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ABSTRACT A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single
unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents
a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity
as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property
that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the
diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The
numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic
drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-
dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i)
the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability
of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the

latter in the form of a changing population size.

ANDOM genetic drift occurs when genes of a given type

are transmitted to the next generation with random
variation in their number. It occurs when the relevant num-
ber of genes is finite and not effectively infinite. The process
of random genetic drift plays a fundamental role in molec-
ular evolution and the behavior of genes in finite populations
(Crow and Kimura 1970; Kimura 1983). Beyond this, some
of the ideas and techniques used in random genetic drift
have a wider use, for example, with applications to cancer
(Zhu et al. 2011; Traulsen et al. 2013) and range expansion
(Slatkin and Excoffier 2012).

To set the stage for the present work, consider a single
locus with genetic variation due to the segregation of more
than one allele in the population. The population size is
assumed finite, so random genetic drift generally occurs,
and the number of copies of a particular allele at the locus
changes randomly over time. The genetic composition of the
population exhibits a particular sort of random walk and
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a distribution describing such walks can be analyzed under
an approximation where it obeys a diffusion equation. This
treatment of random genetic drift is naturally known as
the diffusion approximation and was introduced into
population genetics by Fisher (1922) and Wright (1945)
and substantially extended and developed by Kimura
(1955a); the diffusion approximation continues to be
developed and applied in a variety of situations (Ewens
2004).

The diffusion approximation is often applied to the
Wright-Fisher model (Fisher 1930; Wright 1931), where
both time and the possible frequencies of an allele take
discrete values. Such a “discrete” model has a mathematical
description involving matrices and vectors, and numerical
results for simple situations can be directly obtained on
the computer. A comparison of Wright-Fisher and diffusion
results suggest that the diffusion approximation is usually
very accurate. It is known to work well when the number of
individuals is not large (~10) when selection is not strong
(Ewens 1963). Generally, however, the accuracy of the dif-
fusion approximation depends on the population size and
the strength of selection, as discussed in the book by Ewens
(2004). The book by Gale (1990) also discusses limitations
of this approximation.

Genetics, Vol. 194, 973-985 August 2013 973


mailto:davidwaxman@fudan.edu.cn

For an appreciable population size, or in complex situations,
such as a changing population size, the diffusion equation,
should, in principle at least, come into its own right, and be
preferable to the Wright-Fisher model. For example, if the
population size changes over time, the Wright-Fisher model
becomes complicated by its matrix of transition probabilities
changing size over time (the size of the matrix depends on the
size of the population). By contrast, in a diffusion analysis only
a parameter in the diffusion equation changes over time; the
form and description of the diffusion equation are not depen-
dent on the value of this parameter. The diffusion approxima-
tion has some other advantages.

In some cases the diffusion equation can yield explicit
mathematical results; however, beyond this, the diffusion
equation has the property of accessibly displaying key
parameters of a problem (e.g., the effective population size,
the strength of selection, mutation rates,...). A consequence
is that the diffusion equation can be subject to mathematical
transformations that expose the dependence of a solution on
important combinations of these parameters. As an example,
consider an unlinked locus with two alleles, which is subject
to semidominant selection of strength s (with |s| < 1) and
two-way mutation at rate u. It can be shown that the diffu-
sion equation leads, after the rescaling of time by the effec-
tive population size, N,, to an equation that depends on the
composite parameters N.s and N.u, rather than separately
depending on N,, s, and u. Thus one conclusion that may be
immediately drawn, without actually solving the diffusion
equation, is that the equilibrium distribution of the allele
frequency (which does not involve time) depends only on
the composite parameters N.s and Neu. Hence a locus with
N. = 100, s = 1072, and u = 107> and another with N, =
1000, s = 1073, and u = 10~° will both, under the diffusion
approximation, be described by the same equilibrium distri-
bution of the allele frequency, because both have N.s = 1 and
Neu = 1073, More generally, the ability to mathematically
transform the diffusion equation can lead to understanding
of the properties of whole sets of solutions (in the above
example, all equilibrium solutions with given values of Nes
and N.u) along with other properties (Waxman 2011b).

While knowledge of the distribution of the allele
frequency is important and useful, exact time-dependent
solutions of the diffusion equation for two alleles are known
in only a relatively small number of cases, such as under
neutrality, where Kimura (1955b) obtained the part of the
solution associated with segregating alleles, while McKane
and Waxman (2007) derived the corresponding solution
that also includes fixation and loss. Other known solutions
incorporate migration or mutation (Crow and Kimura 1956,
1970). To analyze interesting new situations, which are con-
stantly arising (for example, see Wylie et al. 2009) requires
additional solutions of the diffusion equation and a numeri-
cal approach appears to be the simplest way forward.

In this work we present a scheme for numerically solving
the diffusion equation. This approach can benefit from the
advantages, alluded to above, of the diffusion approximation.
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In our view, the numerical scheme provides a viable way of
investigating problems in random genetic drift; as we show, it
can be simply applied to complex situations.

The numerical scheme is designed to lead to a normalized
probability distribution in which the total probability sums
(or integrates) to unity at all times. We describe solutions of
the diffusion equation, whose total probability is unity, as
complete. Thus the numerical method presented here pro-
duces complete solutions. Before we say more about the nu-
merical scheme, let us discuss features of complete solutions.

A key feature of a complete solution of the diffusion equa-
tion is that all possible outcomes are included, by virtue of
the total probability of the distribution summing to unity.
Thus if fixation and loss are possible, then populations with
fixed, lost, and segregating alleles are all, necessarily, in-
cluded in a complete solution.

There are fundamental reasons for wishing to consider
complete solutions of the diffusion equation, apart from the
fact that they conserve probability and constitute a complete
description. Such solutions have properties that are in
extremely close correspondence with those of the model
underlying the diffusion approximation—the Wright-Fisher
model. As an example, in a Wright-Fisher model for a neu-
tral locus, the expected value of the (relative) frequency of
an allele, at any time, coincides with the initial value of its
frequency (which is assumed known precisely). Under a dif-
fusion analysis, exactly the same property of the expected
value of the allele frequency holds only when a complete
solution of the diffusion equation is used to carry out the
average; using a solution that covers only populations with
segregating alleles will not lead to the expected frequency of
an allele coinciding with its initial value. Such an expecta-
tion requires an average that is taken not only over popula-
tions in which alleles are segregating, but also must include
populations in which alleles have fixed or been lost.

