null isoclines. The pacemaker cell parameter values

are given in table 2. The straight line null isocline passes directly

through the local minimum of the cubic null isocline to create an

unstable fixed point at the rest state of the cell, as indicated in

figure 1d. In effect, the cell continually re-excites itself. The cells

are connected symmetrically with a constant coupling value.

The models used in this study are summarized in table 3.
3. Results
To investigate how the spatial heterogeneity affects the global

excitability of the network, the spatially homogeneous case is

studied first, followed by the heterogeneous coupling case.

3.1. Fully connected square lattice
Simulations of a spatially homogeneous square lattice indicate

that for each perturbation there is a window of coupling

strengths in which global excitation of the lattice is possible.

For instance, an initial perturbation of 1 in a fully connected

lattice of size 25 � 25, produces global excitation for coupling

strengths (k) between 0.76 and 5.12. Below 0.76, the excitation

does not spread beyond the cell to which the stimulus was

applied. Above 5.12, no cell is able to become excited, includ-

ing the perturbed cell. The surrounding cells act as a current

sink; when the coupling is too strong, this effect prevents

excitation. The symbols kmin and kmax denote the boundaries

of the window of excitation; for the standard perturbation

Dv ¼ 1 these values are 0.76 and 5.12.
The ranges of perturbation and coupling values that per-

mitted global excitation are shown in figure 3 for a 25 � 25

lattice. Simulations run for smaller and larger lattices produce

qualitatively similar excitation curves.
3.2. Symmetric coupling in the Bernoulli lattice
Simulations were run with a lattice of 25� 25 cells and the

coupling strengths were chosen in the range from 1 to 2.5 (i.e.

within the window of global excitation for an initial pertur-

bation of 1). Initial perturbations took the following values: 1,

1.5, 2 and 2.5. As the connectivity of the lattice ( p) increases,

the relative cluster size increases in a sigmoidal fashion, as

shown in figure 4. The response curve does not substantially

vary with lattice size, coupling value or initial perturbation

(see figure 4 and electronic supplementary material, figure S2),

which suggests that connectivity is the dominant factor gov-

erning the excitability of the system.

Coupling values were chosen from outside the window of

global excitation, and the effect of spatial heterogeneity in

coupling was investigated by varying lattice connectivity as

before. The behaviour for coupling values greater than or

equal to the maximum coupling value kmax is shown in

figure 5b–d for initial perturbation Dv ¼ 1. The behaviour for

the minimum coupling value kmin is shown in figure 5a. In

both the cases, the sigmoidal curve was replaced by a nega-

tively skewed bell curve, indicating that even when global

excitation is precluded in the fully connected lattice, it can be

attained in a partially connected system. Connectivity attains

an optimum in the range p ¼ 0.6–0.8. At these probabilities,

either more than 90 per cent of the cells or fewer than 10 per

cent of cells become excited. The averaging of the cluster

sizes over 100 replicates underlies the decline in cluster size

seen in the bell-shaped curve. At p ¼ 1, this all-or-nothing

behaviour is absent. Lattice size had no effect on this result

(see the electronic supplementary material, figure S3).
3.3. Global transitions
Simulations around boundary points kmin and kmax were per-

formed to elucidate the transition from quiescence to global

excitation, at varying levels of connectivity, viz. p¼ 1, p¼ 0.7,

p¼ 0.5 and p¼ 0.3. Initially, simulations were run at kmax with

perturbations from 0.5 to 1.5 at probabilities of 1, 0.7, 0.5 and

0.3 (figure 6a). In the fully connected lattice ( p¼ 1), no excitation

occurs for Dv , 1, whereas global excitation is attained for

Dv . 1. At reduced connectivity, the lattice exhibits global exci-

tation even at perturbations Dv , 1. The reduced connectivity

allows a more gradual increase in cluster size with increased

stimulation. This effect was especially pronounced at p ¼ 0.7,

an almost exactly optimal level of connectivity.

