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Damage to endothelial glycocalyx impairs vascular barrier function and may contribute to progression of
chronic vascular disease. An early indicator is microalbuminuria resulting from glomerular filtration
barrier damage. We investigated the contributions of hyaluronic acid (HA) and chondroitin sulfate (CS) to
glomerular microvascular endothelial cell (GEnC) glycocalyx and examined whether these are modified by
vascular endothelial growth factors A and C (VEGFA and VEGFC). HA and CS were imaged on GEnCs and their
resynthesis was examined. The effect of HA and CS on transendothelial electrical resistance (TEER) and
labeled albumin flux across monolayers was assessed. Effects of VEGFA and VEGFC on production and
charge characteristics of glycosaminoglycan (GAG) were examined via metabolic labeling and liquid
chromatography. GAG shedding was quantified using Alcian Blue. NDST2 expression was examined using
real-time PCR. GEnCs expressed HA and CS in the glycocalyx. CS contributed to the barrier to both ion
(TEER) and protein flux across the monolayer; HA had only a limited effect. VEGFC promoted HA synthesis
and increased the charge density of synthesized GAGs. In contrast, VEGFA induced shedding of charged
GAGs. CS plays a role in restriction of macromolecular flux across GEnC monolayers, and VEGFA and VEGFC
differentially regulate synthesis, charge, and shedding of GAGs in GEnCs. These observations have
important implications for endothelial barrier regulation in glomerular and other microvascular beds.
(Am J Pathol 2013, 183: 604e616; http://dx.doi.org/10.1016/j.ajpath.2013.04.019)
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The apical side of endothelial cells is coated with an endo-
thelial surface layer (ESL) composed of a surface-anchored
glycocalyx which is itself composed of negatively charged
proteoglycans [proteins with glycosaminoglycan (GAG) side
chains] and glycoproteins (glycosylated proteins) and a more
loosely associated layer of adsorbed plasma proteins.1 The
endothelial glycocalyx is 200 nm to 2 mm thick (depending on
the vascular bed and also on the visualization technique).2

The glycocalyx mediates shear, attenuates leukocyte and
platelet adhesion,2 regulates systemic vascular permeability,3e6

and allows free passage of solutes but limits passage of charged
macromolecules.7 The ESL is damaged in reperfusion injury,
inflammation and trauma, hypervolemia, atherosclerosis, and
diabetes (summarized by Becker et al2). ESL thickness is
reduced by hyperglycemic infusions in healthy subjects, corre-
lating with endothelial dysfunction and an increase in vascular
stigative Pathology.

.

permeability,8 and in type 1 diabetes correlating with micro-
albuminuria,9 suggesting a direct link between endothelial ESL
dysfunction and this dysfunction of the glomerular filtration
barrier. In mice, infusions of the GAG-specific enzymes hyal-
uronidase, chondroitinase, and heparinase reduced the glomer-
ular endothelial cell (GEnC) ESL thickness, resulting in reduced
charge selectivity and increased macromolecular passage (pro-
teinuria).10 In addition, proteinuria is accompaniedwith a loss of
charge selectivity and a reduction in the core proteins decorin,
fibromodulin, and versican in nonobese diabeticmice.11 Salmon
et al12 demonstrated an age-related reduction in ESL in

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:becky.foster@bristol.ac.uk
mailto:becky.foster@bristol.ac.uk
http://dx.doi.org/10.1016/j.ajpath.2013.04.019
http://dx.doi.org/10.1016/j.ajpath.2013.04.019
http://ajp.amjpathol.org
http://dx.doi.org/10.1016/j.ajpath.2013.04.019


GAG Regulation in GEnC
glomerular (and other) microvessels of Munich Wistar Frömter
rats; thiswas accompanied by an increase in glomerular albumin
permeability, which could be rescued by intravenous injections
of lectin. Finally, using doxorubicin (Adriamycin) to induce
proteinuria in mice, Jeansson et al13 demonstrated increased
fractional clearance of larger molecules in cooled, isolated,
perfused kidneys, as well as reduced charge in the glomerular
filtration barrier; this was accompanied by reduced synthesis of
some core proteins and GAGs in the isolated glomeruli and
reduced thickness of the ESL. Taken together, these studies
strongly suggest that the ESL also regulates permeability in the
glomerular filtration barrier. The glomerular filtration barrier is
a tightly regulated filter that restricts macromolecular protein
passage while allowing filtration of water and small solutes.
Dysfunction of this barrier results in proteinuria, a hallmark of
kidney disease. The glomerular filtration barrier consists of
a trilayer of GEnCs, a glomerular basement membrane and
glomerular epithelial cells (podocytes) whose foot processes
interdigitate around the glomerular microvessels. Each of these
layers contributes to the regulation of glomerular macromolec-
ular permeability.1,14 The GEnC contribution is increasingly
thought to be largely dependent on the ESL.10,15,16

We have previously studied the GEnC ESL in vitro in
a human conditionally immortalized (ci) cell line and, using
electron microscopy, revealed the presence of an ESL layer
measuring 200 nm, which is consistent with recent sophis-
ticated measurements of endothelial glycocalyx in vivo.17

We confirmed the presence of proteoglycan core proteins,
as previously demonstrated on human GEnCs,18 and of hep-
aran sulfate (HS), a sulfated GAG.19 Enzymatic removal
of HS increased macromolecular protein passage across
amonolayer by 40%, whereas electrical resistance (a measure
of pathways open to water and small molecules) was not
affected. Furthermore, we have shown that high-glucose
conditions reduce GEnC ESL and lead to a corresponding
increase in macromolecular protein passage across GEnC
monolayers,20 demonstrating that the GEnC glycocalyx is
present in vitro and plays a functional role.