When the phenomena of loss and fixation can occur, math-
ematical treatments of the diffusion equation lead to complete
solutions that have been found to contain singularities—sharp
spikes (i.e., Dirac delta functions) at the frequencies zero and one
(McKane and Waxman 2007; Chalub and Souza 2009; Waxman
2011a). The spikes in the solution are distributions with zero
width but finite area. They represent probability densities of lost
and fixed alleles. The spikes are the way the probabilities of the
terminal frequencies of the Wright-Fisher model arise within the
diffusion approximation (Waxman 2011a).

Consider now previous approaches to solving the diffu-
sion equation. We note that numerical approaches (see, e.g.,
Barakat and Wagener 1978; Wang and Rannala 2004), and
the mathematical approach of Kimura (1955b), yield solu-
tions that describe populations with segregating alleles, but
populations with fixed or lost genes are not explicitly in-
cluded (for a discussion of this see Waxman 2011a). As
a consequence the resulting solutions of the diffusion equa-
tion decay away over time, and such solutions account for
a total (or integrated) probability that is generally less than
unity; they do not constitute complete solutions.



The numerical approach presented here technically in-
volves solving the forward diffusion equation (Otto and Day
2007) for the probability distribution of the frequency of an
allele. In contrast to the previous approaches, we look for
a complete solution that conserves probability. However, at
first sight it is unclear how to determine such a numerical
solution if fixation or loss are possible, since singular spikes
are present in the exact solution, and these appear to be
numerically intractable, given their zero width. Further-
more, even solutions that do not possess singular spikes
may have very sharp features at the boundary frequencies
of zero and one due, e.g., to low mutation rates.

The numerical method of this work evades problems by
not directly dealing with actual values of a solution, which
would diverge at any spikes present. Rather, the method
deals with frequency averages. A solution of the diffusion
equation is discretized into frequency bins of finite width,
and the value of this solution across a bin is a constant that
represents an average of the exact solution across the bin.
Since this average value, when multiplied by the bin width,
represents a probability, it has a finite value, irrespective of
any singular behavior of the underlying exact solution. The
resulting discretized/averaged solution is treated by a so-
called “finite volume” numerical scheme, which is of a type
used for fluids. Such a scheme conserves the total probabil-
ity, in the same way that the volume of a fluid of constant
density is conserved. Given that this numerical method is
based on a discretization, it cannot explicitly show the pres-
ence of singular, zero width spikes within the solution. How-
ever, in the Results we show that it is possible to clearly
demonstrate the presence and contribution of such singular
features within a solution.

Overall, a complete numerical solution of the diffusion
equation, as presented in this work, allows a wide range of
problems to be addressed, including time-dependent selec-
tion and changing population sizes, within a single inclusive
and mathematically consistent framework.

Diffusion Equation

To proceed, let us consider the standard case of a single un-
linked locus in a randomly mating diploid sexual population.
The locus has two alleles, denoted A and B, and generations
are taken to be non overlapping. The processes occurring in
one generation are given in the following lifecycle:

Adults
(generation t)
l reproduction, followed by the death of all adults
Zygotes
1 selection
Juveniles

l thinning (population number regulation)
Adults

(generation t + 1)

Based on the assumption that each adult contributes to a
very large number of zygotes, the processes of both re-
production and selection are treated as being deterministic

in character, meaning that there are negligible deviations
from expected behaviors.

The individuals who survive selection (juveniles) are
subject to a nonselective process of ecological thinning. In
this process, N individuals are randomly picked, without
regard to genotype, from an assumed much larger number
of individuals, to become the N adults of the next genera-
tion. All randomness in the lifecycle, which directly arises
from random genetic drift, occurs during the thinning stage
of the lifecycle.

The proportion of all genes at the locus, in adults, that
are the A allele is the relative frequency of this allele. Hence-
forth we refer to the relative frequency as just the frequency.
The process of thinning generally results in the frequency
varying randomly from generation to generation and we
write its value at time t as X(t). This random variable gen-
erally takes different values in different copies of a popula-
tion. Statistics of the frequency are described by a Wright—
Fisher model (Fisher 1930; Wright 1931) and are expressed
in terms of a discrete probability distribution, which can be
thought of as describing the behavior of X(t) in a very large
number of replicate populations. Under a diffusion approx-
imation, however, both time and the frequency are treated
as continuous quantities, and the statistical description of
the allele frequency is given in terms of a probability density
(but following common usage we use the phrases probabil-
ity density and probability distribution interchangeably in
what follows). The probability density of the frequency of
the A allele at time t, when the value of the frequency is x, is
written as f(x, t), and this obeys the diffusion equation

2
~ ) = s (1 )
b o MG, 6,0 M

(Kimura 1955a, 1964). In this equation, the function M(x,
t), which is typically a polynomial in x, incorporates the
forces of migration, mutation, and selection, which are act-
ing at time t (and in an infinite population M(x, t) would
drive changes in the allele frequency), while N.(t) denotes
the variance effective population size at time t.

Note that theoretically, the variance effective size, N.(t),
is determined from processes that occur over a single gen-
eration (Ewens 2004). We use N.(t) to refer only to this
quantity, and in particular, we do not make use of averages
of the effective population size, such as the harmonic mean,
which summarize the values taken by the effective popula-
tion size over multiple generations.

When mutation may be neglected, but AA, AB, and BB
genotype individuals have relative fitnesses of 1 + s, 1 + hs,
and 1, respectively, assuming |s| and |sh| are small («1),
we have M(x) = sx(1 — x)[x + h(1 — 2x)] (Ewens 2004). A
special case of this scheme of selection, termed semidomi-
nant selection, occurs when h = % Furthermore, semidom-
inant selection, with s — 2s, is closely equivalent to genic
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selection, in which the relative fitnesses of the three geno-
types are (1 + s)2, 1 + s, and 1, respectively, in which case
M(QO) = sx(1 — x).