A similar phenomenon occurs near the lower bound

(figure 6b). The fully connected lattice is unexcitable when

the coupling is below kmin, whereas global excitation can

occur at couplings above this value. At reduced levels of con-

nectivity, coupling values below the lower bound are

associated with activation clusters of increasing size. The

strength of the perturbation, however, has little effect on

the cluster size (see the electronic supplementary material,

figure S4), indicating that connectivity per se is the dominant

factor governing the transition to global excitability.
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Table 3. Summary of the models used.

type of network coupling method of generation key results

homogeneous lattice symmetrical fixed coupling k minimum and maximum coupling for each perturbation in

which global excitation is possible

Bernoulli lattice symmetrical fixed coupling k with varying

probability p

even when global excitation cannot occur in the fully

connected lattice, it can be attained in a partially

connected system

uniformly distributed symmetrical couplings drawn from a uniform

distribution on [0.5,10] with

varying probability p

total coupling between neighbouring cells has a minimum

and maximum threshold for global excitation. Between

these values (and with constant total coupling), the

ability to achieve global excitation is dependent on the

standard deviation of coupling values

cell capacitance asymmetrical coupling k ¼ RC21. C is drawn

from distribution of cell

capacitance taken from

experimental data. R is fixed.

Probability p is varied

the presence of spatial heterogeneity is essential for global

excitation at comparable perturbation values to the

Bernoulli lattice. A larger perturbation is needed for full

excitation and full connectivity. There is no discernible

difference between day 15 and day 18 gestation

resting membrane

potential

symmetrical fixed coupling k. Each cell has its

own parameters and so its own

resting membrane potential

increase in gestational age results in a smaller excitation

threshold for each cell to overcome. Systems with resting

membrane potential variation only fail to achieve global

excitation

cell capacitance and

resting membrane

potential combined

asymmetrical each cell has its own resting

membrane potential. C is

drawn from distribution of cell

capacitance. R is fixed

both forms of variation allow global excitation in

heterogeneous systems. A larger perturbation is needed

than in the Bernoulli lattice to achieve global excitation at

full connectivity

pacemaker cells symmetrical central cell is a pacemaker. All

other cells as before. Fixed

coupling k with varying

probability p

highly connected systems have a greater probability of the

pacemaker cell ceasing to be active. The frequency of

oscillation of the pacemaker cell decreases with increasing

connectivity. At high coupling strength values, connectivity

has no effect on the frequency—the only way for a

pacemaker to retain a finite frequency is to be isolated
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3.4. Uniformly distributed coupling strengths
The sum and standard deviation of the coupling strengths of

the four cells surrounding the excited cell were examined for

the fully connected lattice with couplings sampled from a uni-

form distribution between 0.5 and 10. For a combined coupling

value over the four neighbouring cells (kT) less than 21.0, the

cluster always exhibits global excitation, with every cell becom-

ing excited. For kT greater than 22.2, the couplings around the

perturbed cell do not allow any neighbouring cell to become

excited. This points to a threshold for global excitation in a

fully connected system with coupling sizes sampled from a

uniform distribution. For kT between these two values, an

increase in the standard deviation between the coupling

strengths is correlated with a reduced global threshold for exci-

tation (see the electronic supplementary material, table S2). The

ability to achieve global excitation does not depend on the

combined strength of the couplings to the neighbouring cells.

The relationship between standard deviation and global exci-

tation around the upper bound of coupling strengths (§3.1)

for Dv¼ 1 is shown in table 4. The standard deviation has a

more pronounced effect on the cluster size than kT. At constant

kT, there is a standard deviation threshold beyond which the

system cannot achieve global excitation.

3.5. Uniformly distributed coupling strengths:
Bernoulli lattice

The two sources of heterogeneity were combined to give a lat-

tice with coupling values drawn from a mixed distribution

with a finite probability at the value zero and a uniform distri-

bution over non-zero values. The isotropic lattice was studied

for various values of the initial perturbation (figure 7a). The

negatively skewed bell-shaped curve was observed with a

fixed coupling value for the smallest perturbation. Compared

with the Bernoulli lattice, larger clusters are observed, at

higher connectivity values. Again, the declining slope of the

bell-shaped curve for a perturbation of 1 is associated with

all-or-nothing behaviour. The transition from quiescence to
global excitability as a function of p, at fixed Dv, is gradual,

in contrast to the Bernoulli lattice (figure 7b).

