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ABSTRACT Most studies of mutation rates implicitly assume that they remain constant throughout development of the germline.
However, researchers recently used a novel statistical framework to reveal that mutation rates differ dramatically during sperm
development in Drosophila melanogaster. Here a general framework is described for the inference of germline mutation patterns,
generated from either mutation screening experiments or DNA sequence polymorphism data, that enables analysis of more than two
mutations per family. The inference is made more rigorous and flexible by providing a better approximation of the probabilities of
patterns of mutations and an improved coalescent algorithm within a single host with realistic assumptions. The properties of the
inference framework, both the estimation and the hypothesis testing, were investigated by simulation. The refined inference frame-
work is shown to provide (1) nearly unbiased maximum-likelihood estimates of mutation rates and (2) robust hypothesis testing using
the standard asymptotic distribution of the likelihood-ratio tests. It is readily applicable to data sets in which multiple mutations in the
same family are common.

SPERM and eggs experience many divisions after the fer-
tilized egg, and mutations may occur each time a cell

divides. Little is known about the patterns of mutations dur-
ing development of the germline cell lineage. This is partly
due to the scarcity of appropriate experimental data and to
lack of proper statistical methods for analyzing such data.
Recently, Gao et al. (2011) reported that mutation rates
differ dramatically during germline development in Dro-
sophila, with the rate for the first cell division the highest.
But the method developed by Gao et al. (2011) is limited to
handling only families with at most two mutations each.
Also, their conclusions relied heavily on hypothesis testing
and the statistical properties of the likelihood-ratio test they
used are not known under such circumstances. Further-
more, their coalescent algorithm is too simplistic, not taking
into consideration the details of spermatogenesis. Since the
ability to make inferences about mutation rates at the level
of single-cell division would be a significant step forward, it
is desirable to make the inference rigorous and applicable

for analysis of data in which more than two mutations per
family are common.

Knowledge of development of the germline lineage is
essential for inferring mutation rates. For Drosophila mela-
nogaster males, each sperm from a young adult has experi-
enced $36 divisions. The first 14 divisions occur in the
cleavage stage characterized by fast cell divisions; the last
5 occur during spermatogenesis; those in between occur
during gastrulation and organogenesis when the germline
stem cells (GSC) divide asymmetrically. For Drosophila, it is
well known (Drost and Lee 1995, 1998; Gilbert 2003) that
(1) after the 8th cell division, �4–6 cells become the primor-
dial germ cells (PGC); (2) after the 12th division, the number
of PGCs ranges from 23 to 52; (3) after the 14th division there
are 5–6 PGCs in each gonad; and (4) from the 15th division to
just before spermatogenesis the number of PGCs remains more
or less constant. After the 31st division one of the two daugh-
ter cells of each stem cell remains as a stem cell; the other one
differentiates into 64 sperm. Thus, if sperm are sampled after
the 36th division, all have experienced exactly 36 divisions,
but if they are sampled after, for example, the 38th division,
some would have experienced 36 divisions, some 37, and
some 38 divisions. The algorithm developed by Gao et al.
(2011), using the principle of coalescence (Kingman 1982;
Ewens 2004), does not account for these differences.
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To develop a thorough understanding of mutational
patterns during germline development requires obtaining an
estimate of mutation rate for each cell division and testing
various hypotheses about mutation rates. This article describes
further development of the inference framework, which
overcomes previous shortcomings, investigates its statistical
properties, improves the coalescent algorithm, and reanalyzes
the published data. The improved inference framework has
the advantage of being adaptable to analyzing mutation pat-
terns in nucleotide polymorphism data, such as generated by
next-generation DNA sequencing.

The Theory

Definitions and notations

Consider a sample of families, each consisting of a number
of offspring (or sperm) from the same father. For each family
with n sampled offspring, amutation pattern is observed and
represented by hi1, i2, . . . , iki such that each element repre-
sents an identified mutation, its value equal to the number
of mutants for the mutation, where k is the number of muta-
tions. For example, h1i represents a mutation in a family
that leads to only one mutant; h3, 2i represents two muta-
tions, where one leads to three mutants and another to two
mutants. Also we use hi to represent the case in which no
mutation is observed.

Sequencing the same region of the genome among all
sampled offspring in the same family will yield a mutation
pattern. Alternatively, such information can be obtained
from traditional experiments, particularly for some model
organisms. For Drosophila, multigeneration mutation
screening has been well developed (Muller 1928; Woodruff
et al. 1984, 1996; Ashburner 1989; Greenspan 1997) and
one such system was used by Gao et al. (2011) for the
purpose of identifying recessive lethal or nearly lethal muta-
tions. More experimental detail can be found in Gao et al.
(2011) and for the main purpose of this article, it should
suffice to outline the structure of information and the type of
mutation being examined. The recessive lethality d of a reces-
sive mutation is defined as one minus the maximal percent-
age of the homozygote (among all survival offspring) for
that mutation. The data reported by Gao et al. (2011) cor-

respond to those mutations with recessive lethality equal to
99%, that is, no more than 1% of survival offspring are z/z
homozygote. Once a cell acquires a mutation with recessive
lethality d, further mutation(s) is much more likely to in-
crease lethality than to reverse it. Consequently recessive
lethal mutations have a masking effect such that only
the earliest one is identifiable. Figure 1 shows examples
of how mutations in a genealogy lead to different muta-
tion patterns.