Numerical Scheme

Equation 1 can be written in the form

of (x,t)  O9jlx,t)

ot + Ox =0, @
where
6.0 = ~ g e K 0] + MOS0 @)

is the probability current density. The quantity j(x, t) repre-
sents a flow of probability and Equation 2 ensures that prob-
ability is rather like a fluid, in the sense that all changes in
the probability contained in a region of x occur only because
of a flow of probability, via the probability current, in or out
of that region.

In the diffusion equation, conservation of total proba-
bility follows from the appropriate specification of the
probability current at the terminal allele frequencies x =
0 and x = 1. Following McKane and Waxman (2007), we
impose conditions that ensure that there is no flow of
probability beyond the terminal allele frequencies, by re-
quiring the probability current density to vanish at both
x = 0 and x = 1. These conditions, combined with Equa-
tion 2 ensure that the total probability, fol f(x,t)dx, has
a constant value for all times. A consequence of this is
that fixation and loss are naturally included within the
solution (McKane and Waxman 2007; Waxman 2011a).
In this work, we present a numerical scheme for the so-
lution of the diffusion equation where the total probabil-
ity is conserved at all times. The scheme is similar to the
sort used on fluids of constant density, where conservation
of the total quantity of the fluid (analogous to the total
probability) is maintained at all times.

Implementation of the numerical scheme

We first give a direct statement of the numerical scheme.
Detailed aspects of the scheme are discussed immediately
afterward.

The values of the frequency, x, are discretized into a grid
with spacing ¢. The grid points lie at x; = i X ¢, where i = 0,
1,2, ..., K, and we take ¢ = 1/K; hence the values of the x;
range from O to 1. Times are also discretized, with a step size
of 7 and grid points att, = n x 7, wheren =0, 1, 2, ....

The numerical scheme determines an approximate, dis-
cretized form of the allele frequency’s probability density,
f(x, t). In particular, the scheme determines quantities we
write as f', with each f* representing the approximate value
of f(x, t,), when averaged over a range of x near x; (see
Interpretation of the numerical scheme for a more detailed
explanation of the f]'). We call the K + 1 values of fJ, f{,

., f¢ the representation of the distribution f(x, t,).
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Given the K + 1 values of the representation of f(x, t,),
the numerical scheme determines the K + 1 values of the
representation of f(x, t,.1), namely f3+1, fit1 i+l The
numerical scheme can be compactly written as the matrix
equation

i) _ [1 +aR(n+1)} ! [1 _aR(n>]f(n)_ “4)

In this equation:

1. f™ denotes a K + 1 component column vector for time
step t,. The elements of f™ are f" withi =0, 1,2, ..., K
and so f™ contains the representation of f(x, t,).

2. « is a constant, arising from the discretization of x and ¢,
and takes the form

T

3. R™ is a matrix of size (K + 1) x (K + 1) that generally
depends on the time, t,. To define R we introduce

pn = _Xi(l=x) &M tn) n _

xi(1—x)  eM(x;,tn)
! 4Ne(ty) 2 0t ’

4Ne(tn) 2

(6)

Then elements of R™ are written as R ) where i, j=0,1,
2, ..., K. The only nonzero R<J have 1 =jandi=j = 1,
hence R has the form of a tridiagonal matrix. For exam-
ple, for K = 4 the nonzero elements are

Generally, the nonzero elements of R™ are

Leading upper diagonal: Rf)"i =2U7
R, =Ur, for 1=i=K-1
Main diagonal: Rg_l()) =2Vy
RY =vr—ur for 1=i=K-1
)
Leading lower diagonal: REYZZ1 =-Vy, for 1=i=K-1
)
Rgl k1= 2V

Using R™ within Equation 4 completes the specification of
the numerical scheme.
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Figure 1 The numerical approximation replaces the exact probability
density of the diffusion equation at time t,, namely f(x, t,), by the
approximate piecewise constant probability density shown in the fig-
ure. This approximate distribution is determined by discretizing, aver-
aging, and approximating the equation obeyed by f(x, t) and then
iterating the resulting equation. It leads to the quantities f, each of
which is a numerical approximation of the average value of f(x, t,),
with the average taken over a range of x near the grid point x; (see
Interpretation of the numerical scheme). The numerical scheme is
designed so that the total probability of the approximate distribution
takes the value of unity for all values of the time index, n. The piece-
wise constant probability density in the figure is an actual output of the
numerical method where the following apply. The type of selection
acting is genic [hence M(x) = sx(1 — x)] and is of strength s = 0.02,
the effective population size is N = 10, the initial frequency is 0.4, the
time step is 7 = 0.01, the number of control volumes is K = 10, and
hence the spacing of the frequency grid is ¢ = 1/K = 0.1. The distribu-
tion shown has been evolved for n = 1200 time steps of the numerical
scheme, i.e., 12 generations.

Equation 4 generally relies on inverting the matrix 1 +
aR™, When the condition |s| = K/[2N.(t,)] applies, the
matrix is invertible for all values of the constant « of Equa-
tion 5. We have used values of « as large as @ = 1000 with
good results. Full details of the derivation of the numerical
scheme are given in Appendix A.

Interpretation of the numerical scheme

If the probability density f(x, t) were a smooth function of
the frequency, x, then its behavior at a given time would be
reasonably summarized by the approximate values it takes
at the discrete points x;. Potentially, however, we have a dis-
tribution that contains spikes (Dirac delta functions), i.e.,
singular features that change arbitrarily rapidly. For this rea-
son, we first replace f(x, t) with a probability density that is
piecewise constant. This is obtained by splitting the range of
possible frequencies, 0 = x =< 1, into a set of intervals and
replacing f(x, t) in each interval by a constant that equals its
average value over the interval. The numerical scheme pre-
sented here determines an approximation of these average
values, at the discrete times t,. The quantity f/* thus denotes
the approximate value of f(x, t,), after it has been averaged
over a range of x near x;. To be specific:

i. The quantity ffj is the approximate value of f(x, t,), when
averaged over x in the range xo = O to Xy, i.e., over

a range of width ¢/2. This is equivalent to saying
o fx, ta)dbx ~ (2/2)fF
ii. Fori =1, 2, ..., K — 1, the quantity f' represents the
approximate value of f(x, t,), when averaged over x in
the range x;_1/5 to X;+1/2, L.e., over a range of width e.
This is equivalent to saying f;f’:l/f fle tr)dx ~ ef.
ili. The quantity fi represents the approximate value of f(x,
t,), when averaged over x in the range xx_,,> toxg = 1,

i.e., over a range of width ¢/2. This is equivalent to
; 1 -
saying [ flx.tn)dx ~ (¢/2)ff.

