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ABSTRACT Genomic traits such as codon usage and the lengths of noncoding sequences may be subject to stabilizing selection rather
than purifying selection. Mutations affecting these traits are often biased in one direction. To investigate the potential role of stabilizing
selection on genomic traits, the effects of mutational bias on the equilibrium value of a trait under stabilizing selection in a finite
population were investigated, using two different mutational models. Numerical results were generated using a matrix method for
calculating the probability distribution of variant frequencies at sites affecting the trait, as well as by Monte Carlo simulations.
Analytical approximations were also derived, which provided useful insights into the numerical results. A novel conclusion is that the
scaled intensity of selection acting on individual variants is nearly independent of the effective population size over a wide range of
parameter space and is strongly determined by the logarithm of the mutational bias parameter. This is true even when there is a very
small departure of the mean from the optimum, as is usually the case. This implies that studies of the frequency spectra of DNA
sequence variants may be unable to distinguish between stabilizing and purifying selection. A similar investigation of purifying
selection against deleterious mutations was also carried out. Contrary to previous suggestions, the scaled intensity of purifying
selection with synergistic fitness effects is sensitive to population size, which is inconsistent with the general lack of sensitivity of codon
usage to effective population size.

THERE is an increasing interest in the evolutionary factors
that shape the properties of genomes. Weak purifying

selection, together with mutation and genetic drift, has often
been used as the basis for evolutionary models of genomic
traits such as codon usage (Li 1987; Bulmer 1991; McVean
and Charlesworth 1999), intron presence and size (Lynch
2002), and the mutation rate (Lynch 2011; Sung et al.
2012). This has led to the proposal that species with a low
effective population size (Ne), in which selection is relatively
ineffective in relation to genetic drift and mutation (Wright
1931; Kimura 1983), are more likely than species with
a high Ne to evolve selectively disadvantageous properties,
such as lower codon usage bias, larger genome size, and
a higher mutation rate (Lynch 2002, 2007, 2011; Sung et al.
2012). But there is no a priori reason to exclude the possibility
that at least some genomic traits are subject to stabilizing

selection rather than purifying selection, so that individuals
with extreme values of the trait are at a selective disadvantage
compared with those with intermediate values (Kimura 1981;
Johnson 1999; Parsch 2003; Wang and Yu 2011).

Evidence that quantitative traits can be subject to stabilizing
selection started to accumulate over a century ago (Bumpus
1899; Weldon 1901; Di Cesnola 1907). Subsequently, Fisher
(1930b, pp. 105–111) showed that mutation could maintain
variability in a trait under stabilizing selection. This pioneer-
ing work stimulated many later theoretical studies, reviewed
by Bürger (2000). Most applications to biological problems
have concerned externally measurable phenotypes, which
are known to experience relatively strong selection (Haldane
1954; Kingsolver et al. 2001), so that deterministic models
have been commonly used in this context. Stabilizing selec-
tion on genomic traits is, however, likely to be very weak, and
so it is important to examine the effects of genetic drift as well
as mutation, if we are to understand their behavior under
stabilizing selection.

Several models of stabilizing selection on quantitative
traits in finite populations have shown that the probability
distribution of the trait mean is held close to the optimal
value for the trait, unless the population size is far lower
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than is usual for a natural population (Lande 1976; Campbell
1984; Barton 1989; Bürger and Lande 1994; Bürger 2000,
pp. 268–282). This is because the dispersion of the mean
around the optimum is controlled by the product of Ne and
the net intensity of selection on the trait (Lande 1976). This is
likely to be far larger than the product of Ne and the selection
coefficient s for a mutation at a given site in the genome—it is
Nes that controls the fixation probabilities of mutations and
the distribution of variant frequencies within a population
(Wright 1931; Kimura 1983). It is thus possible for selection
to be in effective control of the mean of a quantitative trait,
while mutation and drift have significant effects on the fates
of individual variants affecting the trait (Kimura 1981, 1983;
Campbell 1984; Barton 1989).

These models tell us that a trait mean is likely to stay
close to the optimum, except for small artificial populations
or species on the verge of extinction. However, the models
mostly assume that mutational effects on the trait are
unbiased, so that the trait mean is unchanged by mutation
pressure alone. This is unlikely to be true of the genomic
traits mentioned above; there is, for example, evidence for
a mutational bias in favor of small deletions over small in-
sertions (Petrov et al. 1996; Petrov and Hartl 1998; Comeron
and Kreitman 2000; Ptak and Petrov 2002; Parsch 2003;
Leushkin et al. 2013) and for unpreferred over preferred
codons (Sharp et al. 2005; Hershberg and Petrov 2008; Zeng
and Charlesworth 2009; Zeng 2010).

A theoretical investigation of stabilizing selection in an
infinite population has shown that the trait mean may
be maintained close to the optimal value in the face of
mutational bias (Waxman and Peck 2003). In contrast, it is
known from the theory of mutation, drift, and selection on
codon usage that mutational bias can cause the equilibrium
level of codon usage bias to depart substantially from its max-
imum value, if the population size is sufficiently small (Kimura
1981; Li 1987; Bulmer 1991; McVean and Charlesworth
1999). Similarly, Zhang and Hill (2008) used computer sim-
ulations of the combined effects of mutational bias, genetic
drift, and stabilizing selection on a quantitative trait to show
that substantial deviations of the trait mean from the opti-
mum can be produced when Ne is sufficiently small in re-
lation to the intensity of selection.

No systematic theoretical investigation of the interaction
between stabilizing selection, mutational bias, and drift has
previously been carried out. One purpose of this article is to
fill this gap, by developing analytical approximations for the
parameters of interest, using a method originally developed
by Kimura (1981), which is related to that used in models of
selection on codon usage (Li 1987; Bulmer 1991; McVean
and Charlesworth 1999). The analytical results were checked
by numerical modeling, using stochastic simulations as well
as a matrix method similar to that employed in recent investi-
gations of other modes of selection (Eyre-Walker and Keightley
2009; Zeng and Charlesworth 2009).

These methods can also be used to study the interaction
between mutation pressure and weak purifying selection

against deleterious mutations, allowing for the possibility of
epistasis among the fitness effects of deleterious mutations
at different sites. This has potential relevance to the evolu-
tion of sex and recombination (Kimura and Maruyama 1966;
Feldman et al. 1980; Kondrashov 1982, 1984, 1988; Charlesworth
1990), but finite population effects have largely been neglected
except for Kondrashov (1995). It has also been proposed
that synonymous sites subject to selection on codon usage
may be subject to synergistic fitness effects, thereby explain-
ing the apparent lack of any strong relation between the
effective population size of a species and its level of codon
usage bias (Akashi 1995, 1996; Kondrashov et al. 2006).
The reasoning is that the intensity of selection against unpre-
ferred codons increases as the proportion of sites with unpre-
ferred codons increases, eventually stabilizing the level of
codon usage bias.

The main novel conclusion is that the scaled measure of
the intensity of selection for individual sites under stabiliz-
ing selection (defined here as g = 4 Nes) is approximately
independent of Ne over a wide range of parameters, pro-
vided that there is sufficient mutational bias to perturb the
population mean from the optimal value by a small amount,
thereby creating an overall pressure of selection in the op-
posite direction to the effect of mutational bias. This is be-
cause a larger departure of the mean from the optimum due
to a lower Ne causes an increase in the magnitude of the
selection coefficient s, which can almost precisely counteract
the effect of the change of Ne on g.

These results mean that studies utilizing data such as the
frequency spectra of DNA sequence variants may find it
virtually impossible to distinguish stabilizing from purifying
selection. Furthermore, there is no reason to expect a notice-
able positive relation between the trait mean and Ne for
most biologically realistic values of Ne, since the deviation
of the trait mean from the optimum is usually extremely
small, in contrast to the results of models of purifying selec-
tion that have been used to model various aspects of genome
evolution, e.g., Lynch (2002, 2007, 2011). In contrast, when
there is synergistic selection against deleterious mutations, g
is a strongly increasing function of Ne; in addition, the mean
number of deleterious mutations per individual declines as
Ne increases, contradicting the idea that synergistic selection
can counteract a reduction in codon usage bias caused by
lower Ne.

Models of Stabilizing Selection

Basic assumptions

A model of selection and mutation acting on a quantitative
trait in a randomly mating diploid population is used. This
assumes a large number of exchangeable, independent sites,
with a pair of additively acting, biallelic variants at each site,
as first proposed and analyzed by Fisher (1930b, pp. 105–
111). Essentially the same model can also be applied to
haploids. Consider a large number m of sites, each with
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a variant of type A1 decreasing the trait value z and a variant
of type A2 that increases it. The scale of measurement is such
that individuals homozygous for type A1 alleles at every site
have a value of –ma, and individuals homozygous for type
A2 alleles at every site have a value of ma. In the context of
genome evolution, for example, the trait could be the length
of a collection of introns or intergenic sequences, with each
variant representing an insertion or deletion of a set of
bases.

It is convenient to assume a quadratic deviations model,
such that the fitness of individuals with phenotypic value z is

wðzÞ ¼ 12 Sðz2 zoÞ2; (1)

where zo is the optimal value of the trait, and S is the in-
tensity of selection (Fisher 1930b, p. 105).

For the case of very weak selection analyzed here, this is
an excellent approximation to the commonly used nor-
optimal selection model, where the natural logarithm of
fitness is a quadratic function of the deviation from the
optimum, e.g., Haldane (1954) and Lande (1976). The gen-
eral conclusions should thus apply to this case.

Under the assumption that each site evolves indepen-
dently within a population (i.e., there is no linkage disequi-
librium), the change due to selection in the frequency qi of
the A2 allele at the ith site in the system, neglecting higher-
order terms in Sa2, is given by

Dqis � qið12 qiÞSa2ð2dþ 2qi 2 1Þ: (2)

This equation or its equivalent has been used repeatedly in
the literature (e.g., Wright 1935; Barton 1986; Bürger 2000,
p. 217). The parameter d measures the deviation of the
population mean from the optimum, relative to the effect
of a single variant, such that

d ¼ ðz0 2�zÞ
a

: (3)

The term in 2d in the equation represents the effect of di-
rectional selection due to the deviation of the mean from the
optimum, while the term in 2qi – 1 represents the effect of
stabilizing selection, which tends to push the allele fre-
quency toward the nearest extreme when the mean coin-
cides with the optimum.

We also have the useful relation

�z ¼ ma
�
2�q2 1

�
; (4)

where �q is the mean of q over all sites (Bürger 2000, p. 217).
Following Zhang and Hill (2008), an additional “pleio-

tropic” directional selection coefficient, sd, could be added to
2d + 2qi – 1 in Equation 2. All of the analyses described
below can be carried out with this extension of the model,
with 2Sa2d being replaced by 2Sa2d + sd in the calculations.
If sd . 0, the expected equilibrium value of d, as given by
Equations A.3 and 12b, is reduced, but the value of the

scaled selection coefficient, as given by Equations 9 and
12a, is unchanged. This extension is not considered further.

Mutational models

Two extreme possibilities for representing the effects of
mutation are considered here. First, mutations in both
directions may occur at each site, with a frequency u of
mutations from A1 to A2 and a frequency ku in the opposite
direction, where k represents the extent of mutational bias.
Mutation rates are thus dependent on the allelic states of sites,
as is appropriate for nucleotide substitutions, such as those at
sites affecting a quantitative trait. The mutational contribution
to the change in frequency of type A2 alleles is then

Dqim ¼ u2 ð12 kÞuqi (5)

If both mutation and selection terms are small, this can be
added to Equation 2 to obtain an expression for the
net allele frequency change at the ith site, Dqi = Dqis +
Dqim. If the mutation rate at each site is sufficiently low,
the mutational terms need not be applied to segregating
sites, yielding a model that is similar to the modifications
of the infinite sites model described by Kimura (1981),
McVean and Charlesworth (1999), and Charlesworth and
Charlesworth (2010, pp. 268–279). This allows simple an-
alytical approximations to be obtained (see below).

Alternatively, the state of a site may not restrict the
direction of a future mutation. This probably applies to
indels, where the presence of an insertion or deletion does
not preclude a further change of the same kind. Any site can
then mutate to an insertion with probability u and to a de-
letion with probability ku, regardless of any previous muta-
tional events at that site. Since in reality successive additions
or deletions of sets of bases are unlikely to involve precisely
the same nucleotide site, in this model it is probably best to
regard m as referring to the number of representatives of
a defined class of sequences that can be affected by the
indels in question, such as short introns in Drosophila. This
case is referred to as the “state-independent model,” in con-
trast to the alternative “state-dependent model.” It is similar
to the ladder model of mutation used for electrophoretic and
microsatellite loci (Ohta and Kimura 1973; Slatkin 1995),
since the state of a particular location in the genome can
evolve indefinitely in either direction by successive inser-
tions or deletions.