Glomerular enzyme infusion studies by Jeansson et al10

implicated, in addition to removal of HS, removal of hya-
luronic acid (HA) and chondroitin sulfate (CS) in increased
fractional albumin clearance. HA and CS are also thought to
play a role in systemic macromolecular permeability.21 In
contrast to other GAGs, HA is not synthesized in the Golgi
apparatus, but rather at the plasma membrane (by HA syn-
thases 1 to 3), and it is not attached to core proteins (reviewed
by Genasetti et al22). Furthermore, HA is unbranched and
unsulfated, and therefore it does not have a strong negative
charge. CS is sulfated on assembly within the Golgi appa-
ratus, where it becomes attached to one of its core proteins
(eg, aggrecan or versican), forming a proteoglycan. In the
present study, we aimed to determine the contribution of HA
and CS to the GEnC glycocalyx through in vitro studies using
unique human ciGEnCs and selective enzymes.

Vascular endothelial growth factor A (VEGFA), originally
called vascular permeability factor, is a powerful angiogenic
The American Journal of Pathology - ajp.amjpathol.org
growth factor that has profound effects on vascular endo-
thelial behavior (as summarized by Tammela et al23),
including GEnC maintenance,24 repair,25 and permeability.26

VEGFA is highly expressed by podocytes.27 Another
member of the VEGF family of proteins, VEGFC, is a lym-
phangiogenic growth factor that can stimulate similar path-
ways to those of VEGFA in both lymphatic and vascular
endothelial cells.28 VEGFC also is expressed by podocytes.29

Podocyteeendothelial signaling through VEGF is vital for
GEnC maintenance and permeability regulation. It has been
postulated that the effects of VEGFA on microvessel per-
meability are due in part to partial degradation of the gly-
cocalyx.30 In the present study, we aimed to determine
whether VEGFs can modify the GEnC glycocalyx. Our
central hypothesis was that CS and HA contribute to GEnC
barrier maintenance and that they are modified by VEGFs.

Materials and Methods

Binding Proteins, Primary and Secondary Antibodies,
Enzymes and Recombinant Proteins, and GAG

Biotinylated hyaluronic acid binding protein (HABP)
[AMS Biotechnology (Europe), Abingdon, UK] was used in
conjunction with fluorescein isothiocyanate (FITC)econju-
gated avidin (Vector Laboratories, Peterborough, UK; Bur-
lingame, CA). When 10 mg/mL HABP was used, cells were
fixed in 100% methanol and blocked in 0.1% bovine serum
albumin (BSA; Sigma-Aldrich, Gillingham, UK) for 1 hour
at room temperature; otherwise, 4% paraformaldehyde
(Sigma-Aldrich) and 5% BSA block was used. Mouse IgM
anti-CS (4 mg/mL) was used in conjunction with 1:200 Alexa
Fluor 488econjugated anti-mouse IgM (Santa Cruz Bio-
technology, Santa Cruz, CA) andmouse IgG antiePECAM-1
(R&D Systems, Abingdon, UK; Minneapolis, MN) was used
in conjunction with 1:200 Alexa Fluor 568econjugated anti-
mouse IgG (Life TechnologieseInvitrogen, Paisley, UK;
Carlsbad, CA). Cells were incubated in primary antibodies/
binding proteins for 1 hour at room temperature or overnight
at 4�C. Cell nuclei were counterstained with 1 mg/mL DAPI
(Life TechnologieseInvitrogen) for 5 minutes at room
temperature. Bovine testicular hyaluronidase (Sigma-Aldrich)
was reconstituted in 20 mmol/L sodium phosphate, pH 7, at
a concentration of 100 mg/mL and was stored in aliquots at
�20�C. Cells and tissue were incubated in hyaluronidase for
1 hour at 37�C. Chondroitin ABC lyase (chondroitinase;
AMS Biotechnology) was reconstituted in 0.1% BSA at
a concentration of 10 U/mL and was stored in aliquots at
�20�C. Cells and tissue were incubated in chondroitinase for
2 hours at 37�C. Human recombinant VEGFA and VEGFC
(R&D Systems) were reconstituted in 0.1% BSA at a
concentration of 100 mg/mL. VEGFA was used at a concen-
tration of 1 nmol/L and VEGFC at 10 nmol/L, as described
previously.31 HA potassium salt from human umbilical cord
(w750 kDa) and CS sodium salt from shark cartilage (both
from Sigma-Aldrich) were resuspended in PBS.
605
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Cell Culture

Human ciGEnCs were developed and fully characterized in
detail, as described previously.32

Immunofluorescence

The ciGEnCs were treated with 250 mg/mL hyaluronidase or
0.1 mU/mL chondroitinase, or were left untreated, and then
were fixed and blocked. Cells were incubated with or without
HABP, with anti-CS, or withmatched concentration of normal
mouse IgM (Santa Cruz Biotechnology). After a wash, cells
were incubated in avidin-fluorescein or AF488 conjugated
secondary antibodies, and the nuclei were counterstained with
DAPI and mounted using Vectashield mounting medium
(Vector Laboratories). Cells were imaged using either a Leica
SP2 confocal microscope or a Leica AF600 LX wide-field
fluorescence microscope (Leica Microsystems, Wetzlar,
Germany). Confocal Z-stacks were reconstructed into a three-
dimensional image using Volocity software version 5 (Perki-
nElmer, Waltham, MA).