3.5.1. Role of spatial correlation in the coupling structure
The spatial correlation function exhibits a striking difference

between networks in which more than 90 per cent of the

cells become excited, and those in which fewer than 10 per

cent of the cells become excited. The latter are characterized

by a strong correlation between the stimulated cell and the

r ¼ 1 neighbouring cells. The strong local coupling strengths

act as a sink, preventing the current from dissipating through-

out the network (as illustrated in electronic supplementary

material, figure S5a where couplings are strong between the

central cell and its r ¼ 1 neighbours). In contrast, a low

degree of spatial correlation between the stimulated cell and

its r ¼ 1 neighbour is associated with networks in which

90 per cent of cells become excited. An example of such a

network is given in the electronic supplementary material,

figure S5b. As the heterogeneity decreases from p ¼ 0.6 to

p ¼ 0.9 (figure 8a–d) this effect becomes less pronounced. At

a connectivity of p ¼ 1, this difference in correlation is not

observed (figure 8e).

3.6. Asymmetrical coupling: cell capacitance
The couplings between cells can be adjusted to represent

differences in cell size as explained in §2.2.5. Realistic distri-

butions were derived from data obtained in 15-day pregnant

and 18-day pregnant mice, shown in electronic supplementary

material, figure S6. Figure 9 shows a model with scaled e

values, a constant gap junctional resistance and lognormally

distributed capacitance values. At perturbations of 1.5, 2.0

and 2.5, a sigmoidal curve is observed, with an increased prob-

ability of cell-to-cell coupling corresponding to a larger cluster

size. For Dv ¼ 1, a bell-shaped curve is observed, with slightly

reduced connectivity resulting in a larger relative cluster size.

The graph shown is for the day-18 simulations. There was no

discernible difference between day-15 and day-18 simulations.

It appears that this variation between gestation days is not suf-

ficient to remove the cells from the excitable range displayed in

figure 3. In contrast to the symmetrically coupled case dis-

cussed earlier (figure 4), the curve is not sigmoidal for an

initial perturbation of 1, suggesting that an asymmetrically

coupled system requires a larger initial perturbation before

full excitation can be achieved at full connectivity.

3.7. Variation in resting membrane potential
If the resting membrane potential is allowed to vary between

cells, the pattern of spatial heterogeneity enhancing excitability

persists. Figure 10a indicates the value of Dv required to excite

the cell for a given resting membrane potential mean and stan-

dard deviation. The means and standard deviations for other

gestation days were determined by interpolation and extrapol-

ation, assuming a linear relationship between the 15-day and

18-day data. With the change in resting membrane potential,

the cells’ phase portraits change over time, resulting in a smal-

ler Dv-value required for excitation of an individual cell as the

system approaches parturition.

Figure 10b illustrates the relationship between relative

cluster size and connectivity for systems with pre-day 15,

day 15, day 18 and post-day 18 resting membrane potential

variation. We see that a system with resting membrane
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potential variation only, at a constant coupling strength (k¼ 1),

fails to achieve full excitation. However, increased gestational

age correlates with increased excitability.

Figure 11 displays the results of variation in resting mem-

brane potential and cell capacitance, for all four gestation

time point combinations. Capacitance variation endows

some cells with a greater ability to excite the network, since

larger cells can accommodate the current sink effect exerted
by its neighbours and act as a buffer, enabling all cells to

become excited. It appears that excitability is optimal with

larger perturbations in the case combining capacitance and

resting membrane potential variability sampled from the

18-day distribution. In contrast to the symmetrically coupled

case (figure 4), an asymmetrically coupled system requires a

larger initial perturbation before full excitation can be

achieved at full excitability.



Table 4. The effect of standard deviation of coupling strengths on global excitation in a 25 � 25 square lattice, with an initial perturbation of 1.0. Full table
shown in electronic supplementary material, table S3.

horizontal k 5.2 — 6.6 6.7 — 9.7 9.8 — 10.4

vertical k 5.2 — 3.8 3.7 — 0.7 0.6 — 0

s.d. k 0 — 1.6166 1.7321 — 5.1962 5.3116 — 6.0044

cluster size 0 — 0 1 — 1 0.04 — 0.04
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Figure 7. (a) Relative cluster size versus connectivity, for random coupling values. All points show mean+ s.e.m. of 100 simulations, for an isotropic lattice of size
25 � 25. The four lines represent initial perturbations of 1, 1.5, 2 and 2.5. A perturbation of 1 is shown in the darkest shade. Lighter colours represent perturbations
of 1.5, 2 and 2.5 due to their close proximity. All k [ [0.5,10]. (b) Relative cluster size versus perturbation, for an isotropic square lattice of size 25 � 25. All k [
[0.5,10]. Points show mean+ s.e.m. of 100 simulations. The four lines represent probabilities of connections between cells of 1.0, 0.7, 0.5 and 0.3 on a graded
scale from dark to light. Anomalous cluster sizes are too few to affect the average.
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3.8. Pacemaker cells
In networks with a pacemaker cell, the frequency of oscil-

