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Abstract  Fusarium is one of the important phytopathogenic genera of microfungi causing serious
losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran.
Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp.
from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic
relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected
from fields in different geographic regions in Kermanshah province, Iran. According to morpholog-
ical characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium
equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were eval-
uated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis
melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20-35 days on both cucurbit
seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F.
solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA
(rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were
divided into two major groups. In particular, isolates belonging to the F. solani species complex
(FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from
restriction analysis was in agreement with criteria used in morphological classification. Therefore,
the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of
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Fusarium strains at species level. This is the first report on identification and pathogenicity of major
plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.

© 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Cucurbit plants (Cucurbitaceae) are the main agricultural
crops, particularly in the Kermanshah province in Iran. Annu-
ally it is estimated that over 3000 ha of agricultural land in the
province are under cucurbits. Root and stem rots of cucurbits
have significantly increased in incidence and severity in the
past 20 years and they are a yield-limiting factor in many
intensive cucurbit production, especially in cucumber (Cucumis
sativus), watermelon (Citrullus lunatus) and honeydew melon
(Cucumis melo), resulting sudden death and complete destruc-
tion of these economic plants (Alymanesh et al., 2009). Dis-
eased plants were characterized by yellowing of the leaves,
stem necrotic lesions, phloem discolorations, and collapse.
There are many pathogens capable of producing these vine de-
cline symptoms in cucurbits (Boughalleb et al., 2005).

The most important pathogens that cause root and stem rots
in cucurbit plants are Fusarium spp., which are responsible for
vascular wilts, such as those on melons (cantaloupe and musk-
melon) caused by Fusarium oxysporum f. sp. melonis. Fusarium
proliferatum and Fusarium solani f. sp. cucurbitae cause crown
and foot rots of summer squash, melon, pumpkin, and a fruit
rot of pumpkin (Pivonia et al., 1997; Namiki et al., 1994). There
are two “‘races” of F. solani f. sp. cucurbitae causing fruit, crown
and foot rots in cucurbit plants. F. solani f. sp. cucurbitae race 1
(Fscl) causes crown, fruit, and root rots of cucurbits whereas F.
solani f. sp. cucurbitae race 2 (Fsc2) causes only a fruit rot
(Hawthorne et al., 1992). Fscl and Fsc2 are not easily distin-
guished morphologically, but identification requires mating
tests, pathogenicity tests and molecular assays (Mehl and Ep-
stein, 2007; Hawthorne et al., 1994; Boughalleb et al., 2005).
F. solani f. sp. cucurbitae race 1 has been reported as the causal
agent of melon root and foot rot from Khorasan province in
the eastern part of Iran (Alymanesh et al., 2009).

Characterization of the population structure of fungal
pathogens is important for understanding the biology of the
organism and for development of disease-control strategies
(Malvick and Percich, 1998), and for molecular studies among
individuals, which is one of the components of population struc-
ture (Leung et al., 1993). Universally, F. solani species complex
(FSSC) has an extensive host range and very high levels of diver-
sity in pathogenicity and morphology (Brasileiro et al., 2004).
However, the classification system based only on morphology
has not provided an accurate tool for the identification of FSSC,
neither has morphological classification system resolved the
relationship of isolates within FSCC. So, a molecular approach
is promising in establishing the objective (O’Donnell and Gray,
1995; Zhang et al., 2006; O’Donnell et al., 2008). Among the
methods which researchers have used to analyze the phylogenet-
ics of F. solani species are IDNA-IGS, rDNA-ITS regions, large
submit RNA gene and translation elongation factor-alpha (tef)
(Zhang et al., 2006). Internal transcribed spacer (ITS) region is
probably the most widely sequenced region of DNA in fungi.
rDNA-ITS and rDNA-IGS (intergenic spacer) regions show a
higher degree of diversity than other ribosomal regions such
as small subunits (SSU) and large subunits (LSU) (O’Donnell

and Gray, 1995; Depriest and Been, 1992; O’Donnell, 2000;
Brasileiro et al., 2004). Therefore, the objectives of this study
were: (1) to isolate and identify disease causing Fusarium spp.
from infected cucurbit plants in Kermanshah province; (ii) to
determine their pathogenicity; and (iii) to determine phyloge-
netic relationships and usefulness of the PCR-ITS-RFLP as a
genetic marker within the Fusarium spp.