Analysis of the state-dependent model:
Further assumptions

The method for including the effects of finite population size
will first be developed in relation to the state-dependent
model, since it uses procedures previously developed for
modeling selection on codon usage bias (Kimura 1981; Li
1987; Bulmer 1991; McVean and Charlesworth 1999). The
number of sites is assumed to be sufficiently large that
the distribution of variant frequencies over sites (including the
two fixed classes) is close to the probability distribution of
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variant frequencies generated by drift, mutation, and selec-
tion. This implies that the mean value (�q) of the frequencies
of A2 variants across all sites for a given population is close
to the expected value (q*) of the frequency at a random site,
taken over the probability distribution of frequencies under
drift, mutation, and selection. This assumption can be used
to develop both numerical and analytical results. Its accu-
racy is evaluated in the Supporting Information, File S1.

In addition, linkage equilibrium is assumed; simulations
have shown that this provides a good approximation to
exact multilocus models of stabilizing selection, provided
that selection is weak in relation to recombination, and the
population size is sufficiently large (Bürger 2000). For sim-
plicity, a Wright–Fisher population of size N is assumed;
more generally, N can be replaced by the effective popula-
tion size, Ne (Wright 1931; Charlesworth and Charlesworth
2010, Chap. 5).

Approximate analytical results for the
state-dependent model

When there is sufficient mutational bias to perturb the
population mean away from the optimum, the term in 2d in
Equation 2 dominates over 2qi – 1 (Kimura 1981). This
means that selection on individual allele frequencies is ef-
fectively directional, so that Equation 2 can be replaced by
an equation of the form

Dqi � sqð12 qÞ; (6a)

where

s ¼ 2Sa2d: (6b)

A difficulty is that d depends on the population mean,
and hence on �q. However, this problem can be solved by
assuming that the mutation rate is sufficiently low that an
infinite-sites model can be used (i.e., we have 4Nu,, 1). In
this case, the approximate expected value of �q, q*, at muta-
tion–selection–drift equilibrium is determined by the proba-
bilities of sites being fixed for A1 and A2, defined as f(0) and
f(1), respectively (Kimura 1981; Bulmer 1991).

The ratio (1 – q*)/q* is then �f(0)/f(1); this is also close
to the ratio (1 – �q)/�q for a given population (File S1). At
equilibrium, the rate of flow of probability from sites with
q = 1 to sites with q = 0 must be equal to the flow in the
opposite direction; these flows are proportional to kuQ1f(1)
and uQ2f(0), respectively, where Q1 and Q2 are the probabil-
ities of fixation of new A1 and A2 mutations, respectively
(Kimura 1981; Bulmer 1991; Charlesworth and Charlesworth
2010, p. 272). We then have

12 q*
q*

� kQ1

Q2
: (7a)

With a fixed selection coefficient s, the standard formula for
fixation probability implies that Q1/Q2 � exp(–g), where

g = 4Ns is the scaled selection coefficient (Fisher 1930a;
Charlesworth and Charlesworth, Chap. 6, p. 262).

If fluctuations in d around its expectation over the entire
probability distribution of q, denoted by d*, are sufficiently
small in relation to d*, d can be equated to d*, and s in
Equations 6 can be treated as fixed and equal to 2Sa2 d*.
The conditions under which this is valid are examined in File
S1. From Equation 6b, this assumption implies that g =
8NSa2d*. Substituting into Equation 7a, we have

12 q*
q*

� k  expð2 gÞ: (7b)

This is equivalent to the Li–Bulmer equation used in the
theory of selection on codon usage (Li 1987; Bulmer 1991).

Furthermore, using Equations 3 and 4, and writing b =
zo/ma, we have

12 q*
q*

� ½1þ ðd*=mÞ2 b�
½1þ b2 ðd*=mÞ�: (8)

Useful approximations for g and d* can then be obtained, as
shown in the Appendix. In particular, when 4NSma2 .. 1,
Equations 6 and A.3b imply that

g � lnðkÞ þ 2b: (9)

This analysis brings out the remarkable fact that g at muta-
tion–selection–drift equilibrium is approximately indepen-
dent of the population size for a given set of mutation and
selection parameters, at least over some of the range of
possible parameter values. If b is small, so that the optimum
is in the mid-range of possible values, g � ln(k). Further-
more, the argument leading to Equations A.7 of the Appen-
dix shows that Equations A3 for d* can also be used for the
case when there is a mixture of stabilizing and directional
selection, but g = 8NSa2d* can no longer be interpreted as
the product of 4N and a fixed selection coefficient and is
therefore not sufficient to determine the fixation probabili-
ties of A1 and A2 mutations.

Equations A.3b and A.7b imply that, as NSa2 increases, d*
becomes indefinitely small, consistent with previous results
for very different models of mutation, which found that
mutational bias has only a small effect on the population
mean in a large population (Waxman and Peck 2003; Zhang
and Hill 2008). Alternatively, approximate expressions for
d* and g under the above conditions can be derived using
the model of the joint effects of drift and selection on a quan-
titative trait developed by Lande (1976); they give qualita-
tively similar results to those obtained here, although
quantitatively there is a disagreement, reflecting the differ-
ent assumptions made in the two cases (see File S1). As
described in File S1, this approach also can be used to show
that the expected value of the trait mean is expected to
approach the optimum as NSa2 increases, even when the
conditions needed for the validity of the above results are
violated.
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Equation 9 also suggests, somewhat counterintuitively, that
the values of d* and g are nonzero if b is nonzero, even if there
is no mutational bias at the level of individual nucleotide sites
(i.e., when k= 1). This arises because a nonzero b implies that
the mean frequency of A2 at equilibrium under selection
departs from one-half; in a finite population, the frequencies
of sites fixed for A1 and A2 are then unequal, so that there will
be a higher net frequency of mutations from the allelic type
favored by selection, effectively creating a mutational bias.

Knowing d* and hence g, we can use standard results from
diffusion theory to obtain the overall probability distribution of q
when Equations 6 hold. With reversible mutation and a Wright–
Fisher population of size N, the probability density of q is

fðqÞ ¼ C   expð2 gqÞq4Nu21ð12qÞ4Nku21; (10)

where C is a constant ensuring that the integral of f(q)
between 0 and 1 is equal to 1 (Wright 1931).

The distribution with the infinite sites assumption is
represented by the limiting value of Equation 10 as 4Nu tends
to zero, which is useful for calculating the theoretical value of
the site frequency spectrum of variants affecting the trait in
a sample from the population (McVean and Charlesworth
1999). This is described in more detail below. In addition,
approximate expressions for the expected genetic variance
in z (Vg*) can then be derived, as shown in the Appendix.

Numerical results for the state-dependent model

Some representative numerical results for equilibrium pop-
ulations, generated as described in the Appendix, are shown
in Table 1, together with approximate values of d, g, and Vg,
generated by both the first-order approximations described
above (the App. 1 columns), and the more exact method
described in the Appendix (the App. 2 columns), which
allows for both stabilizing and directional selection effects
on allele frequencies. In all cases shown, the net intensity of
selection on the trait, S, was 0.01, representing weak selec-
tion in relation to the population sizes used here: the max-
imal value of NS was 4 (for N = 400). If we were to scale up
to a population size of 100,000 with this NS value, S would be
only 4 · 1025, corresponding to extremely weak selection com-
pared with that normally expected for externally measurable
traits (Haldane 1954; Turelli 1984; Kingsolver et al. 2001). As
shown above, only the product NSa2 is relevant to the values of
d and g, but Vg* is proportional to ma2 (see Appendix).

As expected from the approximate analytical results,
despite very weak selection on the trait, the equilibrium
value of d* is always fairly small, even for the smallest pop-
ulation size modeled here (N = 50; NS = 0.5). Both the
matrix method values of d* and the mean values obtained
from the stochastic simulations agree quite closely with the
simple approximations in the parameter range shown in
Table 1; as predicted by Equation A.3b, d* is roughly in-
versely proportional to N; and the eightfold ratio between
the smallest and largest N values is reflected in a roughly
7.4-fold ratio of d* values. In contrast, the equilibrium g

values show only modest increases as N increases. While
the simple approximation for g works best for the smaller
N values, where the correspondingly larger d* values mean
that directional selection is the dominant force in Equation
2, the maximum differences from the observed values are
still only of the order of 10% of the observed value even for
N = 400. The expression for g given by Equation 9 gives
results very close to the App. 1 values in Table 1. Large
standard deviations of d and g are observed in the stochastic
simulation results, which agree quite closely with the values
predicted by Equation S1.1 in File S1. Comparisons of nu-
merical results for m = 1000 and 4000 show little differ-
ences for the values of these parameters, as expected
theoretically (data not shown).

The variance of the trait, Vg, provides a further test of the
utility of the approximations. These work quite well over the
entire parameter range in Table 1, as does Equation 8 of
Barton (1989) for the case of pure stabilizing selection. This
generally good agreement, regardless of the specific
assumptions, probably reflects the fact that selection is very
weak in all these cases, so that the variants are close to
neutrality. The expected variance in the neutral case is then
the product of ma2 and the expected neutral nucleotide di-
versity p; the latter is equal to 8Nuk/(1 + k) (Charlesworth
and Charlesworth 2010, p. 274). The values for Vg* in Table
1 are quite close to 8Nukma2/(1 + k); for example, with
N = 100, k = 2, and b = 0, the neutral value is 0.053,
compared with the observed value of 0.057. The standard
deviations of Vg are generally much smaller in relation to the
expected values than those for the other variables, as is
expected for the neutral approximation.

Approximate analytical results for the
state-independent model

It is simpler to obtain approximate analytical results for this
model than for the state-dependent model. When 2d is the
dominant term in Equation 2, we can once again treat the
problem as one of directional selection, with a scaled selec-
tion coefficient g= 8NSa2d in favor of A2 vs. A1 variants. The
condition for statistical equilibrium is that the expected
number of new A1 mutations arising each generation that
become fixed, 2NkuQ1, is equal to the expected number of
new A2 mutations that become fixed, 2NuQ2. Equations 7
are thus replaced by

1 � kQ1

Q2
¼ k  expð2 gÞ; (11)

so that we obtain

g ¼ lnðkÞ (12a)

d* � lnðkÞ
8NSa2

: (12b)

As was shown to be the case for the state-dependent model
(see Equation A.7), these expressions can also be used when

Stabilizing and Purifying Selection 959

File S1_/lookup/suppl/doi:10.1534/genetics.113.151555/-/DC1/genetics.113.151555-1


Ta
b
le

1
Si
m
u
la
ti
o
n
an

d
th
eo

re
ti
ca
l
va

lu
es

o
f
p
ar
am

et
er
s
u
n
d
er

st
ab

ili
zi
n
g
se
le
ct
io
n
w
it
h
st
at
e-
d
ep

en
d
en

t
m
u
ta
ti
o
n
s

d
g
(·

10
2
)

V
g
(·

10
2
)

N

Si
m
.

M
at
.

A
p
p
.
1

A
p
p
.
2

Si
m
.

M
at
.

A
p
p
.
1

A
p
p
.
2

Si
m
.

M
at
.

A
p
p
.
1

A
p
p
.
2

St
ab

.
se
l.

M
ea

n
S.
D
.

M
ea

n
S.
D
.