lations of the pacemaker is affected by connectivity. The

current sink represented by neighbouring cells can reduce

the frequency of the pacemaker cell’s free-running oscillation

or even cause the cell to cease cycling altogether. The prob-

ability of such a complete cessation of cycling increases with

connectivity (figure 12a). With the exception of very small

coupling values k, at full connectivity the pacemaker cell is

not able to maintain its excitability and subsequently none of

the surrounding cells are able to become excited. At small

values of k, the pacemaker maintains its excitability and pace-

maker frequency is hardly affected by increased probability of

connection. Heterogeneity of the spatial coupling structure

thus appears to be an important modulator of excitability.

The relationship between connectivity and the frequency of

oscillations of the pacemaker cell is shown in figure 12b, calcu-

lated as an average of simulations in which the pacemaker

continues to cycle at a finite frequency. As the connectivity p
increases from 0 to 1, the frequency of oscillations of the pace-

maker cell decreases, owing to the drain of current to the

surrounding connections. At high coupling strength values

of k ¼ 5 and k ¼ 10, connectivity has no effect on frequency

since the only way for a pacemaker to retain a finite frequency

at these coupling strengths is to be essentially isolated in the

network. This is illustrated in electronic supplementary

material, figure S7 that shows the topology of a sample pace-

maker network with finite frequency, and the topology of a

sample network where the pacemaker’s frequency decays.
The key results presented in this paper are summarized in

table 3.
4. Discussion
It is well known that an increase in the number of gap junc-

tions in myometrial tissue is indicative of the onset of labour

[1]. While the number of connections increases, little is

known about the strength and local structure of these connec-

tions. The main finding of this study is that heterogeneity of

the coupling structure of a network of excitable elements

allows the system to respond in a graded manner to a wide

range of stimuli. For instance, reduced connectivity results

in a gradual increase in cluster size in response to stimulation,

resulting in a smooth transition between an unexcited and

globally excited state, which enhances the scope for precise

regulation. Physiological evidence suggests that the transition

from quiescence to excitation is gradual [16]; this may be

explained in part by the results presented here.

Relatively little is known about the effect of heterogeneity

in myocyte connections on the excitability of the network as

pregnancy progresses. Our analysis of the pregnant mouse

data confirms the importance of heterogeneity and demon-

strates that the network evolves towards global excitability

as labour approaches.

A homogeneous lattice (fully connected with identical

couplings) cannot achieve global excitation when the coup-

ling is too strong: neighbouring cells can too readily absorb
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the membrane charge associated with the stimulus. When

heterogeneity is introduced, whether by removing selected

couplings at random or by varying the coupling values at

random, the ability to achieve global excitation is restored.

An intuitive explanation is that heterogeneity creates local

‘pockets’ of excitability where the initially stimulated cell is

less hampered by the charge drain imposed by its neigh-

bours. Moreover, heterogeneity smoothes out the sudden

transition between an unexcited network and a globally

excited one (§3.3). This is consistent with the finding that in

the days and hours leading up to labour, contractions

spread further throughout the uterus [29]. Finally, spatial het-

erogeneity regulates the ability of pacemaker cells to drive the

network, again in a graded fashion.

Simulations on a fully connected square lattice (§3.1) indi-

cate that there exist minimum and maximum coupling values

between which global excitation of the network is possible.