2. Materials and methods
2.1. Sample collection

Infected cucurbit plants were collected from different regions
of Kermanshah province, Iran (Table 1). Each sample were
stored in a paper envelope and kept in a cool box with dry
ice. In the laboratory, roots and stems of diseased samples
were washed in running tap water and cut into small blocks
(1.5 cm) for isolation.

2.2. Isolation and identification

For isolation of Fusarium spp., the blocks were surface-steril-
ized with 1% sodium hypochlorite for 3 min and rinsed with
several changes of sterile water. The sterilized samples were
placed onto a general medium (water agar) (Burgess et al.,
1994) and a semi-selective medium for Fusarium, i.e., pep-
tone-pentachloronitrobenzene agar (PPA) plates (Nash and
Snyder, 1962), and incubated under a standard growth condi-
tion (Salleh and Sulaiman, 1984). The resulting Fusarium colo-
nies were single-spored and transferred onto potato dextrose
agar (PDA), carnation leaf agar (CLA) (Fisher et al., 1982),
spezieller nahrstoffarmer agar (SNA) (Nirenberg, 1976), and
potassium chloride agar (KCIA) plates (Fisher et al., 1983)
for morphological identification (Leslie and Summerell, 2006).

2.3. Pathogenicity test

All isolates of the Fusarium species were tested for their path-
ogenicity on apparently healthy and uniform 20 days-old seed-
lings of cucumber (C. sativus) and honeydew melon (C. melo)
in the glasshouse. Roots and stems of the cucumber and hon-
eydew melon seedlings were washed in running tap water be-
fore inoculation. Conidial suspension of each individual
isolate was prepared by pouring sterile distilled water and
gently scraping the conidia of 7 days-old cultures on PDA
plates grown under the standard growth condition (Salleh
and Sulaiman, 1984). The concentration of the pooled suspen-
sion was adjusted to 2 x 10° conidia/ml by using a haemocy-
tometer. The roots of the seedlings were soaked in 20 ml
conidial suspension for 20 min for root inoculation technique.
For stem inoculation technique, 20 ml of the conidial suspen-
sion of each Fusarium species was sprayed on the stems. The
control plants were inoculated by booth techniques with
20 ml of sterile distilled water. Three replicates were performed
for each isolate and the experiment was repeated twice. All the
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Table 1  Fusarium species isolated from different hosts in different sampling locations in Kermanshah province.

Place of sample collection Host Source Fusarium species
Dorood Faraman-Maoqufeh Watermelon Root F. ox, F. eq, F. so
Road Kamyaran-Varmele Honeydew melon Crown and Stem F. ox, F. eq, F. so
Miandarband-JaFar Abad Watermelon Root F. ox, F. pr, F. so
Qazanchi-Ahmad Abad Melon Crown and Stem F. ox, F. eq, F. se
Qazanchi-Ahmad Abad Honeydew melon Root F. ox, F. eq, F. so
Road Allah-yari Honeydew melon Root F. ox, F. so

Road Ravansar-Kamyaran Honeydew melon Root F.ox, F. eq, F. se
Kangavar-Pol Shekasteh Honeydew melon Root F. ox, F. eq, F. so
Kangavar-Rahmat Abad Honeydew melon Root F. ox, F. pr, F. so
Kangavar-Gaodin Cucumber Crown F. ox, F. eq, F. so
Gaodin Honeydew melon Root and Crown F. ox, F. eq, F. pr
Sonqgor Honeydew melon Root F. ox, F. se, F. so
Sonqor Honeydew melon Root F. ox, F. eq, F. so
Road Sonqor- Asad Abad Honeydew melon Root F. ox, F. eq, F. so
Harsin Honeydew melon Root F. ox, F. se, F. pr
Dinavar-Shirkhan Honeydew melon Root and Crown F.ox, F. eq, F. so
Bisotun-Barnaj Honeydew melon Root F. ox, F. pr, F. s0
Bisotun-Hosein Abad Honeydew melon Root F. ox, F. eq, F. so
Bisotun-Chehr Pumpkin Root F. ox, F. s0
Bisotun Pumpkin Root F. ox, F. eq, F. so
Road Kermanshah Sarab NilooFar Pumpkin Root and Crown F. ox, F. eq, F. so, F. se
Road Kermanshah- Sarab NilooFar Honeydew melon Root F. ox, F. pr, F. so
Sarab NilooFar Honeydew melon Stem F. eq, F. so, F. se
Road Koozaran-Boor Boor Honeydew melon Crown and Stem F. se, F. eq, F. so