M
ea

n
S.
D
.

k
=
2

50
14

.9
(0
.3
)

6.
76

16
.6

16
.5

16
.5

0.
60

2
(0
.0
12

)
0.
27

0
0.
67

2
0.
66

0
0.
66

0
2.
89

(0
.0
4)

0.
97

6
2.
83

2.
88

2.
87

2.
97

z 0
=
0

10
0

7.
54

(0
.2
1)

4.
77

8.
57

8.
45

8.
40

0.
61

0
(0
.0
17

)
0.
38

1
0.
69

1
0.
67

6
0.
68

5
6.
14

(0
.0
6)

1.
42

5.
64

5.
77

5.
73

5.
88

20
0

4.
37

(0
.1
6)

3.
62

4.
41

4.
28

4.
22

0.
71

8
(0
.0
26

)
0.
58

0
0.
71

5
0.
68

5
0.
70

2
12

.7
(0
.1
)

2.
04

10
.1

11
.8

11
.4

11
.5

40
0

2.
11

(0
.1
1)

2.
42

2.
24

2.
15

2.
10

0.
71

1
(0
.0
35

)
0.
77

4
0.
73

6
0.
68

8
0.
72

4
25

.4
(0
.1
)

2.
91

21
.5

23
.1

22
.5

22
.2

z 0
=
20

50
26

.2
(0
.3
)

6.
79

26
.5

26
.0

26
.0

1.
06

(0
.0
1)

0.
27

3
1.
06

1.
04

1.
05

2.
94

(0
.0
4)

0.
95

8
2.
86

2.
91

2.
90

3.
17

10
0

13
.3

(0
.2
)

4.
90

13
.6

13
.3

13
.3

1.
08

(0
.0
2)

0.
39

3
1.
09

1.
07

1.
08

6.
05

(0
.0
6)

1.
41

5.
70

5.
83

5.
79

6.
27

20
0

7.
13

(0
.1
5)

3.
41

6.
95

6.
75

6.
69

1.
17

(0
.0
2)

0.
54

7
1.
13

1.
08

1.
11

12
.5

(0
.1
)

2.
04

11
.2

11
.7

11
.5

12
.3

40
0

4.
02

(0
.1
1)

2.
42

3.
58

3.
39

3.
32

1.
34

(0
.0
4)

0.
78

0
1.
17

1.
09

1.
14

23
.8

(0
.1
)

2.
74

21
.7

23
.3

22
.7

23
.7

k
=
4

50
31

.9
(0
.3
)

6.
91

33
.6

33
.0

33
.3

1.
29

(0
.0
1)

0.
27

7
1.
35

1.
32

1.
32

4.
40

(0
.0
6)

1.
42

4.
20

4.
29

4.
19

4.
95

z 0
=
0

10
0

16
.6

(0
.2
)

5.
11

17
.3

16
.9

16
.8

1.
34

(0
.0
2)

0.
41

1
1.
39

1.
35

1.
37

9.
00

(0
.0
8)

1.
75

8.
38

8.
62

8.
75

9.
80

20
0

8.
54

(0
.1
6)

3.
62

8.
97

8.
56

8.
45

1.
39

(0
.0
3)

0.
58

0
1.
44

1.
37

1.
40

18
.6

(0
.1
)

2.
54

16
.4

17
.3

17
.1

19
.2

40
0

4.
70

(0
.1
1)

2.
49

4.
63

4.
31

4.
20

1.
57

(0
.3
6)

0.
79

3
1.
51

1.
39

1.
44

35
.0

(0
.1
)

3.
26

31
.4

34
.6

33
.7

37
.0

z 0
=
20

50
42

.0
(0
.3
)

7.
18

43
.5

42
.5

42
.5

1.
68

(0
.0
1)

0.
28

7
1.
74

1.
70

1.
71

4.
42

(0
.0
5)

1.
21

4.
35

4.
44

4.
43

5.
54

10
0

21
.6

(0
.2
)

5.
02

22
.4

21
.8

21
.8

1.
75

(0
.0
2)

0.
40

2
1.
80

1.
74

1.
76

9.
31

(0
.0
7)

1.
62

8.
65

8.
91

8.
86

10
.1

20
0

11
.8

(0
.2
)

3.
61

11
.5

11
.0

10
.9

1.
94

(0
.0
3)

0.
57

5
1.
85

1.
76

1.
80

18
.7

(0
.1
)

2.
53

16
.9

17
.8

17
.6

21
.5

40
0

4.
90

(0
.1
1)

2.
48

5.
98

5.
55

5.
43

1.
63

(0
.0
4)

0.
80

1
1.
96

1.
78

1.
85

33
.0

(0
.1
)

3.
30

32
.4

35
.7

34
.9

41
.5

N
is
th
e
po

pu
la
tio

n
si
ze
;d

is
th
e
di
ff
er
en

ce
be

tw
ee
n
th
e
op

tim
al
an

d
m
ea
n
va
lu
es

of
th
e
tr
ai
t,
di
vi
de

d
by

a;
g
is
th
e
sc
al
ed

se
le
ct
io
n
co
ef
fi
ci
en

t
4N

s
fo
r
an

A
2
va
ria

nt
;V

g
is
th
e
tr
ai
t
va
ria

nc
e;

k
is
th
e
m
ut
at
io
na

lb
ia
s
pa

ra
m
et
er
;b

is
th
e
ra
tio

of
th
e
op

tim
al
va
lu
e
of

th
e
tr
ai
t
to

m
a.

Th
e
m
ut
at
io
n
ra
te

is
u
=
1
·
10

2
5
;t
he

se
le
ct
io
n
pa

ra
m
et
er
s
ar
e
S
=
0.
01

,m
=
10

00
,a

=
0.
1
(S
a2

=
0.
00

01
).
Th

e
co
lu
m
ns

he
ad

ed
by

Si
m
.a

re
va
lu
es

ob
ta
in
ed

fr
om

50
0
st
oc
ha

st
ic

si
m
ul
at
io
ns

of
ea
ch

pa
ra
m
et
er

se
t,
w
ith

th
e
m
ea
n
in

th
e
to
p
pa

rt
of

ea
ch

ce
ll,
an

d
th
e
st
an

da
rd

er
ro
r
(in

pa
re
nt
he

se
s)
;t
he

st
an

da
rd

de
vi
at
io
ns

ar
e
gi
ve
n
to

th
e
rig

ht
of

th
e
m
ea

n.
Th

e
va
lu
e
of

g
is
ob

ta
in
ed

by
av
er
ag

in
g
4N

Sa
2
(2
d
+

2q
i
–
1)

ov
er

al
l
se
gr
eg

at
in
g
si
te
s.

Th
e
co
lu
m
ns

he
ad

ed
by

M
at
.
gi
ve

th
e
ex
pe

ct
ed

va
lu
es

fo
r
th
e
re
le
va
nt

pa
ra
m
et
er
s
ob

ta
in
ed

fr
om

ite
ra
tio

ns
of

th
e
m
at
rix

eq
ua

tio
n
fo
r
th
e
pr
ob

ab
ili
ty

di
st
rib

ut
io
n
ve
ct
or
,
f,

to
ne

ar
to

its
eq

ui
lib
riu

m
.T

he
co
lu
m
ns

he
ad

ed
by

A
pp

.1
sh
ow

th
e
ap

pr
ox
im

at
io
ns

fo
r
d
*,

g
,a

nd
V
g
*
gi
ve
n
by

Eq
ua

tio
ns

A
.3
a,

A
.1
,a

nd
A
.4
b,

re
sp
ec
tiv
el
y.
Th

e
co
lu
m
ns

he
ad

ed
by

A
pp

.2
sh
ow

th
e
va
lu
es

of
th
es
e
pa

ra
m
et
er
s
us
in
g
N
ew

to
n
–

Ra
ph

so
n
ite

ra
tio

n
of

Eq
ua

tio
n
A
.2
,a

s
de

sc
rib

ed
in

th
e
A
pp

en
di
x,
w
he

re
g
is
es
tim

at
ed

as
(1

–
q*

)g
2
–
q*

g
1
.T

he
co
lu
m
n
he

ad
ed

by
St
ab

.s
el
.a

re
th
e
ap

pr
ox
im

at
e
eq

ui
lib
riu

m
ge

ne
tic

va
ria

nc
es

un
de

r
pu

re
st
ab

ili
zi
ng

se
le
ct
io
n
(d
*
=

0)
,
gi
ve
n
by

Ba
rt
on

(1
98

9,
Eq

ua
tio

n
8)
.

960 B. Charlesworth



there is a mixture of stabilizing and directional selection,
although g can no longer be interpreted as the product of 4N
and a fixed selection coefficient.

Numerical results for the state-independent model

Some numerical results for this case, using the matrix and
stochastic simulations methods described in the Appendix,
are shown in Table 2, for parameter values that are similar
to those in Table 1. The overall picture is similar to that for
the state-dependent case, except that the g values are close
to ln(k) (App. 1). The approximate results for d* and g

provide a better fit to the simulation results than do the
matrix method results for N = 100 and 400. The more exact
values for g, based on Newton–Raphson numerical solutions
of the equation for equilibrium (see Appendix) fit somewhat
better, except for N = 400. All the methods confirm that d *
is smaller with larger N, and the ratios of d* values for
different N values are close to the corresponding ratios of N.

The predictions for Vg* are accurate for N = 50 and N =
100, but the first two approximations tend to overestimate
Vg* for the larger N values, especially for the higher level of
mutational bias, reflecting the increasing importance of the
stabilizing selection component, which these approxima-
tions ignore. The prediction based on Barton’s (1989) Equa-
tion 8 performs even worse for these larger N values when
k = 4, presumably because it does not take the directional
selection component into account. In this case, the state in-
dependence implies that the net mutation rate is (1 + k)u,
so that the neutral value of Vg* is 4Numa2(1 + k). This fits
the values in Table 1 quite well for N = 50 and 100, but
tends to overestimate Vg* for the higher values of N, reflect-
ing the increasing effectiveness of selection in eliminating
deleterious variants.

Site frequency spectra

Estimates of the strength of selection on individual variants
affecting a trait can be obtained from DNA sequence
polymorphism data, by comparing the distribution over sites
of the frequencies of individual variants (the site frequency
spectrum) with the predictions of models of selection,
mutation, and drift of the type described above. This has
been particularly useful for estimating selection on codon
usage in organisms such as bacteria and Drosophila, where
alternative synonymous codons for a given amino acid can
be clearly defined as a priori candidates for being preferred
or disfavored by directional selection; a fixed value of g can
then be estimated (Hartl et al. 1994; Akashi 1999; Comeron
and Guthrie 2005; Zeng and Charlesworth 2009; Sharp
et al. 2010). In this case, the results described in the pre-
vious section suggest that essentially similar results will be
obtained over a wide range of parameter space of mutation
and selection parameters if the trait in question is subject to
stabilizing rather than directional selection, as was origi-
nally proposed by Kimura (1981, 1983, pp. 143–148).

Site frequency spectra have also been used for estimating
selection on indel mutations, especially in Drosophila noncoding

sequences, with mixed results (Comeron and Kreitman 2000;
Schaeffer 2002; Ometto et al. 2005; Presgraves 2006;
Leushkin et al. 2013). This raises the question of whether
the model of state-independent mutations with stabilizing
selection could be used for this purpose, since this mutational
model is probably the simplest one that is appropriate for
indels. A detailed investigation of how to estimate the param-
eters of this model from polymorphism data will be the sub-
ject of another article. Here, I simply point out that, under the
state-independent model, a mutational bias toward deletions
is consistent with a stable statistical equilibrium for sequence
length only if there is stabilizing selection; this can be seen
from the fact that even a small difference between the prod-
ucts of the respective mutation rates and fixation probabilities
between insertions and deletions will lead to indefinite evo-
lution in the direction of the class with the higher product.
Furthermore, if the population is at a statistical equilibrium
under this model, an excess of polymorphisms that are
inferred to be deletion mutations by comparison with an out-
group, relative to polymorphisms inferred to be insertion
mutations, necessarily implies a mutational bias toward dele-
tions. Such an excess is, for example, commonly observed in
data from natural populations of Drosophila (Comeron and
Kreitman 2000; Schaeffer 2002; Ometto et al. 2005; Presgraves
2006; Leushkin et al. 2013).

Mutational bias toward deletions should thus create
a directional selection pressure in favor of insertions over
deletions, so that we can use the “pooled” frequency spec-
trum of indels, in which the longer variant at a given loca-
tion in a noncoding sequence is treated as the variant
favored by selection (A2 in the above model), to estimate
g, ignoring the stabilizing selection component of selection
in Equation 2 as a first approximation. In addition, under the
infinite-sites assumption, the mean frequency of the A2-type
variants in a sample will exceed 0.5, if they are favored by
selection, providing a nonparametric test for selection (e.g.,
McVean and Charlesworth 1999). Figure 1 shows the fre-
quency spectra generated by the matrix calculations for two
of the parameter sets shown in Table 2, for the case of
a sample of 20 alleles. The departure from neutrality in
the direction of a higher abundance of high-frequency A2-
type variants is clearly visible, with a greater departure from
symmetry around a frequency of 0.5 with the higher level of
mutational bias.

These spectra are very close to those obtained by pooling
the results of replicate stochastic simulations (data not
shown), as expected from the results in File S1. It should
be noted, however, that there are differences between the
frequency spectra for individual replicate runs of the sto-
chastic simulations, indicating that the same population
observed at different times, or independently evolving pop-
ulations subject to the same evolutionary forces, could be
inferred to have significantly different g values if standard
methods for inferring selection from frequency spectra are
applied. With low mutational bias, there is a substantial
chance that a population would yield a spectrum that fails
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to provide significant evidence of selection; for example, in
the case in Figure 1 with k = 2, the mean frequency of A2

among segregating sites is 0.606, and its standard deviation
among 500 replicates is 0.046 (for more details, see File S1).
Such failure is less likely with a larger population size and
higher mutational bias, since the ratio of the mean fre-
quency of A2 to its standard deviation becomes larger. This
effect raises some interesting questions concerning the esti-
mation of g, which will be considered in a subsequent article.