Suppose branches of a sample genealogy are labeled by
integers. For branch i, define V(i) as the set of branches
consisting of the branch i and all its descendant branches,
which are referred to as the subtree of the branch i. For the
genealogy shown in Figure 2, for example, V(2) = {2, 5, 6}
and V(3) = {3, 4, 7, 9, 8, 9}. Therefore, two mutations,
respectively on branches i and j, are both observable if and
only if V(i) \ V(i) = Ø.

Suppose the germ cell divisions from a fertilized egg to
sperm are divided into I intervals. Let [i, j] represent the
interval from the ith to the jth cell divisions. Suppose the
mutation rate per cell division for the lth interval is ul and
define u = (u1, . . . , uI)T. For a given sample of sperm, there
is a genealogy connecting them to the fertilized egg. Sup-
pose each branch in the genealogy is identified by an unique
integer (how branches are numbered is immaterial). Define
for the ith branch, bij as the number of divisions it contains
from the jth interval and bi as a vector with elements bij, j =
1, . . . , I. That is, bi = (bi1, . . . , biI)T. Define f(i) as the size of
the ith branch, i.e., the number of descendants of the branch
that are observed in the sample, and

ak ¼
X

i:fðiÞ¼k

bi and t ¼
Xn
k¼1

ak: (1)

Then akj is the total number of cell divisions from the jth
interval that are of size k and the kth element, tk, of t is
the total number of cell divisions from the kth interval.
For branch i, let wi be the sum of lengths of all the branches
in V(i), excluding the branch i itself. That is, wi ¼
2bi þ

P
k:VðiÞbk. Figure 2 illustrates the aforementioned

quantities in a genealogy of five alleles taken after the fifth
division. It follows that a1 ¼P9

k¼5bi ¼ ð0; 1; 5ÞT , a2 = b2 +
b4 = (1, 3, 0)T, a3 = b3 = (1, 1, 0)T, a4 = 0, a5 = b1 = (1, 0, 0),

Figure 1 Examples of mutations and resulting mutation patterns. (A) Single mutation leading to mutation pattern h1i; (B) two mutations leading to
mutation pattern h2, 1i; (C) two mutations leading to mutation pattern h3i due to the second mutation being masked by the first one.
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and an example of w is that w4 = b7 + b8 and w3 = b4 +
b7 + b8 + b9.

In addition to a and t, we will encounter other quantities
that are functions of bi, i = 1, . . . , which will be defined as
they are introduced. Each of these quantities has a value for
a given genealogy, and often we need to evaluate its expec-
tation (mean) over all genealogies. We use a bar over the
variable to represent its expectation. For example,

�t ¼
Z
g
t  dg; �ak ¼

Z
g
ak   dg: (2)

Probability of a mutation pattern

Assume that the number of mutations in a branch of the
sample genealogy g is a Poisson variable. Then the proba-
bility of no mutation in a family is equal to e2tTu. Since
a single mutation leading to an observed pattern hii must
occur on a branch of size i, it follows that

PrðhiijgÞ ¼ P
k:fðkÞ¼i

e2ðt2bk2wkÞTu
�
12 e2bT

ku
�

¼ P
k:fðkÞ¼i

e2ðt2wkÞTu
�
eb

T
ku 2 1

�
;

(3)

where the summation is taken over all the branches of size i.
In the summation, the first term e2ðt2bk2wkÞTu is the proba-
bility that there is no mutation outside the subtree of branch
k and the second term ð12 e2bT

kuÞ is the probability there is
at least one mutation in branch k. This is because any mu-
tation in the subtree will be masked by the mutation in
branch k and thus not observable. In general, we have for
a mutation pattern hi1, . . . , ili that

Prðhi1; . . . ; ilijgÞ ¼
X

ðk1 ;...;klÞ 2 J gði1 ;...;ilÞ

"
e2ðt2wk1 ;...;kl ÞTuYl

i¼1

�
eb

T
ki
u 2 1

�#
;

(4)

where wk1;...;kl ¼
P

iwki and J g(i1, . . . , il) is the collection of
the branch sets of genealogy g on which mutations can lead
to the observed mutational pattern. That is,

J gði1; . . . ; ilÞ ¼
�ðk1; . . . ; klÞ : f�kj� ¼ ij for i ¼ 1; . . . ; l 

and VðkiÞ \V
�
kj
� ¼ Ø for i 6¼ jg:

(5)

Since sample genealogy is generally unobservable, one
needs to consider all the possible sample genealogies from
which the given mutational pattern can be generated, which
leads to the general unconditional probability of the mu-
tational pattern hi1, . . . , ili as