Road Koozaran-Chehar Zabar
Gilan Garb

Qasr Shirin

Road Paveh-Ravansar’

Paveh- Shemshir

Sarpol Zohab

Honeydew melon
Cucumber
Cucumber
Honeydew melon
Cucumber
Watermelon

Stem
Root and Crown
Stem
Stem
Crown and Stem
Stem

F. pr, F. eq, F. so
F.ox, F. eq, F. so
F. so, F. se

F. so

F. pr, F. eq, F. so
F. so

F. ox = F. oxysporum, F. eq = F. equiseti, F. so = F. solani, F. pr = F. proliferatum, F. se = F. semitectum.

inoculated and controls seedlings were placed in the glasshouse
with day and night temperatures of 30-35°C and 23-30 °C,
respectively. Development of symptoms on inoculated and
control seedlings were observed every 2 days for 45 days. The
inoculated fungi were re-isolated from the infected plants to
prove the Koch’s postulates.

2.4. Growth condition and DNA extraction

All Fusarium isolates were grown in 250 ml of potato dextrose
broth (PDB) (Difco) in a rotary shaker at 180 rpm for 48 h at
28 °C. After vacuum filtration, the mycelium of each isolate
was dried, ground with sterile sea sand in a mortal and pestle,
and stored at —20 °C for further studies. Genomic DNA was
extracted using a modified method of Kim et al. (1992). Approx-
imately 0.5 g of the ground mycelium was suspended in CTAB
extraction buffer (0.7 M NaCl, 50 mM Tris—HCI (pH 8.0),
10mM EDTA, 1% 2-mercaptoethanol, 1% CTAB), and
extracted with phenol/chloroform/isoamylalcohol (25:24:1)
and chloroform/isoamylalcohol (24:1). RNA was degraded by
treatment with RNase (Qiagen) (50 mg/ml) for 30 min at
37 °C. DNA was then precipitated by adding 2.5 volumes of
absolute ethanol and pelleted by centrifugation for 15 min at
12,000 rpm. The pellet was washed with 70% ethanol, air-dried
and re-suspended in 1 mM TE buffer {10 mM Tris—HCI, 1 mM
EDTA (pH 8.0)}. DNA concentration and purity was measured
using a spectrophotometer (Shimadzu UV-120) at 260 and
280 nm.

2.5. PCR condition

The ITS region of Fusarium spp. was amplified with primers
ITS1 (5-TCCGTTGGTGAACCAGCG G-3') and ITS4 (5'-
TCCTCCGCTTATTGATATGC-3") (White et al., 1990).
Amplification was performed in 100 pl of reaction mixture
containing 50 pmol of primers, 2.5 units of Tag DNA polymer-
ase (Takara), 200 mM of each dNTP, 10 ml of 10x PCR buffer
and 0.2 mg of template DNA. The mixture was subjected to
PCR in a Thermo cycler. The PCR cycles began with an initial
denaturation for 3min at 95°C, followed by 30 cycles of
annealing for 40 s at 58 °C, extension for 40s at 72 °C and
denaturation for 40s at 94 °C before a final extension for
Smin at 72 °C. The PCR product obtained was run on 1.4%
agarose gels, stained with ethidium bromide (EtBr) and visual-
ized under a UV transilluminator (Brand and company).

2.6. Enzyme digestion

Aliquots of 12 pl of PCR products were digested with 10 units
of restriction enzymes EcoRI1, Sphl, Pstl, Haelll, Hinfl, Mspl
and Smal according to the manufacturer’s instructions (Fer-
mentas). The restriction fragments were separated on 2.5%
agarose gel, run for 140 min at 80 V, 400 mA and stained with
EtBr. The restriction fragments were visualized under the UV
visualizer and 100 bp DNA ladder (GeneRulers™, Fermentas)
was used to estimate the size of the restriction fragments. The
restriction analysis was repeated twice.
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Table 2 Morphological characters of Fusarium spp. isolated from cucurbit plants.