Purifying Selection

Assumptions of the model

A similar approach can be used to study the interaction
between mutation pressure and weak purifying selection in
a finite population, when selection, mutation, and drift each
significantly influence allele frequencies. Let the A1 and A2

variants at a site represent the disfavored and favored alter-
natives, respectively. If there is semidominance with respect
to mutational effects on fitness, we can assume that the
fitness of an individual is determined by the number of A1

variants, n = n11 + 0.5n12, where n11 is the number of sites
homozygous for A1 variants and n12 is the number of sites
that are heterozygous. If mating is random and qi is the
frequency of A2 at the ith site, the mean of n, �n, is equal
to the sum of 2(1 – qi) over all sites. Equivalently, �n =
2m(1 – �q), where �q is the mean of q over all m sites.

To include the possibility of epistatic interactions among
the fitness effects of mutations, it is convenient to use the
quadratic form

lnðwnÞ ¼ 2an2
1
2
bn2; (13)

where a and b are constants (Kondrashov 1982; Charlesworth
1990).

When b = 0, fitnesses are multiplicative, and epistasis is
absent on the logarithmic scale. “Synergistic epistasis” is
represented by a positive value of b; “diminishing returns”
epistasis is represented by a negative value of b. Since syn-
ergistic epistasis is of the most interest in relation to the
topics discussed here, numerical results are presented for
this case and for multiplicative fitnesses. The latter case is
essentially equivalent to the standard models of selection on
codon usage (Li 1987; Bulmer 1991; McVean and Charlesworth
1999).

Approximate analytic results are derived in the Appendix
for the expected values at statistical equilibrium of the mean
number of mutations per individual, the scaled selection
coefficient on a mutation, and the genetic variance.

Numerical results for purifying selection

The numerical methods for this case are very similar to those
used for stabilizing selection, except that now the selection
coefficient s in the equivalent of Equation 6a is calculated
from Equation A.11b, where n* is the product of 2m and theTa
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mean value of (1 – q) across the probability distribution of
allele frequencies, f. Some results for this model are shown
in Table 3, with 500 sites under selection, corresponding to
the number of third coding positions in a typical human or
Drosophila gene. The upper set of results is for b = 0, cor-
responding to multiplicative fitnesses (no epistasis); the
middle set is for weak synergistic selection, with a value of
b chosen so that the net selection coefficient s is approxi-
mately the same as for b = 0; and the bottom set is for
purely synergistic selection (a = 0).

In all cases, the numerical results generated by the matrix
results are quite well predicted by the two types of
approximation (stochastic simulation results are not shown,
due to their agreement with the other results); this is, of
course, not surprising for the multiplicative case, in which g

is fixed and equal to 4Na. As expected from the approxima-
tions given above, g increases with N for the same set of
selection and mutation parameters, although the ratio of g
values for successive pairs of N values is somewhat less than
two with epistatic selection and becomes smaller with in-
creasing N, suggesting that an asymptotic value may even-
tually be approached. From the analysis of the derivative
with respect to N of the approximation for g given by Equa-
tion A.14b, it would be expected that this will happen only
when the expected frequency of the favored allele A2, q* =
1 – n*/(2m), is close to one (this corresponds to the frequency
of optimal codons for a model of selection on codon usage).

This was tested by running matrix iterations with a = 0
(giving the maximum effect of synergism) and b= 7.5 ·1025,
10 times the value in Table 3, bottom. By using mutation

rates that are also 10 times the values in Table 3, the system
behaves as though N is 10 times the Table 3 values, as far as
the mean and variance of n, and the value of g, are con-
cerned. For N values equivalent to 200, 400, 800, and 1600,
the equilibrium values of q* are 0.843, 0.902, 0.937, and
0.940; the corresponding values of g are 2.35, 2.93, 3.76,
and 5.51. Thus, as N increases, q* approaches 1, and g

continues to increase, at an accelerating rate. This acceler-
ation is expected from Equation A.13; if we put q* = 1 – y in
this equation, when y is very small, we have g � ln(k) + y –

ln(y), which increases very fast as y approaches zero. This
reinforces the conclusion based on the approximations of
Equations A.14 that synergism does not prevent a large in-
crease in the scaled strength of selection as N increases.

Using a similar argument to that employed for the state-
dependent model of stabilizing selection, the expected
variance in the number of mutations in the neutral case in
this case is 8Nmuk/(1 + k). Comparison with the values for
Vg in Table 3 shows that this formula tends to slightly under-
predict the variance; e.g., for the case with b = 0 and N =
100, the neutral value is 2.67, compared with the observed
value of 2.82. This probably reflects the fact that selection
leads to a higher frequency of sites fixed for A2 than under
neutrality, and these have a higher rate of mutation than A1

sites.

Discussion

Biological implications of the results

A major conclusion from this work is that, in a finite
population, weak stabilizing selection with mutational bias
can cause a sufficient deviation of the population mean from
the optimum to induce a net pressure of directional selection
on the trait (see Tables 1 and 2). This agrees with the results
of Zhang and Hill (2008), obtained from simulations of
a reflected gamma distribution of mutational effects on
a quantitative trait. While the magnitude of this deviation
declines with the population size, it is generally extremely
small compared with the total possible range of trait values
(2ma). For example, in Table 2 with k = 4 and N = 50, the
deviation of the expected mean from the optimum (ad*) is
�0.1 · 35 = 3.5, whereas the range is 200.

Another way of looking at the size of the deviation from
the optimum is to consider a genomic trait that may be
under stabilizing selection, such as the total length of a set
of noncoding sequences like short introns in Drosophila, for
which a conservative value is 50,000 bp (Misra et al. 2002).
If small insertions or deletions are associated with a typical
a value of 5 bp, consistent with what is seen in Drosophila
polymorphism data (Leushkin et al. 2013), a d* of 35 (as
above) would imply that the expected mean value of the
trait departs from the optimum by 5 · 35 bp = 175 bp (this
uses the fact that the value of d* for a fixed value of Sa2 is
invariant with respect to m and a, for sufficiently large m).
Using Equation S1.1, File S1, d has a standard deviation due

Figure 1 Site frequency spectra in a sample of 20 alleles with a predom-
inance of directional selection, from matrix iterations. The histograms
show the spectra for the cases of neutrality (red bars) and stabilizing
selection with state-independent mutations and two different levels of
mutational bias (blue and white bars) with N = 400, S = 0.01, m = 1000,
a = 0.1, z0 = 0, and u = 1 · 1025.
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to drift of 5 · 7.1 = 35 bp. The maximum probable depar-
ture of the mean from the optimum is thus �175 + 2 · 35 =
245 bp. Clearly, a deviation of this magnitude would be
undetectable relative to a trait value of 5 · 104. It would
then be difficult to detect any relation between mean trait
values and N in comparisons across species with different N
values, as is done in efforts to test evolutionary hypotheses
concerning genomic traits (Lynch 2007).

Nevertheless, such departures can cause a significant
pressure of directional selection on individual variants,
provided that d exceeds one-half. This is because they then
dominate the expression for allele frequency change relative
to the contribution from the stabilizing selection term that
would exist if the mean and optimum coincided. This effect
allows the use of established theoretical results on the in-
teraction between purifying selection, mutation, and drift,
yielding useful approximate expressions for the expected
values of the population mean and its departure from the
optimum, the scaled directional selection parameter for an
individual variant (g = 4Ns), and the genetic variance in the
trait, Vg. The results can also be used to investigate the
important issue of the genetic load generated by pervasive
weak selection on sites distributed throughout the genome
(Kondrashov 1995), as is discussed in Charlesworth (2013).

Perhaps the most striking conclusion is that g can remain
remarkably constant over a wide range of parameter space
(see Tables 1 and 2), even though the difference between
the population mean and the optimum declines sharply with
the population size. In the case of the state-independent
mutation model, which is likely to be relevant to mutations
such as insertions and deletions, the approximate predicted
equilibrium value of g is given by ln(k); this prediction
matches the values generated by the matrix iterations and
stochastic simulations over a wide range of parameter space
(Table 2). The same is true of the slightly more complex
expectation for the state-dependent model, which is more
appropriate for quantitative phenotypic traits or for codon
usage (Table 1). This lack of sensitivity of g to N reflects the

fact that the directional selection component is generated by
the deviation of the population mean from the optimal trait
value, driven by mutational bias and drift. This deviation is
expected to increase with smaller N (see Equations 9 and
12b and Tables 1 and 2), causing an increase in the intensity
of stabilizing selection that approximately compensates for
the reduction in N in the product Ns over a wide range of
parameter space. A similar result was obtained by Cherry
(1998), for a model of amino-acid sequence evolution under
directional selection, but that uses an equilibrium condition
similar to that in Equation 11. The validity of this is, how-
ever, not clear for a system where a state-dependent muta-
tional model is required.

This behavior contrasts sharply with what happens with
mutation and purifying selection with a constant s, where Ns
is proportional to N, as in the standard Li–Bulmer model of
selection on codon usage (Table 3, top). It also contrasts
with what is found with the synergistic selection model
(Equations A.14 and Table 3), where the magnitude of g
increases with N over a wide range of parameters. Indeed,
q* in Equation A.13 is forced toward one as g increases.
These results imply that synergistic selection is unlikely to
account for the general lack of a relationship between the
codon usage for a species and its inferred species effective
population size, as has been previously proposed (Akashi
1995, 1996; Kondrashov et al. 2006).

The results also have the important implication that weak
stabilizing selection may be extremely difficult to distinguish
from purifying selection, because the directional component
of selection introduced by drift and mutational bias can be
dominant, even when these forces have only very minor
effects in pushing the population mean away from the
optimum. The main difference from purifying selection lies
in the insensitivity of g to N for equilibrium populations. For
mutations affecting genomic traits such as codon usage, GC
content, or the lengths of nonfunctional noncoding DNA
sequences such as short introns, k is likely to be in the range
2–4 in organisms such as Drosophila (Petrov and Hartl 1998;

Table 3 Parameter values with purifying selection

n* g Vg

N Mat. App. 1 App. 2 Mat. App. 1 App. 2 Mat. App. 1 App. 2

a = 0.0015, 50 600 598 597 0.300 0.300 0.300 1.37 1.39 1.39
b = 0 100 525 523 523 0.600 0.600 0.600 2.82 2.87 2.87

200 389 373 376 1.20 1.20 1.20 5.67 5.81 5.81
400 177 73.3 154 2.40 2.40 2.40 9.94 10.3 10.6

a = 0.0010, 50 581 581 580 0.368 0.369 0.368 1.38 1.40 1.40
b = 1.45 100 503 501 501 0.692 0.690 0.690 2.84 2.88 2.88
· 1026 200 379 367 369 1.24 1.23 1.23 5.66 5.81 5.81

400 212 173 202 2.09 2.00 2.07 10.4 10.9 10.8
a = 0.0, 50 493 490 490 0.740 0.734 0.734 1.42 1.45 1.45
b = 7.5 100 390 385 386 1.17 1.15 1.16 2.86 2.91 2.91
· 1026 200 281 269 276 1.69 1.62 1.66 5.52 5.68 5.66

400 189 168 183 2.27 2.02 2.19 10.1 10.9 10.6

The columns headed by Mat. come from the matrix iterations; those headed by App. 1 come from the approximations for n*, g, and Vg obtained from Equations A.14 and
A.15, and the columns headed by App. 2 give the values of these quantities obtained from Newton–Raphson iteration of Equation A.13. The mutation parameters were u =
1 · 1025 and k =2; m = 500.
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Comeron and Kreitman 2000; Haag-Liautard et al. 2007;
Keightley et al. 2009; Zeng 2010). Since g is strongly de-
termined by ln(k) in the range of parameter space consid-
ered here, this sets bounds on the magnitude of g that
should be detected from surveys of DNA sequence variation
within species, if these traits are indeed subject to stabilizing
selection. The data becoming available from genome-wide
resequencing studies will allow tests of these predictions,
and statistical methods for fitting models of the kind de-
scribed here to such data are in the process of development.