Figure 1 illustrates the piecewise constant probability den-
sity that is determined by the f7.

We can use the numerical approximation of the proba-
bility density, f(x, t), to calculate the average of a quantity
such as G(X(t)), where X(t) is the random value of the allele
frequency at time t. We work under the assumption that the
function G(x) is continuous. The expected or average value
of G(X(t)) is written as E[G(X(t)], and under the diffusion
approximation E[G(X(t)] = fol G(x)f (x,t)dx. Using the nu-
merical approximation we take

K-1
E[G(X(tn)] ~ GOf3 +2)_ Ge)ff +3GFE. ()
i=1

Note that conservation of probability means that the total
probability has a value of unity ( fol f(x,t)dx = 1), indepen-
dent of the value of time, t. This result, in conjunction with
Equation 7, suggests that

def & = €
Cltn) = 5f6 + e Y+ 5/
i=1

which is the numerical analog of fol f(x, ty)dx, takes the
value of unity, independent of the value of the time t,. In
Appendix B we show that the numerical scheme given above
yields C(t,,) = 1 for all t,,.

Results
Determining the solution of the diffusion equation

We first apply the numerical scheme of Equation 4 to the
fundamental problem of determining the solution of the
diffusion equation at time t and frequency x, given an initial
distribution at time t = 0. This solution, which is a probabil-
ity density, can be used to determine the expected value of
any statistic that depends on the allele frequency at time t.

For an initial distribution that is very narrowly peaked
around a single frequency, the behavior of the numerically
calculated distribution is illustrated in Figure 2 indicates spike-
like parts of the solution developing over time.

Evidence of spikes in the solution

In the analysis of McKane and Waxman (2007) and Waxman
(2011a), it was indicated that when the total probability is
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Figure 2 Solutions of the diffusion equation at different times that
were obtained using the numerical method of this work. The figure
covers the neutral case, with no selection, mutation, or migration, and
the effective population size adopted was N, = 100. When implement-
ing the numerical method, we arbitrarily chose a time step of 7 = 0.1
and a frequency step of ¢ = 0.02 (i.e., K = 50). The initial time was
taken as t = 0 and the initial distribution had only a single of the 7°
being nonzero, corresponding to an initial frequency of y = 0.3. Such
an initial distribution is indistinguishable from the initial frequency
being uniformly distributed over an interval of width ¢ that is centered
at y = 0.3. We note that during the time interval used in the figure (50
generations), spike-like parts of the distribution appear at the fre-
quency 0. As shown in the text, these are fully consistent with the
presence of a spike (Dirac delta function) in the full diffusion solution
at x =0, representing populations that have lost the A allele. Evaluating
the solution for a longer time (results not shown) also leads to a spike-
like part developing at x = 1, signaling populations where fixation
occurs. Exact properties of the diffusion solution are that: (i) the dis-
tribution remains normalized for all times and (ii) the expected value of
the frequency at time t, given an initial distribution that is symmetric
about the frequency y, obeys E[X(t)] = y (this result is particular to the
neutral case). We find that properties i and ii are both obeyed by the
numerical solution to an accuracy of approximately one part in 1074,
which is close to the precision of the software used in the calculations
(MATLAB).

conserved, exact solutions of the diffusion equation describe
populations where alleles are fixed, lost, or are segregating
and that these solutions generally contain spikes. However,
the numerical approach presented above is obtained by dis-
cretizing the frequency into finite-width bins. Thus it is clear
that no spike, which has zero width, can be directly seen un-
der the numerical approach. To investigate the content of
the numerical approach, let us consider the last two bins on
the right in Figure 1. These are bin K —1 and bin K and the
corresponding values of the distribution are ff_; and f%.
These bins cover the frequency ranges xg_3,5 t0 Xx—1,2
and xx_1,2 to xx and hence have widths of ¢ and ¢/2, re-
spectively. Let us write the probability of finding the fre-
quency in these intervals, as calculated from the numerical
scheme, as px_1(¢) and px(e) respectively, then px—1 () = &fg_;
and px(e) = (¢/2)f¢. The behavior we observe, on progres-
sively reducing ¢ and hence the width of both bins, is shown
in Figure 3.

For the parameters adopted for Figure 3, the behavior of
the probabilities exhibited are very well described by
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Figure 3 We show how the probabilities associated with the numer-
ically determined probability density change when the spacing of
discrete frequencies, ¢, is reduced. We considered the piecewise con-
stant probability distribution at a discrete time corresponding to t =
100 generations. To make the numerical calculation of all probabil-
ities as comparable as possible, we set the ratio a of Equation 5,
which characterizes the numerical scheme, to have the value a =
500. We then determined the time step, for a given value of ¢, from
T = 2¢2a and the time index from n = 100/7. Thus different points of
the figure are associated with different ¢ and hence different rand n,
but the values of t and « are held fixed. The probabilities associated
with the last two bins on the right in Figure 1, namely bin K — 1 and
bin K, are px—1(¢) = ¢f¢_; and p(e) = (¢/2)f, respectively. We ob-
serve in Figure 3 that when ¢ approaches 0, the probability px—1(e),
associated with bin K — 1, converges to a small number that, within
numerical error, may be taken as zero. However the probability p(e),
associated with the end bin, approaches an appreciable nonzero
value. This is precisely what we would expect if the end bin contains
a spike (a Dirac delta function) whose entire weight is located at x = 1
and which always contributes to the probability of the bin, as long as
its width is positive. By contrast, the probability associated with the
adjacent bin (bin K — 1) has the behavior we would expect of a smooth
probability distribution, i.e., one that does not contain a spike. The lines
through the data points in the figure result from fitting a quadratic function
of ¢ to px—+(e) and a linear function of ¢ to pxle).

pr—1(e) = axe+bxe? ®
pr(e) = c+dxe,

where a, b, ¢, and d are independent of ¢ but depend on the
time at which the distribution is evaluated. The significant
fact is that as ¢ — 0 the probability px_1(¢) associated with
bin K —1 tends toward a very small number that cannot
be meaningfully distinguished from zero but the probability
of the end bin, px(¢), tends to a constant (namely c). Since
Px— 1(8) and pk(¢) are numerical estimates of f i-1/2 f (3, tn)dx
and f f (%, t,)dx, the behaviors exhibited in Flgure 3 and
Equatlon 8 as ¢ — 0, are fully consistent with the theoret-
ical prediction that the distribution f(x, t) contains a spike (a
Dirac delta function) whose weight is located at x = 1; so
px(e) obtains the entire contribution from the spike but px_1
(» obtains no contribution.