Fusarium Species Chla. shape Pigmentation Number of septa Microconidia Types of General Macroconidia
on PDA in macroconidia shape conidiogenous cells morphology size (um)
Poly Mono Apical Basal
cell cell
F. equiseti ro Brown 5-7 = = + Tapered, Fs 44-78x3.3-5.6
elongated
F. oxysporum sm Violet 3 ov to el — + Curved Fs 32-56x3.1-5.7
F. proliferatum - Violet 3-5 cl, na I A Curved Pdfs 25-58 x3.0-5.0
F. semitectum ro Brown 3-5 — 4 I Curved and Fs  37-58 x3.0-5.0
tapered
F. solani (morphotype II) sm Red 5 el to tr, cl - + Tapered Fs 32-68x3.6-6.0
F. solani (morphotype I) ro White 3 re — + Rounded and Nfs  30-50 x 3.5-5.7
curved
+ = presence, — = absence, Poly = polyphialidic, Mono = monophialidic, Pdfs = poorly developed foot shape, Nfs = Notch or foot shape,

Fs = foot shape, Lfs = long foot shape, Chla = chlamydospore, ro = rough, sm = smooth, el = ellipsoid, tr = truncate, cl = clavate,

re = reniform, ov = oval.

2.7. Data analysis

The molecular size of each fragment was estimated using a
standard curve of migration versus the log of the molecular
size of 100 bp ladder. Each fragment was scored on the basis
of the presence (1) or absence (0) of particular fragments. A
data matrix was constructed based on the presence or absence
of the fragments and converted to a similarity matrix. The sim-
ilarity matrix was then subjected to the unweighted pair group
method with arithmetical mean (UPGMA) cluster analysis
based on simple matching coefficient (SMC) (Romesburg,
1994). The data analysis was performed by using the Numeri-
cal Taxonomy and Multivariate Analysis System (NTSYS-pc,
version 2.1) (Rohlf, 2000) to analyze the relationship among all
isolates of Fusarium species.

3. Results
3.1. Occurrence and pathogenicity

In this study, a total of 100 Fusarium isolates were obtained from
diseased cucurbit plants in 30 different locations in the Kerman-
shah province (Table 1), and based on their morphological
characteristics, these isolates were identified as F. oxysporum,
F. proliferatum, Fusarium equiseti, Fusarium semitectum, and
F. solani species complex (FSSC) (Table 2, Figs. 1 and 2). On
the basis of mean lesion sizes on stems, the pathogenicity of each
Fusarium isolates was classified into three groups: virulent (2.5—
1.80 cm?), moderately virulent (0.8-0.5 cm?) and nonvirulent
(0.0-0.0 cm?) (Table 3).

The results of the pathogenicity test revealed that 25 iso-
lates of F. oxysporum were the major causal agent of cucumber
and honeydew melon root rot. The symptoms were observed
within 20-35 days after inoculation as necrosis and brown dis-
coloration of the root phloem and yellowing of the canopy
plants. Also, 14 isolates of F. solani, 3 isolates of F. prolifera-
tum and 2 isolates of F. equiseti caused discoloration and
necrosis and then brown rot of the stems. The plants were
maintained in the glasshouse for 45 days for symptom develop-
ment. Their initial symptoms were observed on the 15th day
after inoculation as water-soaked lesions on the stems. The

inoculated fungi were consistently isolated from the diseased
plants but not from negative control plants and nonvirulent
isolates (Table 3); thus fulfilled the Koch’s postulates.

3.2. Molecular analysis

A PCR product from each isolate of the three Fusarium species
was amplified by using primer pairs ITS1 and ITS4. F. oxyspo-
rum, F. equiseti and F. semitectum produced approximately
550 bp band, F. solani species complex about 570 bp and F.
proliferatum approximately 560 bp bands (Fig. 3). Table 4
and Fig. 3 shows estimated sizes of the restriction bands pro-
duced after digestion of the ITS+5.8S using EcoRI, Sphl,
Pst1, Haelll, Hinfl, Mspl and Smal for F. oxysporum, F. equis-
eti, F. semitectum, F. solani species complex and F. prolifera-
tum. Generally, the restriction patterns by the restriction
enzymes could differentiate the five Fusarium species (Fig. 3).