Since it is usually unclear a priori whether stabilizing
selection or purifying selection is operating on genomic
traits, these results raise the question of whether there
may be alternative explanations for the correlations with
Ne of such properties as genome size and mutation rate,
which have been used as evidence in favor of the hypothesis
that the reduced efficiency of selection with relatively Ne

values may drive larger genome sizes and mutation rates
(Lynch 2002, 2007, 2011; Sung et al. 2012). As an example
of such an alternative, many studies of species differences
suggest that faster development time disfavors larger ge-
nome size (Cavalier-Smith 1985; Pagel and Johnstone
1992). Development rate is correlated with smaller body
size, which in turn is correlated with larger Ne (Lynch
2007), so that an apparent relation between Ne and the
genome size of a species can be generated indirectly. It is
therefore interesting to note that A. thaliana has a reduced
genome size relative to its outcrossing relative, A. lyrata (Hu
et al. 2011). This difference in genome size is consistent
with the hypothesis that the evolution of rapid development
in relation to the colonizing lifestyle of A. thaliana has caused
a shift toward a lower optimal value for the size of noncoding
sequences. It is in the opposite direction to that predicted by
Lynch’s models from the difference in Ne between the two
species, since A. thaliana has the smaller Ne (Qiu et al. 2011).

The results also suggest that a role for stabilizing selection
in causing codon usage bias, originally proposed by Kimura
(1981, 1983, pp. 183–193), should be reexamined. Kimura
assumed that translational efficiency is optimized by match-
ing the frequencies of use of specific codons to the abundance
of corresponding tRNAs, without providing a specific mecha-
nism to justify this assumption. A similar idea has recently
been proposed by Qian et al. (2012), who suggested that
tRNA availability during translation may be rate limiting. Un-
der these conditions, they show that Kimura’s conjecture is
justified, using an argument that is equivalent to the ideal
free distribution for foraging strategy used in behavioral ecol-
ogy (Fretwell and Lucas 1970), and discuss experimental
evidence that supports this model. Agashe et al. (2013) report
results of experimental manipulation of codon frequencies on
fitness in a bacterium that also suggest stabilizing selection,
but with a different mechanistic basis.

Such a model does not, however, provide an obvious
explanation for the well-documented relation between the
level of expression of a gene and its codon usage bias
(Hershberg and Petrov 2008). Several other biochemical

mechanisms may influence selection on codon usage (Plotkin
and Kudla 2011), and their relative importance is unclear.
One possibility for explaining the expression–codon usage
bias relation on the basis of a stabilizing selection model is
that the GC content of a message may increase its folding
energy, so that GC-rich messages are tightly folded and
hence obstruct translation initiation (Plotkin and Kudla
2011). Harrison and Charlesworth (2011) suggested that
this process may account for the fact that, in budding yeast,
highly expressed genes in GC-rich regions of the genome
tend to have lower optimal codon usage than genes with
equivalent levels of expression elsewhere in the genome.
This effect could provide a mechanism for stabilizing selec-
tion on codon usage in taxa such as Drosophila, where GC-
ending codons appear to preferred by selection in opposition
to mutational bias favoring AT over GC basepairs. The selec-
tive forces favoring GC codons, such as greater translational
efficiency, would probably be stronger for more highly
expressed genes, overcoming the negative effects of GC con-
tent on the folding of the message, and hence moving the
optimal GC content upward.

Limitations and extensions of the models

The models described here are clearly very limited in many
respects, and more general models need to be examined to
determine the generality of the major conclusions. In
particular, the assumption of the same mutational effects
at all sites is unrealistic, as is the assumption of equal effects
of variants in each direction. Similarly, the effects of relaxing
assumption of a completely symmetrical selection, quadratic
selection function, and the effects of close linkage among
the sites under selection (e.g., Charlesworth et al. 2010)
need to be examined. These investigations will almost cer-
tainly require computer simulations, due to the mathemat-
ical complexities involved.
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Appendix

Approximate solution for state-dependent mutation
when directional selection dominates

It is reasonable to assume that d*/m is close to zero, unless
Ns is very small. Using Equation 6b, writing e = d*/m and
taking logarithms of the expressions in Equations 7b and 8,
this implies that

lnð1þ e2 bÞ2 lnð1þ b2 eÞ1 g2 lnðkÞ ¼ 0 (A.1)

For a given value of b, both d*and g can be determined from
Equation A.1, e.g. by Newton–Raphson iteration. A good
approximation to g can be found simply by putting e =
0 in this expression, giving

g � lnðkÞ þ lnð1þ bÞ2 lnð12 bÞ: (A.2)

First-order approximations to the logarithmic terms on
the left-hand side of Equation A.2 yield

d* � lnðkÞ þ 2b
2ð1þ 4NSma2Þ: (A.3a)

For many biologically realistic situations, 4NSma2 .. 1; in
this case, Equation A.3a reduces to

d* � lnðkÞ þ 2b
8NSa2

: (A.3b)

The expected genetic variance in z, Vg*, is equal to ma2p,
where p is the pairwise diversity at a single nucleotide site.
Substituting the expression for s from Equation 6b into the
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expression for p given by McVean and Charlesworth (1999,
Equation 15), the genetic variance contributed by a single site is

ku
Se

 
½12 expð2gÞ�
½1þ k expð2gÞ�; (A.4a)

where g and e = d*/m are given by Equations 6b and A.3a.
Summing over all sites, and using Equation A.3a, this gives

V*
g � 8Nkuma2

½lnðkÞ þ 2b�
ð12 expð2gÞÞ
½1þ k expð2gÞ�: (A.4b)

Vg* in Equation A.4b increases without limit as N increases,
which is clearly incorrect. This reflects the fact that d*
approaches zero as N increases, so that the approximations
used above break down. The approximation described in the
next section avoids this problem.

Approximate solution for state-dependent mutations,
with both stabilizing and directional
selection components

An approximate solution can be obtained in the following
way for the case when d is so small that the stabilizing
selection component of Equation 2 becomes significant. Pro-
vided that NSa2 .. 1, so that the frequency of A2 is close to
zero or one with high probability, Equation 2 implies that the
change in qi due to selection is � qi(1 – qi) Sa2(1+ 2d) for
sites where new mutations to A1 have been introduced, and
–qi (1 – qi) Sa2 (1 – 2 d) for sites where new mutations to A2

have been introduced. We can therefore obtain approxima-
tions to the fixation probabilities Q1 and Q2 of new muta-
tions corresponding to these cases, by using the standard
formula for fixation probability under directional selection
(e.g., Charlesworth and Charlesworth 2010, p. 261). These
are given by two scaled selection coefficients g1 � – 4N Sa2

(2d * + 1) (for rare A1 mutations) and g2 � 4NSa2(2d* – 1)
(for rare A2 mutations). These expressions are not exact,
since they ignore the dependence on allele frequency of
the term (2d + 2qi – 1) in Equation 2, but numerical studies
indicate that they provide a fairly good approximation when
selection is weak, as assumed here (data not shown). Equa-
tion 7b is then replaced by

12 q*
q*

� kg1½12 expð2 g2Þ�
g2½12 expð2 g1Þ�

:

The same argument that led to Equation A.2 yields the
following expression, which allows determination of d*, and
hence g1 and g2, by Newton–Raphson iteration

lnð1þ e2 bÞ2 lnð1þ b2 eÞ þ ln
�
g2
g1

�

þ ln
� ½12 expð2 g1�
½12 expð2 g2Þ�

�
2 lnðkÞ ¼ 0:

(A.5)

Given a value of d*, the two g values can be obtained from
the above expressions for g1 and g2. The equilibrium vari-
ance can then be calculated by combining the variances
contributed by sites mutating to A1 and A2, respectively, in
the proportions q* and 1 – q*, using the corresponding di-
versities given by Equation B6.7.3 of Charlesworth and
Charlesworth (2010, p. 278). This yields the expression

V*
g � mkuð1þ b2 eÞ½g1 2 1þ expð2 g1Þ�

Sð2meþ 1Þ½12 expð2 g1Þ�

þmuð1þ e2 bÞ½g2 2 1þ expð2 g2Þ�
Sð2me2 1Þ½12 expð2 g2Þ�

: (A.6a)

When the population size is sufficiently large that 2d * �
1, the system approaches that of pure stabilizing selection,
with both g1 and g2 becoming equal to g = – 4NSa2. Under
these conditions, e can be set to 0, and Equation A.6a sim-
plifies to

V*
g � mu½kð1þ bÞ þ ð12 bÞ�½12 g2 expð2 gÞ�

S½12 expð2 gÞ� : (A.6b)

The limit of this as N approaches infinity is similar to the
standard expression for the variance under stabilizing selec-
tion and mutation in a infinite population (e.g., Charles-
worth and Charlesworth 2010, p. 190).

Alternatively, an expression for the ratio Q1/Q2 in the
general case considered here can be found without making
the above approximation, as suggested to me by Nick Bar-
ton. The fixation probability for a new A2 mutation in a sys-
tem that obeys selection gradient dynamics, as is true in the
present case (Barton 1989), is proportional to the integral
between 0 and 1/(2N) of

cðqÞ ¼ exp
�
22N ln �wðqÞ� ¼ �wðqÞ22N ;

where �wðqÞ is the mean fitness of the population as a func-
tion of the allele frequency at the locus in question, holding
all other allele frequencies constant (e.g., Charlesworth and
Charlesworth 2010, p. 299, Equation 6A.6b). Since 1/(2N)
is close to zero, it follows that the integral for a new A2

mutation is proportional to �wð0Þ–2N. Similarly, the integral
for a new A1 mutation is proportional to �wð1Þ–2N. From
the full equation for fixation probability (Charlesworth
and Charlesworth 2010, p. 299), the expressions for A1

and A2 share common constants of proportionality, so
that we have

ln
Q1

Q2
¼ 2N

�
ln �wð0Þ2 ln �wð1Þ	: (A.7a)

In the present case, application of Equation 1 to a population
with a specified mean and variance of z shows that, for
a single locus with small effect a, we have ln �wð1Þ – ln
�wð0Þ � 4Sa2d, so that
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ln
Q1

Q2
� 28NSa2d: (A.7b)

This is identical in form to the expression for the special
case with constant selection coefficient used to obtain
Equation 7b, which assumed d* , 1/2. This means that
the argument used for this case to obtain an expression
for d* can be generalized, so that Equations A.3 can be
used even for cases when d* , 1/2. However, in these
cases, it is no longer the case that the fixation probabili-
ties of A1 and A2 can be found from a single g parameter,
nor can the distribution of variant frequencies be found
from Equation 10.

Numerical methods for analyzing the
state-dependent model

Under a Wright–Fisher model of drift, it is possible to rep-
resent the transition from one generation to the next by
a matrix of the type described by Zeng and Charlesworth
(2009), of size (2N + 1) · (2N + 1), where N is the pop-
ulation size. The only substantial difference from their
model is the form of the expression for Dqis in Equation 2.
The state of the population at the start of a generation is
represented by a column vector f of dimension 2N + 1, such
that the element fj represents the probability of frequency
q(j) = j/(2N), where j = 0, 1, 2, ..., 2N. The q(j) values are
then modified by selection, according to Equation 2, where
the expected value of z is obtained from Equation 4 by av-
eraging [2q(j) – 1]a over all values of q(j). With reversible
mutation, they are further modified for segregating sites
according to Equation 4; the value of q at sites fixed for
A1 is changed from 0 to u, and the value of q at sites fixed
for A1 is changed from 0 to 1– ku (Zeng and Charlesworth
2009).

This procedure assumes that the value of d for a single
population out of the ensemble of populations generated by
the probability distribution of allele frequencies can be
replaced by the expected value of d over this ensemble,
d*. A justification of this assumption as a first-order approx-
imation with respect to the strength of selection on an in-
dividual variant is given in File S1.

Using binomial sampling from the allele frequencies after
selection and mutation, we can write down a transition
matrix A, whose element aij describes the probability that
a site with frequency j/(2N) at the start of the generation
produces an allele frequency i/(2N) in the next generation.
This is used to premultiply f to get a new vector, f´ (for details,
see Zeng and Charlesworth 2009). Successive iterations are
conducted until the system approaches equilibrium.

It is only feasible to use a vector with a dimension of
a few hundred to generate numerical results in a reasonable
amount of time. To represent a biologically realistic pop-
ulation size, it is necessary to appeal to the fact that, when
all deterministic evolutionary forces are sufficiently weak
that second-order terms in their magnitude are negligible,

implying that diffusion equation approximations are justi-
fied, it is the products of 2N and these magnitudes that de-
termine the rate of change of f when time is rescaled to units
of 2N generations (Ewens 2004, p. 137). Thus, provided
that values of NS, Nu, etc., that are comparable with those
for a natural population are used, we can make accurate
inferences about the outcome of evolution from the much
smaller populations that can be easily modeled. This princi-
ple has been used successfully in several previous studies,
e.g., Li (1987), Dolgin and Charlesworth (2006), Keightley
and Eyre-Walker (2007), Eyre-Walker and Keightley 2009),
and Zeng and Charlesworth (2009); tests of several exam-
ples using both the matrix method and the stochastic simu-
lations described below show that it also works well here
(data not shown).