Prðhi1; . . . ; iliÞ ¼
Z
g

X
ðk1 ;...;klÞ 2 J gði1 ;...;ilÞ

"
e2ðt2wk1 ;...;kl ÞTuYl

i¼1

�
eb

T
ki
u 2 1

�#
dg:

(6)

This formula provides the basis for the proposed inferences
and detailed analysis of Drosophila data. For any given
mutation pattern hi1, . . . , ili and u, the probability can be
evaluated as the average of Pr(hi1, . . . , ili|g) [which is
given by (4)] over a reasonably large set of simulated
sample genealogies. However, it is generally not efficient
and often impractical to use the above formula directly
if hundreds or even thousands of different u need to be
evaluated.

Approximation to the Probability of aMutation Pattern

Since Equation 6 is computationally expansive to use in
general, accurate and yet-fast approximations to the prob-
abilities of various mutation patterns are important and
often necessary for large-scale data analysis. Gao et al.
(2011) found approximations to the probabilities for up
to two mutations in a family, using the Taylor expansion.

For example, e2tTu � 12 tTuþ 1
2
  uTðttTÞu. Define Aij ¼ aiaTj ;

Ai ¼ aitT ;  and A0 ¼ ttT . Then the probabilities p0 = Pr(hi),
pi = Pr(hii), and pij = Pr(hi, ji) can be approximated (Gao et al.
2011) by

p0 � 12�tTuþ 1
2
uT �A0u; (7)

pi � �aTi u2uT �Aiu; (8)

pij �
22 di2j

2
uT �Aiju; (9)

where di2j = 1 if i = j and 0 otherwise. This method of
approximation is referred to as the approximation by Taylor
expansion (ATE). Although these approximations cover up

Figure 2 An example of the genealogy of five alleles (a2e) sampled from
the cell population after the fifth division. Each branch is identified by a
nearby integer. The sizes of the branches are u(1) = 5, f(2) = 2, f(3) = 3,
f(4) = 2, f(5) = f(6) = f(7) = f(8) = f(9) = 1; bT1 ¼
ð1;0;0Þ; bT2 ¼ ð1; 2;0Þ, bT3 ¼ ð1;1;0Þ; bT4 ¼ ð0; 1;0Þ, bT5 ¼ bT6 ¼ bT7 ¼
bT8 ¼ ð0;0;1Þ, and bT9 ¼ ð0;1; 1Þ.
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to two mutations per family, in principle a reasonably accu-
rate approximation to the probability of any given mutation
pattern can be obtained if a sufficient number of Taylor
expansion terms are included. With increasing mutation
rate, the number of required terms for each case will also
increase, and due to the need to estimate a large number of
coefficients in higher-order terms, their computations make
the ATE inefficient.

Since typically bT
ku � 1 in Equation 6, eb

T
ki
u 2 1 � bT

ku.
Furthermore one can simplify the expression by replacing
w for each combination of branches by its average value
and arrive at

Prðhi1; . . . ; ilijgÞ �
X

ðk1;...;klÞ 2 J gði1;...;ilÞ

"
e2½t2wk1 ;...;kl �TuYl

i¼1

bTkiu

#

(10)

� e2½t2wðhi1;...;iliÞ�TuSðhi1; . . . ; ili;uÞ; (11)

where w(hi1, . . . , ili) is defined as the average value of
wk1;...;kl over the set J g(i1, . . . , il) and

Sðhi1; . . . ; ili;uÞ ¼
X

ðk1;...;klÞ2J gði1;...;ilÞ

 Yl
i¼1

bTkiu

!

¼
X

l1;...;lm

al1...lmul1 . . . ulm ; (12)

where al1...lm ¼Pðk1;...;klÞ 2 J gði1;...;ilÞbk1l1 . . . bkmlm , which leads
to an approximation of Equation 6 as

Prðhi1; . . . ; iliÞ �
Z
g
e2½t2wðhi1;...;iliÞ�TuSðhi1; . . . ; ili;uÞdg:

(13)

A further simplification and approximation can be obtained
by moving the integration inward and replacing each quantity
by its integral (that is, its expectation). This leads to the
approximation

Prðhi1; . . . ; iliÞ � e2½�t2 �wðhi1;...;iliÞ�Tu�Sðhi1; . . . ; ili;uÞ; (14)

where �wðhi1; . . . ; iliÞ is the mean value of w(hi1, . . ., ili) over
all genealogies, and �S is the mean of S over all genealogies,
which can be computed as

�Sðhi1; . . . ; imi;uÞ ¼
X

l1;...;lm

�al1...lmul1 . . . ulm ; (15)

where �al1...lm is the mean of al1...lm over all possible genealo-
gies. This new approach is referred to as the approximation
by inward integration (AII).