These thresholds were found to be dependent on the initial

perturbation. Whereas the homogeneous lattice cannot exhi-

bit global excitation, the heterogeneous lattice formed by

removing couplings is able to exhibit excitation. In the hetero-

geneous system, the wave of excitation generated by the

central cell has to overcome a lower threshold to excite neigh-

bouring cells. Therefore, the system can achieve global

excitation even with a smaller inciting stimulus.
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Figure 10. (a) Excitation threshold a cell needs to overcome versus the gestation day. The points from day 15 and day 18 gestations are determined by experimental
data. Other points are generated by interpolation and extrapolation based on a linear relationship between day 15 and day 18 data. All points show mean+ s.e.m.
of 100 simulations. (b) Relative cluster size versus connectivity, for an initial perturbation of 1. All points show mean+ s.e.m. of 100 simulations, for a lattice size of
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Investigation of the variability of the couplings surround-

ing the excited cell in a lattice with couplings drawn from a

uniform distribution indicates that global excitation is affected

by the variance of the coupling strengths to neighbouring cells
and is not solely dependent upon total coupling. The effect of

coupling variance displayed a lower and upper threshold for

global excitation of the network. Therefore, a variance within

these bounds is optimal for network excitation. Outside this
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Figure 12. (a) Probability that the pacemaker cell becomes inactivated versus connectivity, for a selection of coupling strengths. All points show the number of
times excitation was not maintained in 50 simulations as mean+ s.e.m. of 15 repetitions. Lattice size is 25 � 25. Lines represent coupling strengths of 0.1, 0.5, 1,
5 and 10 on a graded scale from dark to light. Coupling strengths of 5 and 10 are shown in the same shade due to their close proximity. (b) Frequency of oscillations
of the pacemaker cell versus connectivity, for a selection of coupling strengths. All points show mean+ s.e.m. of 100 simulations where excitability of the pace-
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the individual lines illustrate where the pacemaker cannot maintain excitability.
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region, excitability does not spread across the whole network.

It appears that when the variance of connections is too high, a

fragmented network results, which does not allow for propa-

gation of excitability. Overall, it appears that variation of

coupling allows for a larger cluster size at high connectivity.

This result was supported by similar simulations run for an

anisotropic lattice (see the electronic supplementary material,

table S2), where the horizontal and vertical coupling strengths

were drawn from distinct uniform distributions.

The importance of heterogeneity was demonstrated by the

correlation between cells at increasing distance from the central

cell, and the central cell itself. At full connectivity, there was no

discernible difference in correlation. For networks with a lower

probability of connection, a much larger correlation was

observed in networks with fewer than 10 per cent of cells

becoming excited when compared with networks with more

than 90 per cent of cells becoming excited. This effect was

more pronounced in lower connectivities, reaffirming the

importance of heterogeneity. This supports the notion of exci-

tation pockets, where a cluster of cells that are too well-

connected act as a current sink and prevent the excitation

from spreading further through the network. The main deter-

minant of global excitation is the local spatial correlation

around the excited cell.

Data for resting membrane potential in mice at 15-day and

18-day gestational age indicate an increase in depolarization of

the cell membrane with increased gestation length, confirming

the findings of Lodge & Sproat [13]. The statistical variation in

resting membrane potential among cells also increases with

gestational age. With resting membrane potential as the only

form of variability in the model, full excitation could not be

reached. However, when the resting membrane potential’s

variability is combined with capacitance variation, the optimum

excitability at intermediate connectivity is restored.

Results were consistent over a range of lattice sizes; from

9 � 9 to 25 � 25. Larger lattices were not investigated due to

computational restrictions. Simulations were also run for

hexagonal lattices to investigate effects of network structure

on excitability. Similar qualitative results were obtained.
However, the hexagonal lattice displayed a wider window

of global excitability when compared with a square lattice

with the same number of nodes. An increase in spatial hetero-

geneity enables the system to achieve global excitation more

easily. Networks with stochastically varying node degrees

will be investigated in future research.

The resting membrane potential values were taken from

recordings of isolated myometrial cells. However, a system of

connected cells settles into a different resting states. To verify

that the experimental data were representative of networked

cells, simulations were run in which the cells where allowed

to equilibrate, and differences were found to be negligible.

Preliminary observational data (shown in the electronic

supplementary material, section 10.1 and figure S8) suggest

that an increase in heterogeneity increases the frequency of

the oscillations of the pacemaker. This was confirmed by our

simulations in which the pacemaker cell’s ability to drive the

system is modulated by connectivity. With increased heterogen-

eity, the drain of current to surrounding cells has a smaller

effect, causing the frequency of oscillations to increase. In

addition, a well-connected system makes it more probable

that the pacemaker is not able to remain active, and its oscil-

lations stop altogether. Maximal excitability is associated with

a moderate degree of spatial heterogeneity. This would suggest

that a way in which a cell can develop pacemaker activity is to

downregulate its gap junctions to partially isolate itself in the

network. The suggestion of cell isolation is supported by pre-

liminary experimental data (not shown) in which individual

cells can oscillate but still participate in a global action potential.