The quantity ¢ = c(t,,), which is the limiting value of px(¢)
as ¢ approaches 0, is a numerical estimate of the probability
that the frequency x = 1 has been reached by time t,. It is
thus an estimate of the probability of fixation by time t,, and



Table 1 Results for the time-dependent probability of fixation at a neutral locus when the effective population size is N, = 100

Time dependent probability of fixation

Error of the numerical result (%)

Time, t Numerical Kimura's Wright-Fisher Relative to Kimura’s Relative to the Wright-Fisher
(generations) Initial frequency, y  result, c(t) result result result result
100 0.05 2.51x 1074 270 x 104 2.88x 1074 6.9 12.7
0.10 8.81x 1074 937x10°% 9.95x 10~4 6.0 11.5
200 0.05 0.0076 0.0077 0.0079 1.3 3.8
0.10 0.0177 0.0180 0.0184 1.7 3.8
300 0.05 0.0205 0.0207 0.0209 1.0 1.9
0.10 0.0437 0.0440 0.0444 0.7 1.6
400 0.05 0.0312 0.0313 0.0315 0.3 1.0
0.10 0.0644 0.0645 0.0649 0.2 0.8
500 0.05 0.0384 0.0385 0.0386 0.3 0.5
0.10 0.0780 0.0781 0.0784 0.1 0.5
600 0.05 0.0429 0.0430 0.0431 0.2 0.5
0.10 0.0866 0.0867 0.0868 0.1 0.2

This table gives results for the time-dependent probability of fixation at a neutral locus when the effective population size is N = 100. It covers different values of the initial
frequency, y, and different values of the time, t. The results were obtained from the numerical scheme of this work, Kimura's expression for the time-dependent probability of
fixation, which took the form of an infinite sum (Kimura 1955b), and the Wright-Fisher model. For the numerical calculations, we fixed the ratio «, Equation 5, at the value
a =500 and determined the probability associated with bin K at a sequence of progressively smaller values of the spacing of discrete frequencies, ¢. Extrapolating a straight
line through the data yielded the values given in the table (cf. Figure 3). The final two columns of the table contain the magnitude of the error of the numerical approach,

relative to Kimura's result and the Wright-Fisher result.

can also be described as the time-dependent probability of
fixation. In addition to this numerical result, we have Kimura’s
result for the time-dependent probability of fixation, which
was derived from the diffusion equation for the neutral
case (Kimura 1955b). In Table 1 we give results of both meth-
ods of calculation of the time-dependent probability of fixation
and find small percentage differences in a variety of differ-
ent cases.

Inclusion of selection

Table 1 and Figures 2 and 3 cover the random genetic drift
of alleles at a neutral locus. We can, additionally, test the
accuracy with which the numerical method can deal with
selection. For genic selection (where AA, AB, and BB geno-
type individuals have relative fitnesses of (1 + $)2, 1 + s,
and 1, respectively) the probability of ultimate fixation (t —
) from an initial frequency of y is given, under the diffu-
sion approximation, by

1-— e—4Nesy
Pix(Y) = T =ans C)
(Kimura 1962). In Table 2 we compare the result of the
numerical method with Equation 9. Very reasonable agree-
ment is seen in Table 2 between the numerical results and
the exact diffusion results.

Demographic change

As a final test of the numerical method, let us investigate
some nontrivial cases with no known explicit results. We
consider the probability of ultimate fixation, under genic
selection of strength s, when the population size changes
over time. For the purposes of this test, we assume that
the effective population size coincides with the census size
and consider the population-size behaviors given in Figure 4.

With Pg,(y) the probability of ultimate fixation from an
initial frequency of y at time O, we use three different
approaches to estimate this quantity:

i. A direct approach: Use the numerical scheme to deter-
mine the probability density of the frequency at very long
times. The distribution then reduces to only the terminal
bins having nonzero probability. The probability associ-
ated with bin K, namely the large n limit of (¢/2)fg, can
be used to estimate of the probability of fixation.

ii. A less direct, but efficient approach: Use a special case of
a result of Waxman (2011b), which is based on the dif-
fusion approximation. When the population size has ar-
bitrary changes from time O to time T, but remains
constant after time T, the probability of fixation is

11— e*4N(T)sx
Prix(y) :/o mf(& T;y)dx. (10)

Here we have extended the notation slightly and used f(x, T;
y) to denote the complete probability density of the fre-
quency at time T, given that the initial frequency at time
0 is y. Note that f(x, T; y) is the probability density after
the population size has stopped changing. Equation 10 has
the advantage that it requires only the distribution at time T.
Thus for populations that change according to Figure 4, it
requires only the distribution of the frequency for finite val-
ues of T (namely 100 and 200 generations) and not for
longer times. This considerably reduces the amount of com-
putation compared with the direct method of approach i.
Since Equation 10 follows from an average of Kimura’s
result for the fixation probability, Equation 9, we refer to
Equation 10 as the “averaged Kimura result.” In Appendix
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Table 2 Results for the probability of ultimate fixation at a locus subject to genic selection when the effective
population size is N, = 100

Probability of ultimate fixation

4N,s Initial frequency, y Numerical result, c() Kimura's result Relative error (%)
=1 0.05 0.0297 0.0298 0.3
0.10 0.0608 0.0612 0.7
0 0.05 0.0496 0.0500 0.8
0.10 0.0993 0.1000 0.7
10 0.05 0.3934 0.3935 < 0.1
0.10 0.6321 0.6321 < 0.1

This table gives results for the probability of ultimate fixation at a locus subject to genic selection when the effective population size is N = 100. It
covers different values of the initial frequency, y, and different values of the strength of selection, s. The results were obtained from (i) the numerical
scheme of this work, in the limit of long times, and (i) Kimura's expression for the probability of fixation, Equation 9. The final column of the table
contains the magnitude of the error of the numerical approach, relative to Kimura’s result. For the column containing the numerical results, we fixed
the ratio @, Equation 5, at the value @ = 500 and determined the probability associated with bin K at a sequence of progressively smaller values of the
spacing of discrete frequencies, ¢. Extrapolating a straight line through the data yielded the values given in the table (cf. Figure 3). This procedure
leads to a value of c(t), which is the probability of fixation by time t. The value adopted for t was such that the sum c(t)+ (probability of loss by time ©)
was greater than 0.999. Theoretically, and in accordance with our numerically findings, this sum increases monotonically with t, hence the
probability of ultimate fixation, c(w), should differ from c(t) by <1073.