Specificity of Hyaluronidase and Chondroitinase

The cross-reactivity of hyaluronidase for CS and of chon-
droitinase for HA was tested by treating differentiated
ciGEnCs with each enzyme. Cells were incubated in a 10-fold
serial dilution of hyaluronidase or chondroitinase. Cells were
then fixed and stained for CS or HA, and the nuclei were
counterstained. The fluorescence intensity was quantified on
a fluorescence plate reader (Wallac 1420 Victor2; Perki-
nElmer) using 485-nm excitation and 530-nm emission filters
(fluorescein) or 360-nmexcitation and460-nmemissionfilters
(umbelliferone). Readings were normalized to DAPI and
expressed as fold change relative to the untreated condition.

Quantitative HA and CS Recovery

ciGEnCs in a black 96-well plate (Appleton Woods, Bir-
mingham, UK) were washed then incubated in serum-free
endothelial basal medium (EBM-2; Lonza, Walkersville,
MD) containing vehicle, 1 mg/mL hyaluronidase, and 1 mU/
mL heat-inactivated chondroitinase or 1 mU/mL chondroi-
tinase. A portion of the cells was fixed immediately (back-
ground); the remainder was left for a further 24 hours at 37�C
in serum-free medium containing vehicle. These cells were
washed, fixed, blocked, and stained for HA or CS, and the
nuclei were counterstained. The fluorescence signal was
quantified as described above, with fluorescence data
expressed as fold change relative to background. Represen-
tative images were captured as described above.

Endohm Chamber TEER

Transendothelial electrical resistance (TEER), a measure of
ion flux, is inversely related to the fractional area of pathways
606
open to water and small molecules across a cell monolayer.
TEER was measured as described previously.31 GEnCs
were seeded at 100,000/cm2 and thermoswitched from 33� to
37� C at 70% confluency. This ensured that when prolifera-
tion ceased the cells formed a tight, but not overcrowded,
monolayer. Experiments were performed in serum-free EBM-
2 medium (for hyaluronidase treatment) or 1% EBM-2 (for
chondroitinase treatment). Hyaluronidase, chondroitinase,
heat-inactivated chondroitinase, or vehicle was used at a final
concentration of hyaluronidase ranging from 0 to 1 mg/mL or
of chondroitinase ranging from 0 to 10 mU/mL; TEER was
measured again at 6 hours.

Electrical Cell-Substrate Impedance Sensing

An electrical cell-substrate impedance sensing (ECIS) system
(Applied BioPhysics, Troy, NY) was used for real-time mea-
surements of TEER, as described previously.19,20,31 GEnCs
were seeded at 100,000/cm2 and thermoswitched from 33� to
37� C at 70% confluency. Cells were treated with vehicle or
with 10 or 100 mg/mL CS or HA in serum-free medium.
Resistance was expressed as fold change relative to vehicle.

FITC-BSA Passage

Transmonolayer permeability to macromolecules was
assessed by measuring passage of FITC-labeled BSA (FITC-
BSA; Sigma-Aldrich) across the monolayer, essentially as
described previously.19,20,31 Treatments were performed as
for the Endohm chamber measurements described above in
the presence of 100 mg/mL FITC-BSA.

6-[3H]Glucosamine Labeling of Cells

GEnCs were incubated in 20 mCi/mL of 6-[3H]glucosamine
(PerkinElmer), as described previously,20,33 in the presence
of vehicle, VEGFA, or VEGFC in complete medium for
48 hours. Secreted GAG [conditioned medium (CM)] was
removed, and cells were treated with 20 mmol/L ammonium
hydroxide (Sigma-Aldrich) to remove cell-associated GAG
(lysate) without removing underlying matrix. Samples were
incubated in an equal volume of 200 mg/mL pronase in pro-
nase buffer (100 mmol/L Tris-HCl pH 8 and 0.05% sodium
azide, Sigma-Aldrich) for 24 hours at room temperature, to
digest GAG from core proteins. Lysates were centrifuged at
580� g to remove debris. All sampleswere then concentrated
using spin columns with a 3-kDa cutoff (Merck Millipore,
Darmstadt, Germany; EMD Millipore, Billerica, MA).

Ion Exchange and Size-Exclusion Chromatography
Protocol

The concentrated samples were diluted in fresh urea buffer
[7 mol/L urea (Fisher Scientific UK Ltd, Loughborough, UK),
0.05mol/L sodiumacetate, pH6 (Sigma-Aldrich)] and injected
onto aHiTrap diethylaminoethanol (DEAE)eSepharose anion
ajp.amjpathol.org - The American Journal of Pathology
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exchange column (GE Healthcare, Chalfont St Giles, UK).
Samples were subjected to a salt gradient up to 0.15 mol/L
NaCl for 10 minutes, then up to 0.3 mol/L, 0.4 mol/L, 0.5
mol/L, 0.6 mol/L, and 0.7 mol/L NaCl (Sigma-Aldrich) over
10 minutes each, and then a final gradient up to 2 mol/L NaCl
for 5minutes at aflow rate of 0.6mL/minute.Debriswas eluted
in 0.15 mol/L NaCl, unsulfated GAG was eluted in 0.3 mol/L
NaCl, and sulfated GAG was eluted in 0.4 to 0.5 mol/L NaCl
(low), 0.5 to 0.6 mol/L NaCl (medium), and 0.6 to 0.7 NaCl
(highly sulfated). Samples of fractions and of stock sample
(experimental input) were mixed with 70% ethanol and then
with scintillation fluid, and were read on a scintillation counter
(Packard 2200CA; PerkinElmer). The quantity of counts
injected onto the column were calculated.