Propagation waves in excitable media have been examined

extensively using cellular automata [30–34]. This approach

was then extended to show how the cellular automata models

could be matched to systems such as the FitzHugh–Nagumo

set of equations [35,36]. A cellular automata model also exists

that describes the uterine network using Hodgkin–Huxley

physiology [37]. Here, we have opted to use the FitzHugh–

Nagumo model to represent the excitation and recovery of a

myometrial cell. Since the primary aim of the present study

was to explore the consequences of spatial heterogeneity per se,
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we have used a two-dimensional minimal model to represent the

excitable element without being too computationally expensive.

This FitzHugh–Nagumo model captures the qualitative

dynamics of propagation through excitable systems. It does,

however, still have its limitations. The model considers only

one activation variable and one recovery variable. The minimal

model can be replaced by models that take into account individ-

ual currents and the intracellular calcium stores [38–40]. Future

work will focus on these more detailed models to more accu-

rately represent the calcium influx resulting in a contraction. In

addition, a three-dimensional system will be considered to

model the uterine network more closely.

Miyoshi et al. [41] demonstrated that gap junctional con-

ductance between coupled cells is dependent on the trans-

junctional voltage, which adds a nonlinear effect that may

play an important role in the transition from the globally

quiescent state to the globally excitable state. This effect has

not been taken into account in this study and will be the sub-

ject of future research.

In summary, the mathematical model used here indicates

that spatial heterogeneity may serve as an important modulator

of excitability in uterine muscle. Spatial heterogeneity of cell-to-

cell connections promotes an increase in the excitability of the

network, and the ability of a network to become fully excited

is governed predominantly by the local connection structure.

In addition, heterogeneity in both cell capacitance and resting

membrane potential also plays a role. Similarly, heterogeneity

allows a pacemaker cell to drive the system.

Shifts in this heterogeneity may be a significant factor in

the regulation of myometrial excitability as pregnancy pro-

gresses from conception to parturition. Pre-term labour may

be associated with a premature development of spatial

heterogeneity. Mapping of spatial heterogeneity may prove

to be a diagnostic tool to monitor the development of

excitability throughout pregnancy.
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Appendix A
We follow the derivation provided by Keener & Sneyd [28].

Consider the circuit given in figure 2d showing a simplified

model of the cell membrane. From Kirchoff’s laws, one

obtains

Cm
dV
dt
þ FðVÞ þ i ¼ �I0 ðA 1Þ

and

D
di
dt
þ Ri ¼ V � V0 ; ðA 2Þ

where I0 is the applied external current, i is the current

through the resistor–inductor, V ¼ Vi – Ve is the membrane

potential, R is the resistance and V0 is the potential gain

across the battery, which forms part of the excitable element

representing the recovery current in figure 2d. D is the damp-

ing coefficient, which captures the inertia of the system

induced by the gating kinetics, as shown by FitzHugh in

1961 [21]. R and D are incorporated into the ‘excitable

element’. Here, t represents dimensional time. The function

F(V ) is a cubic with three zeros: the smallest V ¼ 0 and lar-

gest V ¼ V1 are stable solutions of dV/dt ¼ –F(V ). The

passive resistance of the nonlinear element (defined as a

tunnel diode by Nagumo [22]) is R1 ¼ 1/F0(0).

The equations are rendered dimensionless as follows.

Define v ¼ V/V1, w ¼ R1i/V1, f (v) ¼ –R1F(V1v)/V1 and t ¼
R1t/L. Equations (A 1, A 2) can then be rewritten as follows:

e
dv
dt
¼ f ðvÞ � w� w0 ðA 3Þ

and

dw
dt
¼ v� gw� v0; ðA 4Þ

where e ¼ R2
1Cm/D, w0 ¼ R1I0/V1, v0 ¼ V0/V1 and g ¼ R/R1.

The function f (v) is a cubic and can be written as follows:

f ðvÞ ¼ Avðv� aÞð1� vÞ: ðA 5Þ
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