C we give further details of how the fixation probability is
determined by this method.

iii. Simulation: As the third and final method of estimating
the fixation probability, we simulated a large number of
replicate populations, which all started with an A allele
frequency of y. All simulations were made within the
framework of a Wright-Fisher model (Fisher 1930;
Wright 1931); for more details see the caption of Table
3. The simulations were continued until all populations
either fixed or lost the A allele. An estimate of P, (y) was
then obtained from the proportion of all of the replicate
populations where the A allele had fixed.

The results obtained from approaches i, ii, and iii are
summarized in Table 3. The overall conclusion is that all
three methods of calculation agree well with one another.

Discussion

In this work we have presented a method of numerically
solving the diffusion equation for the random genetic drift of
the frequency of an allele. We imposed “zero current”
boundary conditions at the frequencies x = 0 and x = 1 to
ensure that the total probability associated with the distri-
bution remains independent of time. Such an approach au-
tomatically leads to the incorporation of fixation and loss
into the distribution of allele frequencies—when it is possi-
ble for these to occur. In situations where fixation and loss
cannot occur, such as when there is two-way mutation, the
zero current boundary conditions lead to solutions of the
diffusion equation that, theoretically, do not possess singular
spikes. In this case, we find that under the numerical
scheme, the probability associated with any bin decreases
as the splitting of discrete frequencies, ¢, decreases (results
not shown), giving similar behavior to that of bin K — 1 in
Figure 3. This behavior is consistent with there being no
spike present in the solution. It thus appears that zero cur-
rent boundary conditions appear to capture all aspects of the
genetic drift process.
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The numerical scheme introduced in this work was
applied to a number of different problems, as summarized
in Tables 1, 2, and 3, including the time development prob-
ability of fixation and the probability of ultimate fixation
when the population size changes over time. For relatively
modest population sizes we found very reasonable results.
For example, in Table 3, differences between simulation
results and the numerical results were of the order of a
few percent. These results give us good confidence in the
validity and robustness of the numerical scheme.

The mathematical aspects of this problem involve singu-
lar spikes (Dirac delta functions) in exact solutions of the
diffusion equation and direct manifestations of these fea-
tures are seen in the numerical solutions. These ultimately
result from the boundary condition imposed on the solu-
tions, namely there being zero probability current density at
the frequencies x = 0 and x = 1. In Appendix D we discuss
the possibility of other boundary conditions. It turns out that
“natural” boundary conditions, which do not need to be
externally imposed and, indeed, follow directly from the

_=2ory
Z —/
100 1

200} (ii)

N(?)

100 . ;
0 100 . 200

Figure 4 Different scenarios of population size change that are used in
a test of the numerical method of this work. The corresponding results for
the probability of ultimate fixation are given in Table 3.



Table 3 Comparison of the effects of different scenarios of demographic change on the probability of ultimate fixation when the initial
frequency is y = 0.1

Probability of Ultimate Fixation Error of Numerical Result (%)

Description
Scenario Numerical ~ Averaged Simulation  Relative to the Averaged Relative to the
s Result  Kimura Result Result Kimura Result Simulation Result
Reference case: Constant population —0.001  0.0830 0.0830 0.0853 0.0 2.7
size, N = 100 0.000  0.1000 0.1000 0.1044 0.0 4.2
0.010 0.3358 0.3358 0.3365 0.0 0.2
Reference case: Constant population —0.001 0.0676 0.0680 0.0689 0.6 1.9
size, N = 200 0.000  0.0995 0.17000 0.0987 0.5 0.8
0.010  0.5508 0.5509 0.5513 0.0 0.1
Figure 4 (i): Population size discontinuously —0.001  0.0747 0.0750 0.0713 0.4 4.8
increases from N = 100 to N = 200 0.000  0.0996 0.1000 0.1000 0.4 0.4
at t =100 0.010  0.3841 0.3841 0.3866 0.0 0.6
Figure 4 (ii): Population size continuously —0.001  0.0731 0.0734 0.0711 04 2.8
increases 0.000  0.0996 0.1000 0.0998 04 0.2
0.010  0.4029 0.4030 0.4010 0.0 0.5
Figure 4 (jii): Population size discontinuously —0.001  0.0763 0.0771 0.0768 1.0 0.7
increases from N = 100 to N = 200 0.000 0.0997 0.17000 0.0952 0.3 4.7
att =200 0.010 0.3638 0.3638 0.3707 0.0 1.9

This table compares the effects of different scenarios of demographic change on the probability of ultimate fixation when the initial frequency is y = 0.1. It includes two
reference cases (populations of constant size) and three cases where the population size changes over time, which are illustrated in Figure 4. For the long-time numerical
calculations (column “Numerical result” in the table), we fixed the ratio @, Equation 5, at the value a« = 1000 and determined the probability associated with bin K at
a sequence of progressively smaller values of the spacing of discrete frequencies, ¢. Extrapolating a straight line through the data yielded the values given in the table (cf.
Figure 3). The values in the column “Averaged Kimura result,” were obtained using the approach in Appendix C; these values used the entire distribution of the frequency
and provide some evidence of its numerical accuracy. The simulations for this table were made within the framework of a Wright-Fisher model (Fisher 1930; Wright 1931). In
such a framework, selection is treated as a deterministic process, and only the process of population thinning in the life cycle, corresponding to the random sampling of
individuals without regard to type (i.e., random genetic drift) is treated stochastically. The simulation results were obtained from 10 replicate populations and simulations

were continued until all populations either fixed or lost the A allele.

diffusion equation, are another possibility, and these have
been implicitly adopted in the past (Kimura 1955b; Barakat
and Wagener 1978; Wang and Rannala 2004). However,
these boundary conditions do not result in conservation of
probability or the presence of singular spikes in solutions.