Let S(hi, u) = 1 and w({}) = 0. Then Equation 14 is
applicable to any mutation pattern. The computation of
Equation 14 is quite manageable now. In particular, for up
to two mutations, we have

Sðhii;uÞ ¼
X

ðkÞ2J gðiÞ
bTku ¼ aTku; (16)

Sðhi; ji;uÞ ¼
X

ðk;lÞ2J gði;jÞ

�
bTku

��
bTl u

�
¼ uTBiju; (17)

where Bij ¼
P

ðk;lÞ 2 J gði;jÞbkb
T
l . Therefore, the corresponding

new approximations up to two mutations are

p0 � e2�tTu; (18)

pi � e2½�t2�wðhiiÞ�Tu
�
�aTi u

�
; (19)

pij � e2½�t2 �wðhi;jiÞ�Tu�uT �Biju
�
; (20)

where �Bij is the mean Bij over all genealogies. Note that Bij is
not the same as Aij due to constraints on the pair of branches
that are compatible with the observed pattern. Gao et al.
(2011) recognized the masking effect of mutations and

Figure 3 Population dynamics and an example of the genealogy of four
sperm.

Table 1 Constraints during the germline development of a male
Drosophila melanogaster

Constraint no. Detail

1 N(8) 2 [4, 6]
2 N(12) 2 [23, 52]
3 Population split into two with each N 2 [5, 9]
4 Stem-cell stage starts from the 15th division

onward with p2 = 0.001
5 Differentiated cells after the 31st division starts

spermatogenesis
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estimated Aij by Bij. We show in a later section that when
three or more mutations in a family are rare, then both the
ATE and the AII give excellent approximations to the true
probabilities. With an increasing number of families with
more than two mutations, we find that the new approach
provides a more accurate approximation to Equation 6 than
those by Gao et al. (2011).

The Likelihood Inference

Suppose there are in total m different mutation patterns in
the data set, c1, . . . , cn, and ni is the occurrence of pattern ci.
Then, the likelihood of the data is

L ¼
Ym
i¼1

PrðciÞni ; (21)

where Pr(ci) is the probability of pattern ci. Based on the
new scheme for estimating the probabilities of each pattern,
the maximum-likelihood estimates, û, of u can be derived
from ln(L), which is

lnðLÞ ¼ 2
Xm
i¼1

ni
�
�t2�wðciÞ

�Tuþ
Xm
i¼1

niln
�
�Sðci;uÞ

�
: (22)

The asymptotic covariance of the estimates û can also be
obtained as the inverse of matrix V ¼ 2 ð@2ln  L=@uk@ulÞju¼û,
whose computation is described in the Appendix. Let rT =
(r1, . . . , rI), where rk is the number of cell divisions in the
kth interval. Then per generation mutation rate u can be
estimated as

û ¼ r1û1 þ r2û2 þ . . .þ rIûI: (23)

The variance of this estimate is Varð~uÞ ¼ rTV21r. Suppose
the total number of mutant lines in the experiment is M
and the total number of lines screened is N. Then an alter-
native estimate of u is ~u ¼ M=N, which is unbiased regard-
less of whether mutation rates during development are the

same (Fu and Huai 2003). A hypothesis can be tested through
the likelihood-ratio test. For example, for testing the null hy-
pothesis (H0) that mutation rates at different cell divisions are
all equal, against the alternative hypothesis H1 that rates have
no constraint, the test statistic

Lr ¼ 22ðlnðL0Þ2 lnðL1ÞÞ (24)

follows asymptotically the x2-distribution with I 2 1 d.f.

Cell Propagation and Simulation of Cell Genealogy

A discrete generation model is used for the propagation of
cells in the germline lineage. We introduce two alternative
modes of cell propagation.

Let N(i) be the size of the ith population, which can be
divided into two groups, one [size N0(i)] without a sister cell
and one [size N1(i)] with one sister cell [N(i) = N0(i) +
N1(i)]. The first mode of propagation assumes that for each
cell in the ith population, the probability of having k(k = 0,
1, 2) daughter cell(s) in the ith population is pk.

This mode of cell propagation is fully determined when
the values of pi are specified. p2 = 1 corresponds to the case
in which each cell yields two daughter cells, which is con-
sidered to be the default situation. Another special case is
that every cell produces at least one daughter cell, which
corresponds to p0 = 0. For two randomly selected cells from
the ith population, the probability that they will coalesce in
the i 2 1th population is

N1ðiÞ
NðiÞðNðiÞ2 1Þ: (25)

That is, two cells will coalesce if and only if the first cell
selected has a sister cell [with probability N1(i)/N(i)] and
the second cell selected is its sister cell [with probability 1/
(N(i 2 1) 2 1]. When there are multiple pairs of cells being
considered, multiple coalescence can occur, which is usually
not allowed in the conventional coalescent theory. The exact
probabilities of any particular pattern of coalescence (for
example, two pairs of coalescence, five pairs of coalescence,