Banding patterns of all Fusarium spp. after digestion anal-
ysis were presented in Table 4. Digestion of the PCR products
with EcoRI generated two banding patterns in all Fusarium
isolates except for isolate FSQA, which indicated that there
is no restriction site for the restriction enzyme EcoRI within
it. Digestion with EcoRI produced the same patterns for the
F. oxysporum, F. semitectum and F. equiseti isolates. It also
showed one common and one different band for F. prolifera-
tum and F. solani isolates except for isolate FSQA. Digestion
of the ITS+5.8S region with Sphl showed two banding pat-
terns in all isolates. The fragment of 320 bp was present in
all isolates. The fragment of 250 bp was present in all F. prolif-
eratum and F. solani isolates and the fragment of 230 bp was
found in all F. oxysporum, F. semitectum and F. equiseti iso-
lates. Digestion with enzyme PstI mostly indicated that there
is no recognition site for the restriction except for F. solani iso-
late FSQA and F. proliferatum isolates with two fragments of
150 and 420 bp. Digestion with Haelll produced identical pat-
terns of four fragments for F. solani isolates, three identical
fragments for the F. oxysporum, F. semitectum and F. equiseti
isolates and three identical fragments for F. proliferatum iso-
lates. Digestion with Hinfl exhibited three banding patterns
producing three fragments in the F. oxysporum, F. semitectum
and F. equiseti isolates and two fragments in the F. solani and
F. proliferatum isolates. The fragment of 270 was found in all
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a C

Figure 1
f = F. equiseti, g and h = F. oxysporum (scale bar = 25 um).

Conidiophores and macroconidial characters of Fusarium spp. a and b = F. semitectum, ¢ and d = F. proliferatum, ¢ and

Figure 2 Morphological characters of Fusarium solani. a = Conidiophores; b, ¢ and f = macroconidia, microconidia and
chlamydospores of FSQA isolate (morphotype II); d, e and g = macroconidia, microconidia and chlamydospores of FSMV isolate

(morphotype I) (scale bar = 25 pm).

F. solani isolates except for isolate FSQA that produced the
fragment of 290 bp. Digestion with Mspl indicated that there
is no restriction site for F. semitectum and F. equiseti isolates
whereas there are three banding patterns in the F. proliferatum
isolates and two banding patterns in F. oxysporum and F.
solani isolates. Digestion with Smal exhibited two identical
fragments (230 and 350 bp) in the F. solani and F. proliferatum
isolates but there was no restriction site for F. oxysporum, F.
semitectum and F. equiseti isolates.

The cluster analysis clearly discriminate the five Fusarium
species into five separate clusters. F. solani isolates were

clustered in subcluster A and F. proliferatum isolates in sub-
cluster B in major cluster I and F. oxysporum isolates were
clustered in subcluster C, F. equiseti isolates in subcluster D
and F. semitectum isolates in subcluster E in major cluster II
(Fig. 4).

4. Discussion
Fusarium species are ubiquitous in roots and stalks of most

plants, including cucurbits, and may exist as saprophytes in
plant tissues or as opportunistic pathogens awaiting pre-
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Table 3 Relative virulence of Fusarium spp. based on the pathogenicity test on cucurbit seedlings.