Size-Exclusion Chromatography

Ion exchange fraction pairs were treated with 50 mg/mL HA
(Sigma-Aldrich), heparin sodium, and CS (from shark carti-
lage; Sigma-Aldrich), mixed with three volumes of ice-cold
95% ethanol/1% potassium acetate (Sigma-Aldrich) on ice,
then centrifuged at 2400 � g at 4�C. Supernatant was dis-
carded; the pellet was dried, resuspended, and split into
hyaluronidase digested and undigested portions in hyal-
uronidase buffer (sodium acetate, 0.05% sodium azide and
0.15 mol/L NaCl, pH 6), then diluted in fresh urea buffer and
injected onto a Sephacryl S-500 size-exclusion column (GE
Healthcare). The flow rate of the size-exclusion column was
kept at 0.5 mL/minute, and a total of 55 fractions were
collected at 63 to 228 minutes after injection.

Fractions and stock sample (experimental input) were
mixed with scintillation fluid and were read on a scintilla-
tion counter. Both the ion exchange column and the size-
exclusion column were pre-equilibrated in 7 mol/L urea
before sample was injected.

Quantitative Real-Time PCR

For quantitative real-time PCR, GEnCs were treated with
vehicle, VEGFA or VEGFC for 1 hour in complete medium.
mRNA was extracted using TRIzol reagent (Life Tech-
nologieseInvitrogen) according to the manufacturer’s
instructions. The quality and quantity were checked using
a nanospectrophotometer (Geneflow, Lichfield, UK), and
2 mg was reverse-transcribed using a high-capacity RNA-to-
cDNA kit (Life TechnologieseApplied Biosciences)
according to the manufacturer’s instructions. Primers were
used to amplify bifunctional heparan sulfate N-deacetylase/
N-sulfotransferase 2 (NDST2), an enzyme that adds sulfate
groups to HS: NDST2 forward 50-AGCACCGCAAAGAG-
TTCTGG-30 and reverse 50-TGTTGAGCCTCATCTGGT-
CAG-30; housekeeping gene GAPDH forward 50-AAGGTG-
AAGGTCGGAGTCAAC-30 and reverse 50-GGGGTCAT-
TGATGGCAACAATA-30. The efficiency of the primers
was tested using a 10-fold serial dilution from 10 to 1 � 107

of GEnC cDNA (data not shown). Real-time PCR was
The American Journal of Pathology - ajp.amjpathol.org
performed using a StepOne 96-well plate real-time PCR
system (Life TechnologieseApplied Biosystems, Foster
City, CA) with an initial hold for 10 minutes at 95�C, fol-
lowed by 40 cycles of 15 seconds at 95�C and 1 minute at
60�C, and then a melt curve for 15 seconds at 95�C, 1 minute
at 60�C, and 15 seconds at 95�C. The 2�DDCT value (relative
fold change) was calculated.

Alcian Blue Assay

GEnCs were treated with vehicle, VEGFA, or VEGFC in
serum-free medium for 48 hours. The medium was removed
from cells and was concentrated using 95% ethanol, as
described above. The pellet was resuspended in PBS and
incubatedwithAlcianBlue (a cationic dye that binds to charged
GAG; Sigma-Aldrich), as described previously.34 Absorbance
was read at 490 nmon a fluorescence plate reader. GAG release
was quantified using a standard curve of CS (from shark
cartilage; Sigma-Aldrich) ranging from 0 to 160 mg/mL.

TACE Activation Assay

GEnCs were treated with vehicle, VEGFA, or VEGFC in
complete medium for 24 hours. Themediumwas removed and
activation of ADAM17 [alias TNF-alpha-converting enzyme
(TACE)] was measured in cell lysate using a fluorimetric
SensoLyte 520 TACE (a-secretase) activity assay kit (AnaS-
pec,Fremont,CA) according to themanufacturer’s instructions.
In brief, cells were lysed and incubated at 4�C for 10 minutes.
The cell suspensionwas centrifuged for 10minutes at 2500� g
at 4�C; the supernatant was then removed, warmed to room
temperature, and incubated with the TACE substrate solution
for 60 minutes. The assay buffer was used instead of lysate as
a background control. Thefluorescence intensitywasmeasured
by excitation at 490 nm and emission at 535 nm. Background
readings were subtracted from experimental readings, and
then were expressed as fold change relative to vehicle.

Statistical Analysis

All statistical analyseswere performed on aminimumof three
separate experiments. In experiments with multiple treat-
ments, a one-way analysis of variance was used with Dun-
nett’s multiple comparison post hoc test, unless indicated
otherwise. If two variables were being tested, then a two-way
analysis of variance was used with Bonferroni post hoc
testing. A P value of <0.05 was considered statistically
significant. Data are expressed as means � SEM.