Table 2 The expected numbers of mutation patterns and quality
of approximations in 8625 families, each having 20 offspring

i =

u(· 104) 0 1 2 3 4 5 6 7

1 NPi 8,326.5 293.9 4.6 0.0 0.0 0.0 0.0 0.0
Di 20.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
D9i 0.2 20.1 20.1

5 NPi 7,232.6 1,286.7 100.9 4.7 0.1 0.0 0.0 0.0
Di 21.7 1.4 0.3 0.0 0.0 0.0 0.0 0.0
D9i 21.7 14.1 217.4

10 NPi 6,067.3 2,179.3 344.1 32.2 2.0 0.1 0.0 0.0
Di 25.7 3.8 1.6 0.2 0.0 0.0 0.0 0.0
D9i 238.6 131.9 2127.5

50 NPi 1,504.0 2,950.4 2,468.7 1,206.0 389.8 88.8 14.7 1.5
Di 231.3 225.5 12.7 23.8 13.6 4.5 1.0 0.1
D9i 24,901.0 11,637.7 28,438.5

u, mutation rate; NPi, expected number of occurrences based on exact probability;
Di, D values based on the AII; D9i, D values based on the ATE.

Table 3 Maximum-likelihood estimates of u1, u2, u3, and u4(· 104)
with 20 offspring from each of n families

u1, u2, u3, u4 n = 1,000 n = 10,000

4, 4, 4, 4 4.21, 3.86, 4.04, 3.98a 3.95, 3.94, 4.02, 3.97
4.80, 2.57, 1.37, 1.51b 1.80, 0.99, 0.48, 0.62

8, 4, 4, 4 7.83, 4.11, 3.93, 4.04 7.95, 3.94, 4.02, 3.97
6.50, 3.02, 1.51, 1.53 2.35, 1.11, 0.53, 0.50

4, 4, 4, 8 4.19, 3.83, 4.07, 7.91 3.97, 3.94, 4.02, 7.96
4.77, 2.62, 1.44, 1.72 1.84, 0.97, 0.50, 0.56

6, 4, 4, 6 5.93, 3.97, 4.01, 5.97 5.99, 3.92, 4.04, 5.95
5.68, 2.82, 1.47, 1.62 2.11, 1.04, 0.52, 0.53

3, 6, 6, 3 3.67, 5.58, 6.13, 2.96 3.03, 5.83, 6.06, 2.95
4.73, 3.00, 1.62, 1.67 1.75, 1.07, 0.56, 0.55

Result for each case is based on 1000 simulated data sets.
a Mean estimates.
b Standard deviations.
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etc.) can be given analytically although they are not neces-
sary for our purpose. What is critical is a proper algorithm to
simulate this process as is discussed later in this section.

An alternative mode of cell propagation is as follows.
Assume that each cell in the (i 2 1)th population divides to
yield two daughter cells and the cells in the ith population
are a random sample (without replacement) from these
2N(i 2 1) daughter cells. This mode of cell propagation is
recognized when a range condition, such as N(i) 2 [a, b], is
specified. In such a case, N(i) is assumed to be a random
integer in the given range [a, b]. Then the probability that
two randomly selected cells from the ith population will
coalesce in the (i 2 1)th population is

1
2Nði21Þ21

; (26)

which occurs only if the second cell selected is the sister cell
of the first one. Again the probability of multiple coalescence
can be derived. However, the sampling process will also
yield N(i) and N1(i); thus the coalescent probability is also
given by Equation 25.

Simulation algorithms

A forward–backward two-step algorithm was used in Gao
et al. (2011) and will continue to be used here. The first
(forward) step is to simulate a history of the population sizes

and the second (backward) step is to simulate the genealogy
given the history of the populations sizes as follows.

Forward algorithm: Simulation of cell population dynam-
ics: Given the value of N(i 2 1), the value of N(i) is simu-
lated according to the transition mode. Meanwhile, the
values of Nk(i), (k = 1, 2) are recorded.

Backward algorithm: Simulation of cell genealogy: Given
a collection of n cells from the ith population:

1. Create an array of N(i) integers as follows: N1(i) integers
from 1 to N1(1) and two copies of each integer from
N1(i) + 1 to N1(i) +N2(i).

2. Take a random sample of size n from the above array. If
two integers in the sample are the same, a coalescent
event occurs.

3. Update the collection of cells and repeat steps 1 and 2
until the 0th population (the zygote) is reached.

In the forward step, the cell lineage splits into two
subpopulations after the 14th division and enters the stem
cell lineage, which is specified by mode 1 with p1 = 1 2 e,
p2 = 2 for small values of e. After the 31st division, each of
the differentiated cells from stem cells goes into spermato-
genesis, resulting in 64 sperm. After the 37th cell division,
the sperm population consists of sperm that are derived

Figure 4 Distributions of the estimates for u1, u2, u3, and u4 (from top down). In each of the plots, shaded bars correspond to 1000 families and solid
bars to 10,000 families (labels for the x-axis are multiplied by 104).
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from differentiated cells that have experienced different
numbers of divisions. Therefore, the number of cell divisions
for each of the sperm in a random sample can be different.