Name of species Number isolate Pathogenicity test
Virulent Moderately virulent Non virulent
F. equiseti FEQI101 4
F. equiseti FEQ21 4
F. equiseti FEQS51 4
F. equiseti FEQUI aF
F. equiseti FEQ22 4
F. equiseti FEQUII aF
F. equiseti FEQI0 4
F. equiseti FEQ2 4
F. equiseti FEQS5 4
F. equiseti FEQ104 4F
F. equiseti FEQ27 IF
F. oxysporum FOX142 4F
F. oxysporum FOAY 4F
F. oxysporum FOX247 I
F. oxysporum FOX142 4F
F. oxysporum FOX148 4F
F. oxysporum FOX27 aF
F. oxysporum FOX112 IF
F. oxysporum FOX148 4F
F. oxysporum FOX247 a4
F. oxysporum FOX112 4F
F. oxysporum FOXI118 4F
F. oxysporum FOX271 4
F. oxysporum FOX121 aF
F. oxysporum FOX188 IF
F. oxysporum FOX278 4
F. oxysporum FORK 4F
F. oxysporum FOX158 +
F. oxysporum FOX257 4
F. oxysporum FOX182 aF
F. oxysporum FOX127 F
F. oxysporum FOX186 +
F. oxysporum FOX273 4
F. oxysporum FOX122 4F
F. oxysporum FOX158 IF
F. oxysporum FOX287 4
F. oxysporum FOX152 4
F. oxysporum FOX1228 4F
F. oxysporum FOX1258 4F
F. oxysporum FOX277 4
F. oxysporum FOX127 +
F. oxysporum FOX187 4F
F. oxysporum FOX278 4
F. oxysporum FOX127 4F
F. oxysporum FOX188 4F
F. oxysporum FOX278 4
F. oxysporum FOX189 +
F. oxysporum FOX278 4
F. proliferatum FPRFI e
F. proliferatum FPR78
F. proliferatum FPRFII 4
F. proliferatum FPR78
F. proliferatum FPRS&11
F. proliferatum FPR785 4F
F. proliferatum FPRS3
F. proliferatum FPR711
F. proliferatum FPR835 +
F. proliferatum FPR88 4
F. proliferatum FPR8I11 4
F. semitectum FSEM 4
F. semitectum FSE186 +
F. semitectum FSE287 IF
F. semitectum FSE168 e



Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran 347

Table 3 (continued)

Name of species Number isolate

Pathogenicity test

Virulent Moderately virulent Non virulent
F. semitectum FSE16 4
F. semitectum FSE76 +
F. semitectum FSE287 4
F. semitectum FSE16 +
F. solani FSQA 4
F. solani FSO89 +
F. solani FS022 4
F. solani FS0694 +
F. solani FS0639
F. solani FSO193 +
F. solani FSO1 aF
F. solani FS0O298 +
F. solani FS023 4 4
F. solani FSO559 +
F. solani FSO55 4
F. solani FSO138
F. solani FSO288
F. solani FSO273 +
F. solani FSO585 aF
F. solani FSO17 +
F. solani FSMV 4
F. solani FSMS55 +
F. solani FSO57 4
F. solani FS0O288 +
F. solani FS0237 4F
F. solani FSM555 aF
F. solani FSOS58
F. solani FS0253
F. solani FSRS 4K
F. solani FSPS +
F. solani FS0237 IF
F. solani FSO555 4
F. solani FSO55 +
F. solani FS0287
F. solani FS0239 +
F. solani FSOS558 4
F. solani FSO98 +

+ = virulent (mean of lesion size = 2.5-1.80 cm?), moderately virulent (mean of lesion size = 0.8-0.5 cm?), non virulent (mean of lesion

size = 0.0-0.00 cm?).

disposed conditions such as stress in their hosts. Many species
of Fusarium are viewed as opportunistic or weak pathogens
that are capable of attacking only plants that were weakened
previously by some other stress factors. Certainly, factors such
as those induced by drought, wind and insects are known to
affect the amount and disease incidence (Palmer and Komme-
dahl, 1960). Our observations in rainfed cucurbit fields in Ker-
manshah province showed that the severity of the disease may
be increased under certain environmental conditions in the
middle of the summer. There are also observations showing
that in irrigated fields the severity of the disease may increased
under flooding, and irregular furrow irrigation. Thus, the time
and type of irrigation in the cucurbit fields in Kermanshah
province may be considered as one of the feasible cultural
practices for better disease control.