Results

HA and CS Are Expressed by GEnCs in Vitro

Confocal imaging and three-dimensional reconstruction of
GEnCswith HABP and anti-CS demonstrated presence of both
HA and CS on the cell surface of GEnCs, as expected for the
glycocalyx (Figure 1,A andE).OmissionofHABP (Figure 1B)
607
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Figure 1 HA and CS form part of the cell surface layer of ciGEnCs. ciGEnCs grown on coverslips were left untreated (AeC, EeG) or were treated with 250
mg/mL hyaluronidase (D) or 0.1 mU/mL chondroitinase (H). The cells were then fixed and immunostained with biotinylated HABP (A, C, and D) (green) or no
HABP (B) in conjunction with streptavidineAlexa Fluor 488 and anti-CS (green) (B, G, and F) or matched IgM control (F) in conjunction with anti-mouse IgM
Alexa Fluor 488 and counterstained with DAPI (blue). Three-dimensional images were reconstructed from confocal Z-stacks (A, B, E, and F) or images were
acquired with an upright fluorescence microscope (C, D, G, and H).

Foster et al
or use of normal mouse IgM (Figure 1F) yielded minimal
staining, compared with normal HA staining (Figure 1C) and
normal CS staining (Figure 1G), as did pretreatment with
hyaluronidase (Figure 1D) and chondroitinase (Figure 1H), thus
demonstrating specificity of staining.

Specificity of Hyaluronidase and Chondroitinase

Hyaluronidase and chondroitinase were used as tools to
remove HA and CS, respectively. Hyaluronidase catabolizes
HA,35 but it also catabolizes CS at a slower rate36; chon-
droitinase catabolizes CS, but also HA at a lower pH.
Chondroitinase significantly removed CS at concentrations
down to 0.01 mU/mL, but it significantly removed HA only
at the maximum concentration used (Figure 2, A and B).
Hyaluronidase significantly removed HA at concentrations
down to 0.01 mg/mL, but it significantly removed CS only
down to the 100 mg/mL concentration (Figure 2, C and D). In
these experiments, 1 mg hyaluronidase equates to approxi-
mately 700 U activity. In subsequent experiments, 1 mg/mL
hyaluronidase and 1 mU/mL chondroitinase were used.

GEnCs Synthesize HA and CS

Fetal calf serum in GEnCmedium contains GAGs, which can
be adsorbed to the glycocalyx. To confirm synthesis of both
HA and CS by GEnCs, recovery assays were developed.
HyaluronidaseminimizedHABP signal (Figure 3A). After 24
hours, there was a 1.7 � 0.14-fold recovery in HABP signal,
compared with a 2.1 � 0.12-fold change in untreated cells
(Figure 3, B, C, and G). Fetal calf serum (5%) was used as
a positive control, demonstrating a 2.18 � 0.21-fold change
relative to background (data not shown). Chondroitinase
608
minimized CS staining (Figure 3D). After 24 hours, there was
a 1.9� 0.19-fold recovery in signal, compared with a 2.44�
0.19-fold change with vehicle (Figure 3, EeH). The recovery
of HABP and anti-CS over time demonstrates that ciGEnCs
have the cellular machinery to resynthesize HA and CS
in vitro.

Contribution of HA and CS to the Barrier to Protein
Passage and to TEER across GEnC Monolayers

We next investigated the functional contribution of HA and
CS to the GEnC barrier by measuring TEER (using both
ECIS and Endohm chamber approaches) and macromolec-
ular protein passage (FITC-labeled BSA) after removal.
Hyaluronidase had a significant effect on both TEER and
FITC-BSA passage only at 1 g/mL hyaluronidase, a dose
that does not target HA specifically (Figure 4, A and B).
ciGEnCs treated with hyaluronidase as above were stained
with VE-cadherin. Hyaluronidase did not affect cellecell
junctions (Figure 4C).
If HA contributes directly to GEnC barrier properties,

then absorption of HA should increase GEnC resistance
immediately. Surprisingly, the addition of 100 mg/mL HA
had no effect on GEnC resistance; however, addition of 10
mg/mL HA induced a significant delayed increase after
approximately 6 hours, suggesting that the effects of HA on
GEnC resistance were not from the action of absorbing HA
(Figure 4D). Taken together, these results suggest that HA
does not make a direct contribution to either TEER or to the
barrier to macromolecular passage.
In contrast to hyaluronidase, chondroitinase reduced

ciGEnC TEER at 0.1 mU/mL (a fold decrease of 0.74 �
0.052; P < 0.01) (Figure 5A), a concentration that does not
ajp.amjpathol.org - The American Journal of Pathology
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*** Figure 2 Specificity of hyaluronidase and
chondroitinase. ciGEnCs, grown on 96-well plates,
were treated with chondroitin ABC lyase for 2
hours at 37�C (A and B) or with hyaluronidase for
1 hour at 37�C (C and D) and then were fixed and
immunostained with either biotinylated HABP
(B and C) or anti-CS (A and D). The last concen-
tration at which enzyme significantly affected
fluorescence intensity is indicated by an arrow.
Data were analysed using one way ANOVAs [overall
P < 0.0001 (A), P < 0.001 (B), P < 0.0001 (C),
P < 0.01 (D)]. Data are expressed as means �
SEM. n Z 6. *P < 0.05, **P < 0.01, and ***P <

0.001, Dunnett’s multiple comparison post hoc
test.
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remove HA. Curiously, the concentration at which macro-
molecular passage was affected was higher, at 1 mU/mL
(2 � 0.48-fold increase at 2 hours) (Figure 5B), whereas
VE-cadherin junctional staining was not affected by chon-
droitinase (Figure 5C). The addition of 100 mg/mL CS
induced an immediate increase in monolayer resistance, as
assessed by ECIS (Figure 5D), suggesting that the absorp-
tion of CS contributed physically to the barrier, whereas the
response to 10 mg/mL CS was not significant, suggesting
a dose response to CS. Taken together, these results suggest
that CS does contribute to GEnC barrier properties.
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vehicle) indicated on graphs. *P < 0.05, **P < 0.01, and ***P < 0.001.
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VEGFC Affects Charge of GAGs in GEnCs