Numerical Results

To investigate statistical properties of the inference frame-
work, the 36 cell divisions are divided into four intervals: [1,
3], [4, 14], [15, 31], and [32, 36], representing, respec-
tively, the early cleavage, late cleavage, the stem-cell stage,
and the spermatogenesis stage. Situations with maximal cell
divisions .36 are also considered, so that different sperm in
a sample might have experienced different numbers of divi-
sions (see Figure 3). In such situations, the meaning of the
last two intervals needs to be modified. For example, if
a maximum of 38 divisions is allowed, then the last interval
corresponds to the last 5 cell divisions, which for some lin-
eages are from the 34th to the 38th division, while for some
they are from the 32nd to the 36th division; and the second
interval thus includes the 15th division in whatever is not
included in the last interval.

Simulation of sample genealogy

As pointed out earlier, the process of simulating a sample
genealogy is similar to that in Gao et al. (2011), with the
exception of the gametogenesis stage. The process consists
of forward and backward steps. The former is guided by
a number of constraints about the population sizes men-
tioned in the Introduction. For example, after the 8th di-
vision, there are 256 cells from which only 4–7 cells
become PGCs. Table 1 lists all the used constraints for pop-
ulation sizes during germline development. After the 31st
division in the forward process, each of the differentiated
cells will go into gametogenesis, which progresses through 5
additional divisions to produce 64 sperm. This aspect of the
development is now explicitly modeled.

The backward process of the simulation is the same as that in
Gao et al. (2011) except that the efficiency of the program has
been improved. The resulting population dynamics with relation
to the sample genealogy are illustrated in Figure 3. It is impor-
tant to simulate a large number of genealogies from which the
values of various coefficients in the inference framework can be
obtained. To deal with up to four mutations in a family, we
found that in general 250,000 genealogies are sufficient.

Accuracy of the approximations to the probabilities
of mutation patterns

Since the expected numbers of occurrences and the differ-
ence in the expected numbers of occurrences are critical to
the statistical inference, we use the following index to measure
the accuracy of the approximations,

Di ¼ N
�
Pi 2 P̂i

�
; (27)

where Pi is the exact probability for a mutation pattern with
i mutations, P̂i is its approximation, and N is the number of

families, which is set to 8625. The probabilities were esti-
mated with 2 million simulated genealogies. Table 2 gives
the results for several mutation rates. In all cases the AII is
better than the ATE; the AII performs well for a wide range
of mutation rates, including a very large mutation rate. The
ATE appears to be sufficient for a mutation rate up to �u ·
1024, but with a rate closer to 10 · 1024, its errors becomes
too large, in addition to not being able to handle more than
two mutations. We focus on further studying the statistical
properties of the AII because of its obvious superiority.

Maximum-likelihood estimate of u

One major outcome of the inference is the maximum-
likelihood estimate of the mutation rate u; thus it is impor-
tant to understand the properties of the estimates, which
were carried out using simulations. Table 3 shows the
means and standard deviations of the maximum-likelihood
estimates of u1, u2, u3, and u4 for several cases. The results
show that the maximum-likelihood estimates are slightly
biased but the bias decreases with increase in family num-
ber, which is expected from the well-known properties of the
maximum-likelihood method. The standard errors of esti-
mating u1, . . . , u4 differ from each other, with those for u3
and u4 being the smallest and that for u1 the largest. This
pattern agrees with the fact that there are many more muta-
tions that result in a smaller mutant size, most of which
likely occurred during the third and fourth time intervals.
As a result, there are more observations from these two
intervals that lead to more accurate estimates.

Figure 4 shows the distributions of estimates of mutation
rates corresponding to the first row of Table 3. Two obvious
features from these distributions are as follows. The first is
that with increased family number, each distribution be-
comes more concentrated around the true mutation rate.
The second is that judging from the spread of the distribu-
tions, the quality of estimations for u3 and u4 is better than
that for u1 and u2. Among the four, the quality of estimating
u1 is the poorest. These features agree well with the patterns
of standard deviations in Table 3.

Likelihood-ratio test

Being able to obtain maximum-likelihood estimates under
different assumptions also allows us to examine the distri-
bution of the likelihood-ratio test. Various hypotheses about
the pattern of mutation rates can be tested, as reported
in Gao et al. (2011); however, the following four are

Table 4 Critical values for likelihood-ratio tests with m = 0.0004

Asmpt n = 1,000 n = 5,000 n = 10,000

Li,j c5 c1 c5 c1 c5 c1 c5 c1

L0,1 5.99 9.21 6.18 9.56 6.17 9.35 6.23 9.44
L0,2 3.84 6.64 3.47 5.26 3.96 6.88 3.93 6.66
L0,3 7.82 11.35 7.51 10.55 8.01 11.42 8.21 11.98

c5 and c1 are, respectively, the upper 5% and 1% critical values. Simulation results
for each case are based on 10,000 replicates.
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representative, one for each value of the degrees of freedom:
H0, rates are constant; H1, the last three are the same; H2,
the first two are the same; and H3, no constraint.