The numerical approach has another aspect that we
have not pursued: it gives an expression for the probabil-
ity current density (see Equation A.11). Thus, unlike the
Wright-Fisher model, it is possible to determine the numer-
ical value of the probability current density at any time and
at any frequency. This might have some interest in its own
right.

The diffusion equation for random genetic drift has been
in existence for a considerable period of time. The present
work provides, we believe, the first method for directly
finding a complete numerical solution (i.e., a distribution
with a total probability of unity). The delay in finding such
a solution may be attributable to the diffusion equation hav-
ing singular features, i.e., zero width spikes, which lie be-
yond the features normally encountered in the literature.
We have illustrated the accuracy of the numerical solution
with a number of examples (see Tables 1, 2, and 3). The
numerical method presented here can be easily and rapidly
implemented; we believe it should have applications in the
analysis and exploration of random genetic drift in genetics
and related subjects, wherever the diffusion equation
occurs.
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Finite volume scheme

With t denoting time and x denoting the allele frequency, we
consider the continuity equation

f (x,t)  dj(x,t)
o o

=0, x€(0,1), t>0. (A1)
Here f(x, t) is the probability density and j(x, t) is the prob-
ability current density, which characterizes flow of probabil-
ity. The probability current density takes the form

0

4N, (t) Ox pe(1 = 2)f (x, £)] + M(x, t)f (x, 1).

(A.2)

Jjox,t) = —
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ability current density vanishes at x = 0 and x = 1, for all
times:

j0,5)=0,  j(1,t)=0. (A3)

In applications of the numerical method, an initial probability
density, e.g., f(x, 0), needs to be specified for 0 < x = 1.

We now present a finite volume numerical scheme
(Morton and Mayers 2005) for the above problem; see also
Engelmann et al. (2011) for use of a finite volume scheme
to numerically solve a diffusion equation in financial
mathematics.

First, we discretize the frequencies, x, with a uniform
grid. This is achieved using a grid spacing of ¢ = 1/K and
the grid points x; = i X ¢, with 0 = i < K; we also make use of
Xi+12 = (@ + 1/2)e. Time is uniformly discretized, with
a step size of 7, and the grid points t, = n x 7 withn = 0,
1,2,....

Let j? be the numerical approximation of j(x;, t,) and let
fI* be the numerical approximation of an average of f(x, t,),
with the average taken over x in the vicinity of x;. To make
the definition of f!' precise and to also determine how f]
determines "™, we proceed as follows.

For an inner mesh point x; (1 =i =< K — 1), the region of
x and t we consider (the control volume) is D;,, = {(x, t)|
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Xi—1/2 =X = Xj+1/2, tn =t = t,+1}. Integrating Equation A.1
over D; ,, we obtain

/:m [f(x, tn1)—f(x, fn)]dX+ /:M [j(xm/z,t)—j<xi,1/2,t)]dt —0.

i-1/2
(A.4)

The first term on the left-hand side of Equation A.4 is
approximated as

/:H/m [f(X: tny1) —f(x, fn)}dx ~ [Xm/z 7xi71/2} (f{”l *fi") = 8<fin+1 *fi")§

thus for an inner mesh point, f* is a numerical approxima-
tion of the average [1/(x;1/2 = X;—1/2)] f;’f/jf(x tn)dx.

The second term on the left-hand side of Equation A.4 is
approximated by evaluating the currents at the mean time

(tqn + th+1)/2 = ty4+1,2 and this leads to

[ Bos) oo (22 22)
(A.5)
We then have
(=) e (s —iR) =0 @e

For the left boundary point (x = 0), the control volume is
Don = {(x, D) |x0 = X = X132, t, =t = t,1}. We integrate
Equation A.1 over Do, to obtain

X1/2

e tain) el [ [iter/2.0) ~co.0)]de =0

Xo

imposing the boundary condition j(0, t) = 0 leads to
& 1 n+1 /2
2 ( o 0) Tz =0

where fl is a numerical approximation of the average
[1/ (12 = x0)] [3) f(ox, t)dx.

At the right boundary point (x = 1) Equation A.1 is anal-
ogously discretized,

2 ( n+1 _fK>

where f? is a numerical approximation of the average
[1/ 0t =xac-172)] [, fx, t)dbx.
To obtain a fully discrete scheme, we need to approxi-

(A7)

n+1/2 0

e = (a8)

mate the term ]l+1/2 ,fori =0,...,K — 1. First we use
/ jn+11/2 Tl
n+1/2  Jit i+
Jiy172 & ) ) (A.9)

and then forn = 1, 2. ... take

- Xl'(l - Xl')fl-n

1 i (I xia)ffy
aNe () ;
M)y Mn)?

5 .

n
Jiv12 ™

(A.10)

We write this equation as

n nen
1+1 l+1+vf
&

Jap = (A.11)

where we have defined

Un — _Xi(]. —Xi) SM(Xi,tn)
L 4N, (ty) 2 ’
yn =X —x) | eM(Xi, tn)
L 4N, (ty) 2

(A.12)

Substituting (A.9)-(A.11) into (A.6), (A.7), and (A.8),
we obtain (K + 1) linear equations with respect to the
(K + 1) unknowns f3!, -+ f&*1, which take the form

(14 2aVE )t 4 2aUF Y = (1 - 2aV3)fE — 2aULY,
(A.13)
(1 +a[vin+1 _ Un+1]) n+1 tTa Uln++11 lr1++11 Vn+1 ln+11
= (1—a[Vf —UIff —a[ULffy —ViLfily], for 1=i=K-1
(A.14)
and

(1 - 22U ) — 2aVEF AT = (1 + 2aUR)fR + 2aVE_, f3_;.