The distribution of the numbers of A2 vs. A1 variants in
a sample of k alleles, taken from a population with vector f
of probabilities of allele frequencies, can be obtained by
applying binomial sampling conditioned on a population fre-
quency q of A2, weighting by the corresponding element of f,
and summing over all possible q values, as described by
Zeng and Charlesworth (2009). This gives the pooled site
frequency spectrum for the sample, which can be used to
test for selection (Cutter and Charlesworth 2006; Galtier
et al. 2006; Zeng and Charlesworth 2009; Sharp et al.
2010).

Stochastic simulations of a set of m freely recombining
sites were carried out using a similar model. In this case,
however, a single population was followed to provide a rep-
licate run. Each generation, deterministic changes in allele
frequencies at each site were calculated according to Equa-
tions 2 and 5. The effect of drift was modeled using a bi-
nomial random number generator (Press et al. 1992), to
generate a new allele frequency at each site from a binomial
deviate with sample size 2N, and the postselection and
mutation allele frequency as the parameter. Care was taken
to ensure that populations were run for sufficient time to
approach statistical equilibrium. For the smaller population
sizes, this could take 4000 generations. The means, stan-
dard deviations, and standard errors of the statistics de-
scribed in the main text were calculated, as well as the
fractions of sites fixed for A1 and A2 in a sample of 20
alleles, and the frequency of A2 in the sample, to determine
the extent to which the properties of the sample frequency
spectrum varied between replicates. In addition, the fre-
quency spectrum across pooled replicate runs was com-
puted, for comparison with the matrix and analytical
results.

Approximate solution for state-independent mutations,
with both stabilizing and directional
selection components

A very similar procedure to that for the state-dependent
model can be used. The condition for equilibrium analogous
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to Equation A.5, but without the state dependence, yields
the following expression

kg1½12 expð2 g2Þ�2 g2½12 expð2 g1Þ� ¼ 0: (A.8)

This can be solved for d* by Newton–Raphson iteration.
Using the same approach as above, but noting that A1 to
A2 and A2 to A1 mutations now occur at rates u and ku,
respectively, the equilibrium genetic variance is given by

V*
g � 2mku½g1 2 1þ expð2 g1Þ�

Sð2meþ 1Þ½expð2 g1Þ2 1�

þ 2mu½g2 21þ expð2 g2Þ�
Sð2me2 1½12 expð2 g2Þ�Þ

: (A.9)

By putting g2 = – g1 = ln(k) in Equation A.9, an expression
for Vg* can be obtained for the case when directional selec-
tion is dominant.

State-independent mutation model of stabilizing
selection: Numerical methods

This model presents some bookkeeping difficulties, because
the state of an individual site is not as clearly assignable as
in the previous model, since a site fixed for an A1 type allele
can mutate with probability u to an A2 allele (associated
with an effect on the trait of a) or with probability ku to
another A1 type allele with effect –a (and similarly for a site
fixed for an A2 allele). An individual site can therefore
evolve indefinitely in either direction. This problem can be
overcome as follows. Assume arbitrarily that the ensemble
of initial populations is fixed for a collection of A1 and A2

type alleles at each site, such that the expected value of z,
z*, is equal to the optimum, z0. By Equation 4, the propor-
tion of sites fixed for A2 alleles, f2N = q*, must thus satisfy
the relation z0 = z* = (ma)(2f2N – 1). Since the proportion
of sites fixed for A1 alleles is f0 = 1 – q*, this expression can
also be written as z0 = z* = (ma)(f2N – f0).

At a site fixed for A1, a mutation to A2 can be treated in
the exactly the same way as with the state-dependent
model; if it eventually becomes fixed, the value of f2N is
increased accordingly. But a mutation to another A1-type
variant means that we now have a site in which a derived
A1 mutation is segregating, so that the state of the ancestral
variant at the site must be switched from A1 to A2. Each
generation, therefore, an expected number of 2Nuk f0 new
A1 mutations arise at sites previously fixed for A1; the
switching of the ancestral state implies an initial frequency
of an A2-type allele at these sites of q0 = 1 – 1/(2N), so that
f2N–1 is increased by 2Nku f0. According to Equation 4, these
sites would contribute an amount 2Nkuf0ma(2q0 – 1) =
2Nku f0ma(1 – 1/N) to z*. However, in reality they contrib-
ute –2Nkuf0ma (2q0 – 1). To compensate for this, if we are
to continue to use Equation 4, z* must be adjusted by
–4Nkuf0ma (1 – 1/N) � –4Nkuf0ma. The same argument
can be applied to sites fixed for A2, where new mutations

to other A2-type variants (with q0 = 1/(2N) and 2q0 – 1 =
–(1 – 1/N) must be compensated for by adjusting z* by
4Nuf0ma (1 – 1/N) � 4Nuf0ma, to correct for the switch
of the ancestral state from A2 to A1. This procedure can be
repeated in each subsequent generation. In addition, the
two types of mutational event at each class of site mean
that, each generation, new mutations cause f0 to decrease
by 2Nu(1 + k) f0, and f2N to decrease by 2Nu(1 + k) f2N.
(Use of these terms removes the need to include mutational
changes in the values of q for formerly fixed sites, as was
done with the state-dependent model; the two methods are
equivalent, to the order of the approximations used here.)

With these changes, the matrix method described for the
state-dependent model can be used to generate numerical
results. However, it should be noted that f0 and f2N must be
interpreted differently from the previous model, since their
values at a given time now simply describe the proportions
of sites where A1 and A2 types of variant, respectively, were
the latest to become fixed. This reflects the fact that the
designation as A1 or A2 merely describes variants associated
with effects of –a vs. a at a segregating site, so that only the
probability distribution of frequencies at segregating sites
has any biological meaning.

Stochastic simulations were carried out in a similar way
to those described for the state-dependent mutational
model. The only difference is that the infinite-sites assump-
tion was made, so that there were no deterministic
mutational contributions to allele frequency changes. In-
stead, at nonsegregating sites, new A1-type mutations were
introduced each generation with a probability 2Nku per site,
and new A2-type mutations with a probability 2Nu, regard-
less of the allelic state of the site. Corrections to the popu-
lation mean, to take into account switching of the ancestral
allelic state with A1 to A1 or A2 to A2 mutations, were made
as described for the matrix calculations.

Approximate analytical results for
purifying selection

When �n is sufficiently large, the central limit theorem
implies that the distribution of n among individuals in the
population is approximately normal, and the log mean fit-
ness of the population is given by

ln
�
�w
� ¼ 2

1
2
ln
�
1þ bVg

�þ
�
a2Vg 2 2a�n2b�n2

�
2
�
1þ bVg

� ; (A.10)

where Vg is now the variance of n among individuals within
the population (Charlesworth 1990, Equation A2).

The selection coefficient in the equivalent of Equation 6a
is given by

s ¼ 2
@lnð�wÞ
@�n

¼ ðaþ b�nÞ�
1þ bVg

� (A.11a)
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(e.g., Charlesworth and Charlesworth 2010, p. 123).
In an infinitely large population with free recombination,

there is an approximately Poisson distribution of n among indi-
viduals within the population, so that Vg � �n (Charlesworth
1990). In a finite population, drift generates a substantial
variance in allele frequencies, Vq, among sites; we then have
Vg = 2m[�qð12 �qÞ2Vq], so that Vg , �n. For large m, we can
replace �q and �n by their expected values over the probability
distributions of allele frequencies, q* and n*, and hence
obtain an expected value for Vg. For small values of a and
bn*, Equation A.11a can be well approximated by

s � ðaþ bn*Þ: (A.11b)

With mutations occurring at rate u from A1 to A2 at each
site, and at rate ku in the reverse direction, we can write
down an expression that is similar in form to Equation 7b. In
this case, Equation A.11b implies that

g ¼ 4N½aþ 2mbð12 q*Þ�: (A.12)

This can be substituted into the equilibrium equation
corresponding to Equation 7b, yielding the following
expression

lnð12 q*Þ2 lnðq*Þ � lnðkÞ2 4N½aþ 2mbð12 q*Þ�:
(A.13)

An exact solution for q* for assigned values of k, a, b, and N
can be obtained from Equation A.13 by Newton-Raphson
iteration, and substituted into Equation A.12 to find the
equilibrium value of g.

Some insights into the behavior of g as a function of N
can be found by assuming that selection is weak compared

with mutational bias, so that q* is close to one-half at equi-
librium. We can then write (1 – q*)/q* = 1 + z, where
second-order terms in z are negligible. This implies that ln
(1 – q*) – ln(q*) � z. Substituting this into Equation A.13,
we obtain

12 q* � 1þ 1
2 lnðkÞ2 2Na

2ð1þ 2NmbÞ (A.14a)

and

g �
4N



aþmb

�
1þ 1

2 lnðkÞ
�


ð1þ 2NmbÞ : (A.14b)

These expressions allow n* to be found, using the results
discussed above.

Differentiation of Equation A.14b with respect to N gives
dg/dN= 4m{a + mb[1 + 1

2 ln(k)]}/(1 + 2Nmb)2, so that g
is an increasing function of N even when b . 0. This shows
that synergistic epistasis among deleterious mutations does
not immunize the scaled selection coefficient against
changes in population size, unless 2Nmb .. 1, in which
case Equation A.13 implies that q* approaches 1, an unre-
alistically high value compared with the frequency of usage
of preferred codons obtained in most studies. This contrasts
with the behavior of g with stabilizing selection.

Given the values of n* = 2m(1 – q*) and hence of s in
Equation A.11b, Vg* is given approximately by using the
equivalent of McVean and Charlesworth’s (1999) Equation 15:

V*
g � 2mku½12 expð2 gÞ�

ðaþ bn*Þ½12 k expð2 gÞ�: (A.15)
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S1  Equating the distribution of variant frequencies across sites and the probability 

distribution of variant frequencies 

 
This section concerns the adequacy of the approximation of equating the mean and variance of 

the trait for a given population, determined by the distribution of variant frequencies among m 

sites, to their expectations obtained from the overall probability distribution of variant 

frequencies generated by the stochastic process of mutation, selection and drift. For a set of m 

independent exchangeable sites, the mean of q for a given population is q = (i qi)/m, where qi is 

the frequency of A2 at a given site i. Let q have expectation q* and variance 2
q; q  has 

expectation q* and variance 2
q/m. From Equation 4, the mean phenotypic value is given by z = 

ai (2qi – 1), with expectation ma(2q* – 1) and variance 2
z = 4ma22

q.  

 The ratio of the standard deviation of q  to q* is thus equal to q/(q*√m), which becomes 

indefinitely small as m increases, provided that q/q* is of order one, which must be true when q* 

is non-zero. This means that random fluctuations in q  relative to its expected value become 

extremely small as m increases. It is therefore seems reasonable to treat q as equivalent to q* 

when m is large, as is implicitly done in the standard models of codon usage bias that assume 

directional selection, mutation and drift (Li 1987; Bulmer 1991; McVean and Charlesworth 

1999). This argument can also be applied to the model of mutation and directional selection with 

epistasis examined in the main text, where the mean value of the trait, n , is equal to 2m(1 – q ). 

In this case, the ratio of the standard deviation of n  to its expectation, n*, also approaches zero 

as m increases, so that n can be equated to n* with large m. 

 The genetic variance, Vg, has expectation Vg* = 2a2 E{i qi(1– qi)} = ma2*, where * is 

the expectation of the diversity at a given site i, given by i = 2qi(1 – qi). In the case of neutrality, 

the result that * = 8Nu/(1 + )  for the state-dependent mutation model at the infinite sites 

limit (Charlesworth and Charlesworth 2010, p.274) yields Vg* = 8Numa2/(1 + ) at stationarity. 

Furthermore, the variance of Vg is equal to ma42
, where 2

 is the variance of  over the 

probability distribution of q; 2
 */3 in the case of stationarity and neutrality (Tajima 1983). 
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The ratio of the standard deviation of Vg to Vg* is therefore equal to /(*√m). Provided that 

/* is of order 1, these results suggest that it is reasonable to equate Vg to Vg* for large m, since 

the neutral expression gives a good approximation to the expected variance when selection is 

weak, as can be in Tables 1-3. This result applies both to the stabilizing selection and purifying 

selection models considered here. 