Given the importance of VEGF in determining GEnC
behavior, including barrier properties,31 we used [3H]glucos-
amine and chromatography to examine whether VEGFA and
VEGFCmodifyGAGmetabolism. This approach ensures that
only GAGs synthesized in the presence of treatment will be
labeled over a 48-hour period. There was no difference in the
disintegration counts per minute (dpm) of CM or lysate
between experiments loaded onto the ion exchange column
(input) (Figure 6, A and B). In minimally charged fractions
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tes were treated with either vehicle or 1 mg/mL hyaluronidase for 1 hour at
oitinase for 2 hours at 37�C (DeF). Cells were then washed extensively and
um-free medium (B, C, E, and F). These cells were then fixed, stained for HA
HA (G) and CS (H) was quantified using a plate reader and was normalized
and expressed as means � SEM. n Z 8. Bonfferoni post hoc tests (versus
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(eluted in 0.3 mol/L NaCl), VEGFC induced a significant
increase in the amount of radiolabeling in GEnCs (CM plus
lysate), but VEGFA did not (P < 0.01) (Figure 6C). Further
analysis demonstrated that the increased level of radiolabel
occurred in the CM, but not in the cell lysate (P < 0.01)
(Figure 6D). When hyaluronidase-digested samples were
injected onto a size-exclusion column, the high molecular
weight peak (<2000 kDa) shifted to a low molecular weight
peak, confirming that the noncharged fractions related to the
linear, unsulfated GAG HA (Figure 6E).

There was no significant change in the amount of charged
GAGs in CM or lysate of cells between experiments
(Figure 7A), although there were significantly more charged
GAGs in CM than in lysate in all experiments (P < 0.01).
These results show that VEGFs have no effect on overall
synthesis of charged GAGs. Data from CM and lysate were
separated into low, medium, and high sulfated fractions,
depending on the NaCl concentration at elution. In the CM,
VEGFC induced a greater proportion of highly charged
GAGs, compared with vehicle (Figure 7B), even though the
overall amount was the same (Figure 7A), but there was no
difference in the degree of charge between conditions in the
cell lysate (Figure 7C). A summary of the combined CM
and lysate data (Figure 7D) shows that a preponderance
(76 � 8%) of total charged GAGs were highly charged in
the presence of VEGFC (P < 0.01); in contrast, with vehicle
610
the spread was even (32% low, 30%medium, and 38% high),
and with VEGFA there was no change from vehicle in total
charged GAGs (11% low, 42% medium, and 37% high).
Because it appeared that VEGFCwasmodifying the degree

of charge of GAG and not the overall amount, we examined
whether VEGFC increases the expression of enzymes
responsible for adding sulfate groups to GAG (NDST1
and NDST2). cDNA was reverse-transcribed from mRNA
extracted from GEnCs stimulated with vehicle, VEGFA, or
VEGFC for 1 hour. cDNA was amplified using primers
specific for human NDST2 or GAPDH and NDST2 normal-
ised first to GAPDH, then VEGFC treatment to vehicle
(2�DDCT). There was a significant increase in NDST2 cDNA
in GEnCs stimulated with VEGFC, compared with vehicle
(1.6 � 0.07-fold; P < 0.05) (Figure 7E). There was no
significant effect on NDST1 (data not shown).

VEGFA Induces Shedding of Charged GAGs by GEnCs,
Potentially by Activation of ADAM17

We have here demonstrated that VEGFC increases the
metabolism of highly charged GAGs in GEnC medium, but
that it does not affect the amount of charged GAGs overall.
To understand whether VEGFC can target the shedding of
highly charged GAGs, we used an Alcian Blue colorimetric
assay to measure shedding. Standard-curve calculation
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Figure 5 The functional contribution of CS to ciGEnC barrier properties. A: ciGEnCs were grown on tissue culture inserts or on ECIS arrays. Baseline electrical
resistance was measured before treatment with chondroitinase at 37�C or with CS. On inserts, the electrical resistance was normalized to baseline conditions.
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GAG Regulation in GEnC
demonstrated linear sensitivity of the Alcian Blue assay
down to 20 mg/mL CS (Figure 8A). Surprisingly, VEGFC
had no effect on GAG secretion, but VEGFA increased it,
compared with vehicle and VEGFC (P < 0.05) (Figure 8B).
To identify a potential mechanism of VEGFA-induced GAG
shedding, we measured activation of ADAM17 using
a fluorescence activation kit. VEGFA induced a significant
increase in ADAM17 activation in cell lysate after 24 hours,
compared with vehicle (Figure 8C). Taken together, these
results suggest that, although neither VEGFA nor VEGFC
increases the synthesis of charged GAGs, VEGFA actively
induces GAG shedding, potentially through ADAM17 acti-
vation, whereas VEGFC increases the population of highly
charged GAGs by GEnCs.