Let Lij be the log-likelihood ratio statistics between the ith
and jth hypotheses. When H0 is true, it is expected that L0,1,
L0,2, and L0,3 follow asymptotically x2-distributions with 1,
2, and 3 d.f., respectively. In the simulations, constant mu-
tation rates are used and for each simulated sample, the
maximum likelihood under each hypothesis is found, which
leads to the likelihood-ratio statistics. Table 4 shows the
upper-tail critical values for these three statistics. Comparing
these critical values with the critical values of x with 1, 2,
and 3 d.f., respectively, indicates that the these critical val-
ues agree reasonably well with the asymptotic values with
sample sizes as small as 500. The distributions of these sta-
tistics are given in Figure 5 for two different sample sizes,
which shows the overall excellent agreement of the empir-
ical density with asymptotic ones.

Reanalysis of the data

The data being reanalyzed here consist of those presented in
Table 1 of Gao et al. (2011) and 7 additional families, 3 of
which have three mutations and 1 of which has four muta-
tions, giving thus a total of 8,625 families. For convenience

of comparison, we used the same division of intervals: [1,
1], [2, 2], [3, 14], [15, 31], and [32, 36]. Table 5 shows
the maximum-likelihood estimates using both the ATE and
the AII (for the sake of space, only the results for four of the
eight hypotheses considered in Gao et al. 2011 are given),
while Table 6 gives the results of the likelihood-ratio tests.
Comparing the entries of the ATE in these tables to those in
Tables 4 and 5 of Gao et al. (2011), one can see that the
differences are minimal. Furthermore, comparing the esti-
mates by the ATE to those by the AII shows that the differ-
ences are also minor in almost all cases. Therefore, the
improved method does not change the conclusions made pre-
viously. These analyses also included the case in which 38 cell
divisions were assumed. In such situations, the patterns of the
likelihood-ratio tests (Table 6) suggest that the mutation
rates for the second, third, and fourth intervals may also be
different, although the evidence is only marginal.

While it is comforting that the reanalysis reinforces the
conclusions made earlier, this should not be regarded as the
AII lacking importance. When the number of families with
more than two mutations increases, one can expect to see
increasing differences and a more rigorous new method
than the ATE will become necessary. To illustrate, we
simulated sets of 8625 families with four intervals of cells

Figure 5 Distributions of likelihood-ratios L0,1 (top three), L0,2 (middle three), and L0,3 (bottom three) for 200 (left), 1000 (center), and 10,000 (right)
families (bottom), with smooth curves being the x2 densities.
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[1, 1], [2, 14], [15, 33], and [34, 38], using two sets of
mutation rates, one being equal rates for all the intervals
and the other being one that produces mutational patterns
resembling those from the experiment, which will be
subjected to detailed analysis elsewhere. Table 7 shows
the comparison of the two methods from which it is obvi-
ous that the ATE leads to underestimation of mutations
rates. In the first case (equal mutations rates), the bias
in estimating ui increases with i and u4 is about two-thirds
of the true value. MSEs of the estimates also suggest that
the AII performs considerably better (except for u1 for
which there is little difference between the two methods).
For the second case, the downward bias in the estimates
by the ATE is also obvious in all ui and the MSEs by ATE are
appreciably larger than those by the AII. Another short-
coming of the ATE is that due to differential degrees of
underestimation of ui, it can lead to rejection of certain
hypotheses more often than specified by the given nom-
inal level of significance. For example, for testing the
hypothesis u1 = u4, the ATE in the first case leads to
nearly 12% rejection while the AII has ,5% rejection at
the 5% significance level. These results agree well with
an earlier conclusion made from Table 2, which is that
when the mean mutation rate is .1024, the ATE starts to
lose accuracy.

Discussion

This article presents a significantly improved framework for
statistical inference of germline mutation rates, with specific
reference to D. melanogaster. This framework includes co-
alescent theory and an improved algorithm for simulating
sample genealogies to obtain various coefficients, a method
for computing the probabilities of mutation patterns, and
a likelihood method for estimating mutation rates and testing
hypotheses about the pattern of mutation rates. Statistical

properties of the inference framework were investigated
through simulation. The new approximation method for com-
puting the probabilities of mutation patterns is more accu-
rate than the previous method by Gao et al. (2011),
particularly when mutation rates are high. Nevertheless,
the previous method is sufficiently accurate for the data
reported by Gao et al. (2011), and thus all major conclu-
sions remain intact. The new likelihood-based inference
exhibits desirable and expected properties, including re-
duced bias and smaller standard deviation with increasing
number of families. The asymptotic x2-distribution for the
likelihood-ratio test is sufficiently accurate when the num-
ber of families is reasonably large and for the sample size
reported in Gao et al. (2011).