 These arguments show that the mean and variance of the allele frequencies across sites in 

a given population, the main quantities of interest for this paper, are close to those generated by 

the overall probability distribution of allele frequencies, provided that the assumption of 

independence among sites within a population is met. As mentioned in the main text, simulations 

of multi-locus models support the assumption of only a minor effect of linkage disequilibrium 

among variants within a population, provided that recombination rates among nearby sites are 

sufficiently high in relation to the strength of selection (Bürger 2000, p.276). However, the 

question of what happens when recombination is rare or absent is relevant to the important 

general problem of the effect of restricted recombination on evolutionary processes 

(Charlesworth et al. 2010), and will probably require simulation studies.   

 Even with linkage equilibrium, however, the population mean at a given time enters into 

the expression for the change in variant frequencies at each site, for both the stabilizing selection 

model and for the purifying selection model with epistasis. This means that variant frequencies 

are not strictly independent of each other in terms of the overall evolutionary process, even with 

linkage equilibrium. But with a large number of sites, the state of a given site i has only a small 

effect on the trait mean, of the order of 1/m. This suggests that, with sufficiently large values of 

m, the population mean can be treated as independent of the value of the allele frequency at a 

given site, so it should be valid to ignore this source of non-independence (see Section S2 for 

further discussion of this point).  

 In addition, in the case of stabilizing selection, there is the problem that the term in 

brackets in Equation 2 of the main text involves = z0 – z /a, whose expected value is close to 

zero when NSa2 is sufficiently large (see section S4). This implies that fluctuations in  around its 

expectation, *, could be so large that we cannot legitimately replace  by *, as was done in the 

derivation following Equations 6 and 12.   
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 Examination of this question requires knowledge of the variance in z0 – z  generated by 

drift. An expression for this is given in section S3 below, using the approach of Lande (1976) and 

Bürger and Lande (1994), which assumes that there is an indefinitely large number of sites 

influencing the trait (the “infinitesimal model”). There is then a stationary, normal distribution of 

the values of z0 – z  among independent realizations of the stochastic process, with approximate 

standard deviation 1/√(4NS). This implies that 

 

                                                      

 

  

(4NSa2)

1              (S1.1)


 

 The stationary distribution of  *(), is normal, with expectation * and a standard 

deviation given by Equation S1.1. Importantly,  is independent of m, in contrast to the result 

for the mean allele frequency, showing that fluctuations in  may indeed be important regardless 

of the number of sites involved. The argument used in the main text showed that, for the state-

dependent mutational model of stabilizing selection, we have *   [ln( + 2b]/(8NSma2) (see 

Equations A3b and A7). Fluctuations around * will be unimportant if this quantity is several 

times , since then  and * will always be close. This condition is satisfied when 

 

                                                          

 

4 NSa2

[ln() + 2b]
  >> 1                   (S1.2)

 

 

For the state-independent mutational model of stabilizing selection, the term in 2b is omitted 

(Equation 13b).  

 The cases shown in Tables 1 and 2 with N = 50 satisfy this requirement, whereas it is 

violated for the others. Nevertheless, there is still good agreement between the formulae based on 

equating  and * and both the simulation and matrix results. This raises the question of why this 

should be, which is examined in the next section.  

 

S2  Use of * instead of  in the analytical and numerical models of stabilizing selection 
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Consider an ensemble of independently evolving populations, each with a potentially different 

value of  at any given time t. Assume that the probability density of value  = k at time t for the 

kth population is (k, t); for this population, let the probability that a random site i has allele 

frequency qi be fk(qi, t). The probability of transition from qi to qi + i is a binomial deviate, with 

parameter qi plus the deterministic change in allele frequency (given by Equations 2 and 5 of the 

main text); this change is dependent on k, which in turn is determined by the set of allele 

frequencies over all the sites for the population in question, as given by Equation 3. 

 The overall probability density of finding frequency qi + i at time t + 1 is thus obtained 

by summing the transition probabilities for all k values, and multiplying each of these by the 

probability density of finding allele frequency qi at time t in population k, denoted by gk(qi, t). 

But, by the argument made in Section S1, the state of a single site has a negligible effect on the 

population mean when m is very large, so that we can write 

 

                                     
g

k
(q

i
, t)  

k
(

k
)g(q

i
, t) (S2.1)

 

 

where g(qi, t) is the overall probability density for qi at time t.  

 Hence, the transition probability for qi at time t changing to qi + i at time t + 1 is given by 

the integral over the distribution of  of the transition probabilities qi to qi + i for each k, each 

weighted by (k). This is what should properly be used in the calculations, instead of the fixed 

value involving the expectation *.  

 The following argument shows, however, that the use of * is legitimate, provided that 

the usual assumptions of diffusion theory are met (i.e., all evolutionary forces are sufficiently 

weak that their second-order terms are negligible– Ewens 2004, Chapter 4). The subscript i can 

be dropped, since the sites are exchangeable. The forward diffusion equation for population k is 

then 

 

               
 g

k
(q, t) – g

k
(q, t – 1)  – 

q

(g
k
q

k
)
  +  

(4N)
1

 
q2

[q(1–q
 
)g

k
]

           (S2.2)
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where qk is the expected change in allele frequency in population k, given current frequency q.  

  Only the first term on the right-hand side of Equation S2.2 depends on qk and hence k. 

The relevant partial derivative can be written as  

 

                                            
 g

k q

qk   +  q
k
 
q

gk      
 

 

Writing gk(q, t) = (k)g(q, t), Equation S.2.2 becomes 

 

                                               
 (

k
){g(q) 

q

qk   +  q
k q
g(q)

 }              (S2.3)
 

 

 From Equation 2 of the main text, the term in braces can be seen to be a linear function of 

k. This establishes that the diffusion operator is linear in k; hence, if we take its expectation 

over the distribution of k, we obtain an expression that depends only on *. It follows that the 

use of * in the analytical approximations and the matrix equation will be accurate, under the 

usual conditions for the validity of diffusion equations. The same argument applies to the 

backward diffusion equation, which is used to obtain the expressions for fixation probabilities 

and diversities used in the main text.  

 An alternative argument can be applied to the matrix equation used in the numerical 

calculations, as described in the Appendix. Since this is equivalent to the diffusion equation when 

the conditions for the latter to be valid are satisfied, the results must also apply to the latter. For a 

given value of , we can write the transition matrix as A(). The dependence on  is mediated by 

the set of deterministic changes in allele frequencies across sites, given by Equation 2 Let 

qs(q) be the expected change in allele frequency due to selection, for a given frequency q. We 

can expand A in a Taylor series around the neutral value, A, for which qs = 0 for all q. This 

expansion involves the sum over n and all permissible values of q (i.e., 0, 1/(2N), … , 1) of the 

product of qs( q)n/n! and the nth order partial differential coefficient of A with respect to 

qs( q). If selection is sufficiently weak, we should be able to ignore all such terms for n > 1. 

 From Equation 2, the linear dependence of q on  means that we can write  
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qs( q) = qs(*, q) + (– *)2q(1 – q)Sa2 

 

so that  

 

      

 [qs(*, q) +  ( – *)2q(1 – q)Sa2] (
qs

A )
0
    A

0
 +    )  (S2.4)   A( 

q  

 

where the summation is taken over all permissible values of q, and the derivative is evaluated at 

Sa2 = 0.   

 Using the discrete probability equivalent of Equation S2.1, the matrix that represents the 

net change between generations in the probability vector f is the expectation of A() over the 

distribution of values. The linearity of Equation S2.4 in  – * immediately implies that that 

only the terms in A0 and qs( q) remain after taking this expectation.It follows that the only 

substantial contribution to the Taylor expansion of A around A0 is the first-order term given by 

the sum over sites of the terms in qs(*); this is equivalent to A(*) to the order of the 

approximations used here. This implies that we can replace  by * in A in order to generate the 

probability distribution of allele frequencies without significant error, as has been done when 

generate the numerical results from the matrix method displayed in Tables 1, 2 and 4. 

 Very similar reasoning can be used to arrive at similar conclusions for the case of 

purifying selection with epistasis represented by the quadratic model of Equation 13, since the 

selection coefficient for a individual variant is a linear function of n  (see Equation A11a). 

 
S3  Use of the infinitesimal model to obtain results on the outcome of drift, mutational bias 

and stabilizing selection 

 

An alternative approach to the models with stabilizing selection is to use the infinitesimal model 

of Lande (1976) (see Section S1). The state-independent mutational model will be considered 

first, since it is somewhat simpler to analyze. A forward diffusion equation for the trait mean in a 

given generation, z  can be derived,  using the expected change in mean for a given value of z , 
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Mz, and the variance in z  generated by one generation of drift, Vz. In the present case, and 

using Equation 2 (but neglecting the terms in 2qi – 1 compared with 2), we have 

 

            
 M

z
 = 2Vg  S(z0 – z) + 2mua(1 – )              (S3.1)

  

 

where the second term on the right-hand side represents the effect of mutational bias on the trait 

mean over one generation (under the state-independent mutation model, the expected rate of 

occurrence of mutations that each increase the current mean by a when heterozygous is 2mu per 

individual per generation, and the expected rate for mutations that each decrease it by a is 2mu). 

 Following Lande (1976), we have Vz = Vg/N, where Vg is the current value of the genetic 

variance. Further progress requires making the assumption that fluctuations in Vg can be ignored, 

so that we can replace with its expectation Vg*. The diffusion representation is then approximated 

by an Ornstein-Uhlenbeck process, with variance Vg*/N, and change in mean given by replacing 

Vg with Vg* in Equation S3.1 (Lande 1976; Lande and Bürger 1994). Standard results for the 

Ornstein-Uhlenbeck process imply that the stationary distribution of z  is normal, with variance 

1/(4NSa2) and expectation  

 

                                                          
z* = z

0
 + 

(Vg S)
mua(1 – )

                      (S3.2)
 

 

 An upper bound to Vg* is provided by the neutral case; with the state-independent 

mutational model at the infinite sites limit, Vg* = 4Nmu(1 + )a2 (see main text). Use of this 

expression in Equation S3.2 gives 

 

                                                        
z* = z

0
 + 

(1 + )(4NSa)
(1 – )

                 (S3.3a)
 

 

which implies that  

 

                                                             
 * = 

(1 + )(4NSa2)

( – 1)
                 (S3.3b)
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Similarly, the variance of  is 

 

                                                                   
 

2 = 

4NSa2
1                            (S3.4)

 

  

 At first sight, the result for * is very different from that in Equation 13b, * = 

ln()/(8NSa2). We can, however, write ( – 1) = , so that 1 +  = 2(1 + /2) yielding  

( – 1)/(1 + ) = [– 0.52  – ....]/2 when  < 2. This is close to ln()/2 when < 1, 

and is slightly smaller than ln()/2 in general. For example, with  = 2 and 4, ( – 1)/[(1 + )] = 

0.33 and 0.60, respectively, instead of 0.34 and 0.70 for ln()/2.  

 There is therefore reasonably good agreement between the expressions for *, derived 

using these two different methods of approximation, and with the results of the stochastic 

simulations, although the results derived in the main text fit the simulation results considerably 

better than those from the infinitesimal model. The reason for the discrepancies is unclear, but 

presumably reflects the neglect of the contributions from the sum of terms involving 2qi – 1in 

Equation 2 to the change in z  in the infinitesimal model, and the use of the neutral expectation 

for Vg. The qualitative behaviors of the two expressions for * as functions of  and NSa2 are, 

however, very similar. 

 A similar argument can be used for the state-dependent mutational model. The mutational 

term in Mz is, however, more complex. Using the infinite sites limit, let the overall frequency of 

sites fixed for A2 be q*; at these sites, mutations to A1 occur at rate u per site. From Equation 4, 

these cause an expected change in z  of –2muaq*. Similarly, mutations at sites fixed for A1 

occur at rate u, resulting in an expected change of 2mua(1 – q*). The net expected mutational 

change in z  is thus 2mua[1 – (1 + )q*]. As before, we can approximate Vg by its neutral 

expected value, which in this case is equal to 8Numa2/(1 + ) (see section S1). This gives the 

equivalent of Equation S3.4 as 

 

                                             
 * =

8NSa2

[(1 +  )q* – 1](1 +  )
                    (S3.5a)
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For large m, q*   (1 + b)/2, where b = z0/(ma) (see Equation 8). Substituting this into Equation 

S3.6a, we find that  

 

                                          
 *  

(1 + )
  

16NSa2

[b +  – 1]
               (S3.5b)

 

 

The behavior of * is similar to that predicted by Equations A3, although this expression 

somewhat overestimates * compared with these approximations and with the simulations. 