Discussion

We have demonstrated that both HA and CS are expressed
on the cell surface of ciGEnCs and that ciGEnCs are capable
of synthesizing these GAGs. Targeted HA removal did not
affect solute flux or macromolecular passage, although the
addition of 10 mg/mL HA did increase TEER, albeit after
a delay, in a manner similar to that seen in human lung
endothelial cells.37 The higher dose of HA (100 mg/mL) did
not increase GEnC integrity, probably because of disorga-
nization of the endothelial cells.38 Targeted removal of CS
The American Journal of Pathology - ajp.amjpathol.org
increased TEER and increased macromolecular passage in
GEnCs. This contrasts with what we had previously found
with HS removal, which had no effect on TEER in GEnCs
but which increased albumin flux.19 In the present study, we
saw no evidence of chondroitinase affecting cellular junc-
tions (VE-cadherin), and the enzyme concentrations used
did not affect the number of cell nuclei (data not shown),
confirming that the enzymes had no effect on cell detach-
ment. Taken together, these data indicate preservation of the
monolayer, although it may be that there were subtle junc-
tional effects not detectable with this approach. Addition of
CS to the monolayer had an immediate effect on GEnC
resistance, suggesting a physical contribution to the barrier.
Similarly, when exogenous CS was added to bladder uro-
thelial cells after acid damage, it induced an immediate
restoration of barrier function.39 Taken together, these data
suggest that CS contributes directly to GEnC barrier prop-
erties, but HA does not.

In our in vitro studies, we used TEER as a measure of
pathways open to water and to small molecules and used
FITC-BSA assays as a measure of macromolecular passage.
It is important to note that, although these assays provide an
index of hydraulic conductivity and protein permeability
in vitro, the extent to which they are representative of the
behavior of the glomerular endothelium in vivo is uncertain.
Nonetheless, we have previously found good concordance
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between in vitro and ex vivo findings (eg, for angiopoietin-
126,34), at least in terms of the direction and relative size of the
effect, if not in the absolute values. The analysis of passage of
both size and charge of molecules though the GEnC mono-
layer under flow (ie, grown within an ECIS capillary) would
allow a direct comparison with the in vivo situation. For
example, do smaller proteins sieve freely though the GEnC
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monolayer, and would neutral albumin sieve more readily
than charged albumin, as observed in vivo13?
In this investigation of the effects of VEGFA and VEGFC

on GAG metabolism, we have demonstrated that VEGFC
significantly increased production of HA. Further analysis
clarified that the majority of VEGFC-induced HA was
secreted. Under control conditions, the majority of charged
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measured at 490 nm. A: Representative standard curve for CS. B: The quantity of GAG equivalent to mg/mL CS produced per well in each cell fraction for each
condition. C: GEnCs treated for 24 hours were lysed and assayed for TACE activation (fluorescence intensity fold change). Data are expressed as means � SEM
(B and C). n Z 5. Data were analyzed using one way ANOVAs (overall P < 0.05 for B and C). Bonfferoni post hoc tests not significant and not indicated.

GAG Regulation in GEnC
GAGs (eg, HS, CS, and dermatin sulfate) synthesized within
48 hours were secreted into the medium, whereas the majority
of HA remained cell-associated, suggesting that sulfated
GAGs may be turned over and released at a higher rate than
HA in GEnCs. Of note, there was no significant difference in
the amount of charged cell-associated or secreted GAGs
induced by VEGFA or VEGFC. Interestingly, however, the
greatest proportion of the GAGs released by VEGFC was
highly charged, suggesting an increased number of sulfate
groups. We went on to confirm that VEGFC, in contrast to
VEGFA, increased the expression of NDST2 mRNA, an
enzyme that induces N-sulfation of GAG side chains during
elongation.40 These results suggest that VEGFC directly
affects the degree of sulfation (charge) of GAGs. The degree
of sulfation contributes to the overall negative charge of the
ESL, which restricts macromolecular protein passage. We
have previously shown that VEGFC, in contrast to VEGFA,
reduces macromolecular passage across GEnC monolayers,31

and we suggest that the reduced protein permeability is due to
the increased negative charge of the GEnC ESL.

VEGFC significantly increased the metabolism of highly
sulfated GAGs, the majority of which were released into the
medium by 48 hours. The question remainedwhether VEGFC
targeted the shedding of highly sulfated proteoglycans (ie, HS
proteoglycans) or whether more of the highly sulfated GAGs
were present in the medium simply because more were
available. To dissect this possibility, we quantified the secre-
tion of charged GAGs in medium over time in response to
VEGFAandVEGFC. Surprisingly,VEGFChad no additional
effect to vehicle on GAG secretion, but VEGFA significantly
increased the secretion of charged GAGs. Thus, VEGFC
metabolizes more highly sulfated GAGs, compared with
control, whereas VEGFA induces GAG shedding. At first
glance, this appears to contradict the data presented in
Figure 7A, which do not show increased GAG release into the
mediumofVEGFA-treatedGEnCs.However, what these data
actually show is that VEGFA does not increase the metabolic
production of charged GAGs in the medium, compared with
control, but does induce shedding of established GAGs.
Proteoglycans are cleaved from the plasma membrane by
matrix metalloproteinases (sheddases). VEGFA is known to
increase shedding by ADAM17,41 which is a sheddase.42 We
The American Journal of Pathology - ajp.amjpathol.org
therefore investigated and confirmed that VEGFA, but not
VEGFC, increases ADAM17 activation in GEnCs. This is
consistent with the VEGFA-induced shedding of GAGs and
suggests that ADAM17 may be involved. Thus, GAG shed-
ding may account for the increase in molecular passage
promoted byVEGFA inGEnCs.31 In support of this notion, Fu
and Shen30 calculated that the effects of VEGFA on micro-
vessel permeability are likely due in part to partial degradation
of the ESL, and Suarez et al43 demonstrated that VEGFA165

increased the secretion, but not synthesis, of CS and HS into
cell medium.