This theoretical study paves the way for analysis of data
from families with three and four mutations. Furthermore,
the theoretical framework reported here can be adapted for
studying germline mutational distribution in other organ-
isms and for analyzing data generated through DNA typing
or sequencing sperm samples. To apply the framework to
other organisms the nature and mode of cell propagation of
their germline populations would need to be determined.
Application to data generated by DNA typing or sequencing
will likely have its own issues, such as data accuracy, but
since it is more economical to sequence larger regions with
fewer samples than shorter regions with larger samples,
observing multiple mutations will likely be the norm.
Therefore, the statistical framework of inference described
here will be relevant.

Table 6 The values of the log-likelihood ratio test of various
hypotheses listed in Table 5

i =

Contrast 2 3 4 5 6 7 8

H1 vs. Hi 758.8 731.6 758.9 758.8 293.2 714.8 758.9
758.7 731.7 758.8 758.7 292.7 714.6 758.8
657.1 630.9 662.1 657.5 293.6 609.9 662.1

Hi vs. H8 0.1 27.3 0.0 0.1 465.7 44.2
0.1 27.1 0.0 0.1 466.1 44.2
5.0 31.2 0.0 4.6 368.6 52.3

Table 5 Maximum-likelihood estimates of u · 103 under several
hypotheses

Hypothesis u1 u2 u3 u4 u5 2ln(L)

H1 0.347a 0.347 0.347 0.347 0.347 4519.0
0.343b 0.343 0.343 0.343 0.343 4494.8
0.321c 0.321 0.321 0.321 0.321 4441.9

H3 2.284 2.284 0.001 0.001 1.217 4153.2
2.284 2.284 0.001 0.001 1.217 4129.0
2.249 2.249 0.001 0.046 1.050 4126.4

H5 4.864 0.001 0.007 0.007 1.217 4139.6
4.864 0.001 0.007 0.007 1.217 4115.4
4.655 0.001 0.037 0.037 1.050 4113.1

H8 5.072 0.001 0.002 0.007 1.217 4139.5
4.864 0.001 0.002 0.007 1.217 4115.4
4.815 0.001 0.001 0.058 1.032 4110.8

H1, u1 = . . . = u5; H2, u2 = u3 = u4; H3, u1 = u2; H4, u2 = u3; H5, u3 = u4; H6, u4 = u5;
H7, u1 = u5; and H8, no constraint.
a Estimates based on the ATE.
b Estimates based on the AII.
c Estimates based on the AII with 38 divisions.

Table 7 Comparison of estimates of u based on the ATE and the AII
when mutation rates are relatively high

Rates Values (·104) AII MSE ATE MSE

u1 2.000 2.098 0.648 1.923 0.627
u2 2.000 1.898 0.031 1.602 0.186
u3 2.000 2.015 0.007 1.587 0.177
u4 2.000 1.934 0.016 1.417 0.348
u1 20.000 19.581 2.4772 18.904 3.4325
u2 0.200 0.203 0.0086 0.139 0.0111
u3 0.167 0.165 0.0020 0.152 0.0021
u4 5.000 4.943 0.0112 4.315 0.4742

MSE, mean square error. For each parameter set, 500 sets of 8625 families were
generated.
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Appendix

Asymptotic Covariance of the Maximum-Likelihood
Estimates

The asymptotic covariance matrix of the maximum-likeli-
hood estimates û is the inverse of the following matrix:

V ¼ 2

	
@2ln  L
@uk@ul


����
u¼~u

:

Since

lnðLÞ ¼ 2
Xm
k¼0

nkðt2skÞTuþ
Xm
k¼0

nklnðSkÞ;

it follows that

@lnðLÞ
@ui

¼
X
k¼0

nk

�
S21
k

@Sk
@ui

2 ðt2skÞi


(A1)

@2lnðLÞ
@ui@uj

¼
X
k¼1

nkS
22
k

�
Sk

@2Sk
@ui@uj

2
@Sk
@ui

@Sk
@uj


: (A2)

Since S is of the form

S ¼
X

i1;i2;...;ik

tði1; i2; . . . ; ikÞui1 . . . uik ;

where t(i1, i2, . . . , ik) is constant, it follows that

@S
@ui

¼
X

i1;i2;...;ik

tði1; i2; . . . ; ikÞ
@ui1 . . . uik

@ui
(A3)

@2S
@ui@uj

¼
X

i1;i2;...;ik

tði1; i2; . . . ; ikÞ
@2ui1 . . . uik

@ui@uj
: (A4)

Furthermore, let ni be the number of i in i1, . . . , ik; then

@ui1 . . . uik
@ui

¼ niui1 . . . uik
ui

(A5)

@2ui1 . . . uik
@ui@uj

¼ ninjui1 . . . uik�
uiuj

� (A6)

@2ui1 . . . uik
@ui@ui

¼ niðni 2 1Þui1 . . . uik�
u2i
� : (A7)

Putting the results of Equations A3–A7 into Equation A2,
together with u replaced by û, will lead to the numerical
value of @2ln  L=@uk@ul.
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