(A.15)

We can write Equations A.13, A.14, and A.15 as the matrix
equation

[1 + aR<“+1>}f<"+1) = {1 - aR<n>]f<">, (A.16)
where f® denotes a column vector whose elements are fI"
withi =0,1,2,..., K, and R®isa (K + 1) x (K + 1)
matrix, whose elements are REE) withi,j=0,1,2,...,K. The
form of R™ can be read off from Equations A.13-A.15 and
the only nonzero elements are Ré{ = 2U7, Rgl()) = 2V§,
R}?;(_ —2UI’}, and R{ —2V¢_4, and for 1 =i =

n Ifnjg l_n n d n
K—-1, Rll+1_U1+1’ — U, an Rn 1= Vil

Matrix inverse

To determine f*1 in Equation A.16 in terms of £, it is
necessary to invert the matrix 1 + «R™*+D, Taking M(x,
t) = sx(1 — x) we employ Gershgorin’s circle theorem
(Demmel 1997) and it quickly follows that when

Is| = (A.17)

K
2Ne(tny1)’
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the inverse of the matrix 1 + aR™*1 exists for all values of
«a, with all eigenvalues of the matrix having a real part that
is = 1.

Appendix B: Conservation of the Total Discretized
Probability

In this appendix we show that the finite volume scheme
introduced in this work conserves the total probability.

It is natural to define the total discretized probability at
time t, as C(t,) = (e/2)f2 + (¢/2)fF + e> "~ 'f" (see Figure 1
and Equation 7 with G(x) = 1). We then use Equations A.6—
A.8 to establish that

Cltas1) —C(ta) = % (fn+1 fO) € ( n+1 fn) +FZ(fn+l fn)

K-1
n+1/2  n+1/2 n+1/2
T;le/z Ji- 1/2) + Tk 1) =0

(B.1)

_ n+1/2
= Ty

i.e., C(ty+1) = C(t,). Thus assuming C(ty) = 1, the numerical
scheme conserves probability in the sense that C(t,) = 1 for
all t, > 0.

Appendix C: Probability of Fixation when the
Population Size Changes

In this appendix, we express the result for the probability of
fixation with a varying population size in terms of the
numerically determined piecewise constant distribution of
frequency of the present work.

We begin with the result of Waxman (2011b) for the prob-
ability of ultimate fixation, when specialized to a population
whose size changes up to time T, when subject to genic selec-
tion with constant strength s. The result can be written as

— 674N6(T>5X(T)

1
Pﬁx(y) = E|: 1 — e—4Ne(T)s (C.1)

X(0)=y]|.

In Equation C.1, E[...|X(0) = y] denotes an average over
replicate populations that all start with an initial frequency
of y at time t = 0, while X(T) is the random value of the
allele frequency at time T, i.e., after the population size has
stopped changing. In this appendix we extend the notation
slightly and use f(x, T; y) to denote the probability density of
the frequency at time T, given that the frequency had the
value y at time O [ie., f(x, 0; y) = 8(x — y)]; then we can
write Equation C.1 as

_ 674N8(T)sx

17 1— [Lg—aNe(T SxfxTy)dx
Pﬁx(y):/o mf(xj;y)dxz Joe :

1 — e 4Ne(T)s

(C.2)

Using Equation 7 of the main text, with G(x) = e~ *e(T)X the
integral in Equation C.2 can be approximately written in
terms of the numerically determined piecewise constant
probability density as
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1 . K-1 ‘
/O e NTISEF (. T2y ) % e e e %e%Ne(T)s)ch
i=1
(C.3)

The time index, n, is chosen so that t, = T and implicitly, the
fI are determined from the fio, where of the fio, except one,
are zero. The single nonzero f? has the value 1/¢ and cor-
responds to the bin containing the frequency y. Using Equa-
tion C.3 in Equation C.2 yields the required approximation
for Py (y).

Appendix D: Boundary Conditions

In this appendix, we discuss the boundary conditions im-
posed on the solution of the diffusion equation.

For Equation 2 to conserve the total probability, a zero
current boundary condition, Equation A.3, was imposed.
It is important to ask if any other boundary condition
could be imposed. To answer this, we first rewrite
Equation A.1 in the standard convection—diffusion form.
For simplicity, we take M(x) and N, to be independent of
time and omit the factor 1/(4N.) in the diffusion equa-
tion. We then have

o) D

) e (P ) ) + W) =0,

(D.1)

where the diffusion coefficient is D(x) = x(1 — x) and the
convection velocity is W(x) = M(x) + (2x — 1). For the class
of problems we consider in this appendix we assume that
M(0) = M(1) = 0.

Note that Equation D.1 is a degenerate parabolic equa-
tion, since the diffusion coefficient D(x) vanishes at x =
0 and x = 1; i.e., it is degenerate at the boundary points.
By the standard theory of degenerate partial differential
equations for a well-posed problem (Oleinik and Radkevic
1973), whether a boundary condition should be imposed
depends on the direction of the velocity W(x). At the left
boundary, x = 0, if W(0) > 0 and then a boundary condi-
tion must be imposed; otherwise, no boundary condition is
needed and the solution at the boundary will be naturally
determined by the differential equation itself. At the right
boundary, x = 1, if W(1) < 0 and then a boundary condi-
tion must be imposed; otherwise, no boundary condition is
needed.

In the problem at hand, we have W(0) = M(0) —1 = —1,
ie, W) <0,and W(1) = M(1) + 1 =1, ie, W(1) > 0.
Hence, for a well-posed problem, no boundary conditions
can be imposed and a regular solution results. However,
conservation of total probability will be destroyed since di-
rect calculation, for such a regular solution, leads to a prob-
ability current density at x = 0, which is j(0, t) = —f(0, t)
and hence j(0, t) < 0. The probability current density at
x=1isj(1,t) =f(1,0),1ie,j(l,t) > 0. This means that
the total probability decreases over time. In fact, just in-
tegrating Equation A.1 with respect to x € (0, 1) leads, for
any t > 0, to



1
%/O fle, t)dx = j(0,t) —j(1,t) <O0. (D.2)

Returning to the zero current boundary condition, Equation
A.3, if we impose these conditions, we actually impose
boundary conditions on a system for which boundary
conditions are unnecessary. This means that we cannot

expect the problem, Equations A.1-A.3, to be well posed.
This is also, apparently, the reason why singularities
develop, and compelling evidence for their presence is
seen in the numerical solutions. As is clear from the
results in the main text, the singularities are not an
artifact, but an essential and meaningful aspect of the
problem.
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