VEGFA is vital for normal glomerular function, and dys-
regulation of VEGFA (ie, increased or decreased expression)
is associated with the development of many glomer-
ulopathies.44 It may be that disordered glycocalyx regulation
is part of the mechanism of the glomerulopathic effect. In
diabetic nephropathy, for example, VEGFA levels are tran-
siently increased, leading to proteinuria44; VEGFA blockade
can ameliorate the progression of diabetic nephropathy, but
such blockade is not good for long-term kidney physiology.45

GAGs are shed systemically in early diabetes,8,9 and there is
evidence that targeted GAG therapy can reduce proteinuria in
diabetic patients (and thus protect the glomerular ESL).46

VEGFC signals through the same receptor (VEGFR2) as
does VEGFA in GEnCs,31 and it can induce similar main-
tenance signals as VEGFA.28 Understanding how barrier
properties of GEnCs differ between VEGFC and VEGFA (ie,
through glycocalyx modification) should allow identification
of a potential therapeutic strategy to pharmacologically
manipulate VEGFC expression to maintain critical glomer-
ular function without the renotoxic effects associated with
total VEGFA signaling blockade. Thus, the present study
needs to be taken forward into animal models to confirm the
physiological relevance of these findings.

Furthermore, understanding which GAG components
contribute functionally to the glycocalyx barrier in the
glomerular microvasculature (which is a microvascular bed
with an easy clinical readout, microalbuminuria, that may
indicate ESL damage), and understanding what may regulate
the glycocalyx barrier should help in understanding the role
of GAG components in the general vasculature system. Thus,
it is important to relate this work to whole glomeruli. The
613
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gross morphology of the ESL is thought to differ between
vascular beds; however, its regularity over fenestrated
(including glomerular) and continuous capillaries is surpris-
ingly similar (as discussed by Salmon and Satchell47).

We suggest that HA does not contribute directly and
physically to barrier function in GEnCs in vitro. In contrast
to our present findings, Jeansson et al10 demonstrated that
hyaluronidase infusion in mice glomeruli led to a decrease in
ESL thickness and a subsequent increase in fractional clear-
ance of albumin. In their experiments, however, the hyal-
uronidase concentrationwas high enough to potentially act on
both HA and CS. Zeng et al,48 however, in an in vitro study in
rat fat pad endothelial cells, found that removal of HS, HA,
and CS individually had no effect on ESL thickness. This
suggests that the density of ESLmay be affected, although the
authors did not determine whether pore size or protein
permeability was affected; interestingly, only removal of both
CS and HA together resulted in increased absorption of
albumin into the ESL.48 In a study in high-salt-perfused rat
kidneys, albumin clearance increased 12-fold but ESL
thickness was unchanged, and fractional clearance for Ficoll
radii of 55 Å (a measure of the large pore fraction) increased
fourfold with no change for Ficoll radii of Å.49 These findings
suggest that the density of the ESL was affected, not its
thickness.

Henry and Duling21 found that HA contributed to luminal
permeation in microvessels of hamster cremaster muscle.
Using Streptomyces hyaluronidase, they showed that plasma
HA was increased by hyaluronidase treatment, as was the
penetration of FITC-dextran 70 into apical ESL of different
microvessels; however, they did not demonstrate whether
plasma CS levels were also affected, although they did
demonstrate that a combination of both HA and CS given
after enzyme treatment rescued the effect.21 Thus, the role of
HA on capillary permeability was not isolated from that of
CS in their study either, which highlights the importance of
determining the specificity of GAG enzymes for their
substrates in individual systems. In contrast, Landsverk
et al50 found that Streptomyces hyaluronidase administered
to awake Golden Syrian hamsters increased plasma HA
concentrations up to 100-fold, but did not reduce plasma
volume. In this model, therefore, there was no vascular
leakage caused by HA, which is consistent with our present
results. It is important to note, however, that these other
studies are all from in vivo situations, which does not allow
a direct comparison with our in vitro studies.

HA does not have the same negative charge properties
associatedwith it as do otherGAGs,22which perhaps explains
why we saw no immediate effect of HA on barrier properties.
HA does play an important role other than forming a physical
barrier to macromolecules. Singleton et al37,51 examined the
contribution of HA to endothelial barrier function in vitro
and described the cell signaling effects of HA as resulting in
increased barrier function over time (ie, indirectly). Given that
in our studyVEGFCmodulated HA, it would be interesting to
explore further the role of HA in GEnCs.
614
The regulation of GAGs by VEGFs may be important not
only in glomerular physiology but also in aspects of
vascular physiology in which GAGs are known to be
important (eg, in angiogenesis52) and in the pathology of
various vascular diseases in which there is GAG remodeling
(eg, in atherosclerosis,53 inflammation and ischemia reper-
fusion,54 and airway cystic fibrosis,55 to name but a few).
Nonetheless, the effects of VEGFs on the GEnC ESL may
be unique, so the effects of VEGFs on other systems would
have to be addressed individually.
In conclusion, GEnCs synthesize both CS and HA,

although only CS contributes directly to barrier function. To
our knowledge, ours is the first study of the regulation of the
endothelial glycocalyx by VEGFs. Both VEGFA and
VEGFC increase HA synthesis: VEGFC metabolizes more
highly charged GAGs, and VEGFA induces the shedding of
charged GAGs. Taken together, our results suggest that
GAG synthesis, sulfation, and shedding may be a mecha-
nism by which VEGFs control protein passage. This
understanding has important implications for glomerular
filtration control in health and disease and for permeability
alterations in other vascular beds.
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