 The behavior of the infinitesimal model also yields some insights into why equating  and 

* seems to work so well. When mutational bias is absent, Bürger and Lande (1994) used 

established properties of the Ornstein-Uhlenbeck process to show that the timescale over which 

the temporal autocorrelation in the mean decays is of the order of 1/(2SVg*), using the present 

notation. This provides a timescale over which the fluctuations in  will tend to average out, 

denoted by T. Using the neutral approximation for Vg*, for the state-independent mutational 

model, we obtain  

 

                                                      
 T

  

mu(1 + ) ln()
*                   (S3.6)

 

 

With quasi-neutrality, the timescale over which variant frequencies change is Td   4N. The ratio 

of the two timescales is thus 

 

                                             

 
T


Td     
*

4Nmu(1 + ) ln()
                     (S3.7)

  

 

When Td/T is approximately 1 or more, variants are likely to experience the whole range of 

fluctuations of  around * during their sojourn in the population, so that we can expect the 

effects of these to average out when affecting its fixation probability. This condition is met for 

the cases with N of 100 or more in Table 2, but not for N = 50. However, in the latter case, the 

argument presented in section S1 shows that the standard deviation of  is considerably smaller 
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than * (as can be seen in Table 2), so that the fluctuations would be expected to have relatively 

small effects compared with those for the other11N values. 

 A similar relation can be derived for the state-dependent model, except that the 

approximation derived above for the mutation term implies that 2Nmu[(1 + )b +  – 1][2b + 

ln(k)] is used in the numerator of the equivalent of Equation S3.7.  

 

S4  Values of  and Vg for large values of NSa2 

 

This section examines the values of  and Vg for values of NSa2 that are sufficiently large that 

most sites are skewed to a high frequencies of either A1 or A2 type variants, when there is a 

predominance of stabilizing selection (2 < 1). The case of state-independent mutations will be 

considered first. Here, A2-type mutations occur at rate u each generation, and A1-type mutations 

occur at rate u. Under the infinite sites assumption, a site will segregate for at most one of these 

two types of mutation. Rare A2-type mutations are selected against with net selection coefficient 

Sa2(1 – 2), since the directional selection component opposes the effect of stabilizing selection 

in Equation 2; rare A1-type mutations are selected against with net selection coefficient Sa2(1 + 

2), since directional and stabilizing selection reinforce each other. The changes in frequencies of 

rare A2-type mutations due to the stabilizing selection component of the right hand side of 

Equation 2 cause a net change in  of approximately 2 q2 (Sa2), where q2  is their mean 

frequency. Similarly, rare A1-type mutations cause a net change in  due to stabilizing selection 

of –2 q1  (Sa2), where q1  is their corresponding mean frequency. We also need to include the 

change in  caused by the directional selection component of Equation 2 as well as the mutational 

component, as was done in deriving Equation S3.1. We obtain 

 

                          
   – 2VgS +  2m         (q

2
 – q

1
) + 2mu( – 1)                        (S4.1)   (Sa2)

 

 

If the infinite sites assumption holds, the mean variant frequencies will be close to their infinite 

population equilibrium values under selection and mutation, q2* = u/[(1 – 2)(Sa2)] and q1* = 

u/[(1 + 2)(Sa2)] In addition, the expected diversity at each class of site can approximated by 
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the appropriate deterministic formula for mutation selection balance (see Charlesworth and 

Charlesworth 2010, p.278, Equation B6.7.3); multiplication of these by a2 yields the expected 

variance, Vg*, as before. Taking each class of mutation into account, we obtain the following 

expression 

  

                                        

 Vg
*   

S(1 – 42
)

2mu[(1 – 2) + 1 + 2]
             (S4.2)

 

 

Substituting the equilibrium expressions for q1  and q2  into Equation S4.1, setting  to zero, 

multiplying top and bottom by 1 – 42, and cancelling common factors, we obtain the equilibrium 

equation 

 

    0  – [(1 – 2) +  1 + 2]  +  [1 + 2 – (1 – 2)] + – 1)(1 – 42
)            (S4.3) 

 

 The constant term in this quadratic expression in  is equal to zero. It therefore has one 

root of zero, and the other given by the remaining terms, which yields the alternative equilibrium 

solution * = ( + 1)/[2( – 1)]. However, this implies * > ½ with  > 1, and so * lies outside 

the permissible range for the present analysis. 

 The equilibrium * = 0 is locally stable, as can be seen informally as follows. Consider 

what happens when  is perturbed upwards from the equilibrium with  = 0, with an 

accompanying arbitrary small perturbation to Vg. This has the effect of introducing a negative 

first term into the expression for  given by Equation S4.1. Similarly, an increase in  implies a 

decrease in the contribution from the term in q2  – q1 , so that this quantity is reduced below its 

equilibrium value for  = 0. Since the mutational term is unchanged, the net result is to cause  

to become negative, and so  will move back towards zero. 

 A similar approach can be used for the state-dependent model. Applying the approach in 

the Appendix for obtaining Equations A1 and A7, with large m and NSa2 the fractions of sites 

with mutations with high frequencies of A1 and A2 can be approximated by (1 – b)/2 and (1 + 

b)/2, respectively; these sites generate rare A2-type and rare A1-type mutations at rates u and u. 

The corresponding net changes in  at equilibrium due to stabilizing selection at each type of site 
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are then mu(1 – b)/(1 – 2) and – (1 + b)u/(1 + 2), respectively, yielding a total contribution of 

mu[(1 – b)(1 +2) – (1 + b)(1 – 2)]/(1 – 42). The equilibrium variance is now given by 

 

                           

 Vg
*          

S(1 – 42
)

mu[(1 + b)(1 – 2) + (1 – b)(1 + 2)]             (S4.4)

 

 

and the mutational term (as in the derivation of Equations S3.5) is equal to mu[ – 1 + b(1 + )]. 

 The equation for equilibrium analogous to Equation S4.3 is now 

 

    

 0 = – [(1 + b)(1 – 2) +  (1 – b)(1 + 2)] + [(1 – b)(1 + 2) – (1 + b)(1 – 2)]

          +  [ – 1 + b(1 + )](1 – 42
)]                                                                         (S4.5) 

 

 A similar analysis to the above shows that the constant terms again sum to zero, so that 

there is a root * = 0. The other root is * =  [(1 + b) + 1 – b]/{2[(1 + b) + b – 1]}. Similar 

remarks apply to the existence and stability of these equilibria as in the state-independent case.  

 

S5 Conditions for validity of the approximations for the stabilizing selection model 

 

An important issue concerns the conditions under when the approximations described in the main text 

for obtaining the the results presented in Tables 1 and 2 break down. This is expected to happen when 

the stabilizing selection term in Equation 2, 2qi – 1, becomes dominant over the term in 2*. Since the 

magnitude of 2qi – 1 is always < 1, Equation 13b for the state-independent model implies that a 

sufficient condition for this is ln()/(4NSa2) < 1. The parameter = 4NSa2 should thus play a critical 

role in controlling the outcome of the process; if > ln(), there is the potential for net selection 

against A2 over the part of the distribution of qi values for which qi << 1, and selection in favor of A2 

over the rest of the distribution. None of the parameters shown in Tables 1 or 2 satisfy this condition. 

Even when > ln(),the argument leading up to Equation A7 shows that the formulae for * in terms 

of  and NSa2 should still apply, provided that the approximation of treating  as fixed at * is valid; 

with NSa2 >> 1, the deterministic formulae for Vg* should provide good approximations. 
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Values of N, S and a that cause  to fall well above the critical value were therefore chosen for 

further numerical study by stochastic simulations (Table S2). Values of  are not shown, because a 

single  value is not meaningful in these cases. Because the fluctuations in  relative to * are very 

large here, 4000 replicate runs were carried out for each parameter set. It will be seen that the 

deterministic approximations for Vg* are quite accurate, although there is a tendency for them to 

slightly underestimate the true values, as would expected from the effects of drift; the analytical 

approximations for the state-dependent model also tend to underestimate * somewhat.  

The small values of * in these cases compared with the results in Tables 1 and 2 (between 0.02 

and 0.06) are consistent with the argument given in the Supplementary Information, Section S4, as 

well as with the results of Waxman and Peck (2003) and Zhang and Hill (2008). The intuitive basis 

for this approach of * to zero with large NSa2 is that an examination of the contributions to the net 

change in  per generation from the two components of the bracketed term on the right hand-side of 

Equation 2 (i.e., from 2 and from 2qi – 1) shows that the contribution from the second (stabilizing 

selection) term approximately counteracts the contribution from mutation. This leaves a net 

contribution from the directional selection term, which is equal to –2VgS(see Equation S4.1). 

Hence, for an equilibrium to be achieved in a infinite population,  must be close to zero. 

Selection in these cases is largely driven by the stabilizing selection component of Equation 2. 

This implies that 1 (for rare A1 mutations) and  (for rare A2 mutations) are both negative. But with 

mutational bias there is a predominance of rare A1 mutations segregating in the population, as 

opposed to rare A2 mutations. This causes the shape of the pooled frequency spectrum to differ 

considerably from the U-shape with pure stabilizing selection (Kimura 1983, p.147), although there is 

a slight upturn in the frequency spectrum at low frequencies of A2 mutations with a low level of 

mutational bias. An example is shown in Figure S1. In contrast, the unfolded frequency spectra for 

derived A1 and A2 variants show selection against each of them. These differences from the case 

when there is net directional selection or pure stabilizing selection should be informative in 

applications to data from natural populations. 
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Table S1   Properties of the site frequency spectra for state-independent mutations 

 

             Sites fixed             Sites fixed                Mean frequency 

     for A1                              for A2                             of A2 

 = 2    
N = 50  0.366   (0.015)  0.653  (0.016)  0.607  (0.063) 

       100  0.320   (0.014)  0.640  (0.015)  0.606  (0.046) 

       200  0.309   (0.014)  0.614  (0.015)  0.604  (0.032) 

       400  0.288   (0.014)    0.575  (0.015)  0.604  (0.025) 

 = 4    

N = 50  0.193   (0.013)  0.777  (0.013)  0.685  (0.050) 

       100  0.187   (0.012)  0.755  (0.013)  0.680  (0.034) 

       200  0.176   (0.011)  0.716  (0.013)  0.679  (0.026) 

       400  0.161   (0.011)  0.653  (0.014)  0.674  (0.018) 

 

  

The entries display the mean proportions (over 500 replicate simulations) of sites 

 in a sample of 20 alleles that are fixed for A1- and A2-type variants, respectively,  

together with the mean frequency of A2-type variants in the sample. Standard deviations 

are shown in brackets. The selection and mutation parameters of Table 2 were used, 

with an optimum of zero. 
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Table S2  Simulation values of parameters under stabilizing selection with large Nsa2   
 
      State-dependent mutations                                   State-independent mutations 
 
(x10) Vg 
(x10)Vg 
 
 



 = 2 

    Sim. 
Mean  s.d. 

App. Sim. 
Mean  s.d. 

Stab. 
Sel. 

     Sim. 
Mean  s.d. 

App.       Sim. 
Mean   s.d. 

Stab. 
Sel. 

z0 = 0 0.298   2.61 
(0.041) 

0.217 0.381  0.076 
(0.001) 

0.300 0.244   2.60 
(0.041)  

0.212 0.635 0.100 
(0.002) 

0.600 

z0 = 20 0.388  2.61 
(0.041) 

0.257 0.382  0.079 
(0.001) 

0.320 0.212  2.58 
(0.041) 

0.212 0.634  0.099 
(0.002) 

0.600 

 = 4         
z0 = 0 0.489   2.59 

(0.041) 
0.434 0.588  0.095 

(0.002) 
0.500 0.460   2.59 

(0.041) 
0.433 0.922  0.113 

(0.002) 
1.00 

z0 = 20 0.610   2.57 
(0.041) 

0.473 0.605  0.097 
(0.002) 

0.560 0.422   2.62 
(0.041) 

0.433 0.921  0.114 
(0.002) 

1.00 

 
 

          N = 400; u = 1 x 10–5; m = 1000, S = 0.1, a = 0.316 (Sa2 = 0.01). 
 
The entries headed ‘Sim.’ were obtained from stochastic simulations with 4000 replicates; the entries 

for  headed ‘App.’ were obtained from Equations A3a (state-dependent model) and 13b (state-

independent model), and the entries headed ‘Stab. Sel.’ from the formulae for Vg* with large 

population size (Equations S4.2 and S4.4, setting  = 0). Results from matrix iterations are not shown, 

since problems with convergence were experienced. 
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Figure S1  Site frequency spectra in a sample of 20 alleles with a predominance of stabilizing 
selection, from the results of pooling 4000 stochastic simulations. The histograms show the 
spectra for the cases of neutrality (red bars) and stabilizing selection with state-independent 
mutations and two different levels of mutational bias (blue and white bars) with N = 400, S = 
0.1, m = 1000, a = 0.316, z0 = 0 and u = 1 x 10-5. 
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