Fusarium species have been recorded from several parts of
the world and they are known to be pathogenic to many
plants, especially to cucurbits. The results of this study are in

agreement with those of the previous literatures, e.g., Boughal-
leb et al. (2005), Mehl and Epstein (2007). The cluster analysis
based on restriction bands formed two major groups, I and II.
The group including F. solani and F. proliferatum isolates was
supported at the similarity level of ca. 56%. The two sub-
groups of F. solani species complex (FSSC) were supported
at the similarity level of 69%. The second group, that included
F. oxysporum, F. semitectum and F. equiseti, was supported at
the similarity level of ca. 80% similarity. Within this group, the
group of F. semitectum and F. equiseti was supported at the
similarity level of 90%. PCR-RFLP of ITS+5.8S have been
used by Suga et al. (2000) in distinguishing formae speciales
(f. spp.) of F. solani and Lee et al. (2000) for comparing genetic
relationships between 12 Fusarium species from different sec-
tions. Digestion of F. solani PCRs product with EcoRI, Pstl,
Hinfl and Mspl produced variable restriction patterns. Diges-
tion with Haelll, Sphl and Smal generated the same restric-
tion patterns for all F. solani isolates obtained from
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Figure 3  Agarose gels showing: a = amplification of the ITS region (ITS1, ITS2 and 5.8S) and restriction patterns of PCR-amplified
rDNA digested with EcoRI (b), Sphl (c), Pstl (d), Haelll (e), Hinf1 (), Mspl (g) and Smal (h). M. DNA size marker of 100 bp ladder, (1)
USMS5708 (F. solani), (2) FSQA (F. solani), (3) FSMV (F. solani), (4) FSRS (F. solani), (5) FSPS (F. solani), (6) USM4484 (F. oxysporum),
(7) FOAY (F. oxysporum), (8) FORK (F. oxysporum), (9) USM11558 (F. proliferatum), (10) FPRFI (F. proliferatum), (11) FPRFII (F.
proliferatum), (12) USM 14999 (F. equiseti), (13) FEQUI (F. equiseti), (14) FEQUII (F. equiseti), (15) USM11548 (F. semitectum), (16)

FSEM (F. semitectum), (17) negative control.

cucurbits showing root and stem rot symptoms in the field.
According to the RFLP results, F. solani isolate FSQA was dif-
ferent from other isolates having a Pstl, Hinfl and Mspl
restriction site and the absence of the EcoRI restriction site.
This result correlated with the report that F. solani f. sp. phase-
oli is a distinct species within F. solani complex (O’Donnell and
Gray, 1995). This result is in agreement with that of O’Donnell
and Gray (1995), who reported that isolates F. solani f. sp.
phaseoli from soybeans, could be easily distinguished from
the FSSC shown by the presence of a unique PstI restriction
site within the ITS2 region.

Brasileiro et al. (2004) have used two restriction enzymes,
EcoRI and Haelll for studying the diversity of the ITS region

of the F. solani. Also, four restriction enzymes have been used
to compare formae speciales (f. spp.) of F. solani by Suga
et al. (2000). In the present work, the PCR products of
F. oxysporum isolates were undigested after digestion with Pst1
and Smal and a band of 550 bp was observed which indicated
that there was no restriction site for the restriction enzyme
within the ITS+5.8S of the isolates. F. proliferatum isolates
from cucurbits stem and root rot as well as from the stock cul-
ture showed similar restriction patterns when digested with
EcoRI1, Sphl, Pstl, Haelll, Hinfl and Smal. Only Mspl pro-
duced variable restriction patterns. There was no restriction site
for the restriction enzymes Mspl, Pstl and Smal within the
ITS +5.8S of the F. semitectum and F. equiseti isolates. Also,
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Table 4 Restriction fragment size (in bp) of Fusarium ITS region digested with EcoRI, Sphl, Pstl, Haelll, Hinfl, Mspl and Smal.

Isolates Isolates ITS total EcoRI  Sphl Pstl Haelll Hinfl Mspl Smal
number size
F. solani USM5708 570 230, 250, 570 100, 110, 270, 280 210, 360 230,
320 320 130, 230 350
F. solani FSQA 570 570 250, 150, 100, 110, 280, 290 180, 360 230,
320 420 130, 230 350
F. solani FSMV 570 230, 250, 570 100, 110, 270, 280 240, 360 230,
320 320 130, 230 350
F. solani FSRS 570 2380, 250, 570 100, 110, 270, 280 240, 360 230,
320 320 130, 230 350
F. solani FSPS 570 230, 250, 570 100, 110, 270, 280 240, 360 230,
320 320 130, 230 350
F. oxysporum USM4484 550 250, 230, 550 90, 120, 340 100, 150, 100, 450 550
300 320 280
F. oxysporum FOAY 550 250, 230, 550 90, 120, 340 100, 200, 100, 450 550
300 320 280
F. oxysporum FORK 550 250, 230, 550 90, 120, 340 100, 200, 100, 450 550
300 320 280
F. proliferatum USM11558 570 230, 250, 150, 90, 120, 280 100, 280 100, 180, 230,
310 320 420 250 350
F. proliferatum FPRFI 570 280, 250, 150, 90, 120, 280 100, 280 100, 150, 230,
310 320 420 250 350
F. proliferatum FPRFII 570 280, 250, 150, 90, 120, 280 100, 280 100, 150, 230,
310 320 420 250 350
F. equiseti USM14999 550 250, 230, 550 90, 120, 340 100, 200, 550 550
300 320 320
F. equiseti FEQUI 550 250, 230, 550 90, 120, 340 100, 200, 550 550
300 320 320
F. equiseti FEQUII 550 250, 230, 550 90, 120, 340 100, 200, 550 550
300 320 320
F. semitectum USM11548 550 250, 230, 550 90, 120, 340 100, 150, 550 550
300 320 320
F. semitectum FSEM 550 250, 230, 550 90, 120, 340 100, 150, 550 550
300 320 320

F. semitectum and F. equiseti isolates showed similar restriction
patterns when digested by using EcoRI, Sphl and Haelll. Only
Hinfl restriction patterns produced variable patterns within
isolates of these two species. Hinfl revealed the highest varia-
tion in both fragment sizes and restriction sites within all spe-
cies. Intraspecies variations could be due to minor changes in
nucleotide composition within the ITS + 5.8S, which might lead
to different restriction patterns. Similar results were obtained
by Konstantinova and Yli-Mattila (2004), in their study using
PCR-RFLP of ribosomal intergenic spacer region to analyse
Fusarium species in section Sporotrichiella. Further studies,
such as rDNA RFLP analysis with more restriction enzymes
and different genes (e.g., IGS region) have demonstrated con-
vincingly the morphological and molecular classifications of
several Fusarium species including F. oxysporum, F. semitectum
and F. proliferatum isolates (Paavanen-Huhtala et al., 1999;
Hawa et al., 2010; Lee et al., 2000).

In this study, biological characterization, including culture
morphology, pathogenicity, and molecular study were used
to compare isolates of F. solani associated with cucurbit plants.
These isolates caused typical disease symptoms on stems of the
tested cucurbit seedlings. Molecular approach by PCR-ITS-
RFLP analyses strongly supported the existence of two distinct
clades among F. solani isolates in the present study. Based on
morphological characters, the isolates USMS5708, FSRS,
FSMYV, and FSPS are classifies as morphotype I while FSQA

as morphotype II and this observation is in agreement with
previous molecular studies, whereas based on morphological
characters, there is no difference between isolates USM5708,
FSRS, FSMV, FSPS. The results of the present taxonomical
studies using molecular method and grouping among Fusarium
strains derived from restriction analysis were in agreement
with previous molecular and morphological classification crite-
ria. Therefore, the PCR-ITS-RFLP method described in this
paper provides a simple and rapid procedure for the differen-
tiation of Fusarium strains at the species level. Further studies
using ITS + 5.8S sequence analysis and other sequence analy-
ses, such as IGS sequences, would be necessary to compare
the genetic variations observed in Fusarium isolates from root
and stem rot of cucurbit plants.

5. Conclusion

Five Fusarium species were isolated from root and stem rot
of naturally diseased cucurbit plants grown in Kermanshah
province, Iran. Based on the morphological characteristics,
the 100 isolates were identified as F. oxysporum, F. prolifer-
atum, F. equiseti, F. semitectum and two morphotypes of
Fusarium solani. From the pathogenicity test, F. oxysporum
and other Fusarium species were the major causal agents
of root and stem rot of cucurbit plants in the province.
PCR-RFLP of ITS+5.8S analysis used in this study, offers
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Figure 4 UPGMA dendrogram showing relationships among the 12 isolates of Fusarium based on restriction site data.

a convenient tool for characterization and analyzing varia-
tions of Fusarium species associated with root and stem
rot of cucurbit plants.
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