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ABSTRACT In biology, many quantitative traits are dynamic in nature. They can often be described by some smooth functions or
curves. A joint analysis of all the repeated measurements of the dynamic traits by functional quantitative trait loci (QTL) mapping
methods has the benefits to (1) understand the genetic control of the whole dynamic process of the quantitative traits and (2) improve
the statistical power to detect QTL. One crucial issue in functional QTL mapping is how to correctly describe the smoothness of
trajectories of functional valued traits. We develop an efficient Bayesian nonparametric multiple-loci procedure for mapping dynamic
traits. The method uses the Bayesian P-splines with (nonparametric) B-spline bases to specify the functional form of a QTL trajectory
and a random walk prior to automatically determine its degree of smoothness. An efficient deterministic variational Bayes algorithm is
used to implement both (1) the search of an optimal subset of QTL among large marker panels and (2) estimation of the genetic effects
of the selected QTL changing over time. Our method can be fast even on some large-scale data sets. The advantages of our method are
illustrated on both simulated and real data sets.

IN quantitative trait loci (QTL) mapping, people are typically
interested in finding genomic positions influencing a single

quantitative trait.When the repeatedmeasurements over time
of a developmental trait (such as body weight, milk produc-
tion, and mineral density) are available, it is often preferable
to analyze all dynamic time points (traits) jointly to obtain a
better understanding of the genetic control of the trait over
time (Wu and Lin 2006). To analyze such kinds of time course
data, one simple possibility is to apply some multiple-trait
methods (jointly analyze many unordered correlated traits)
based on multivariate regression (Jiang and Zeng 1995;
Banerjee et al. 2008). However, the standard multivariate re-
gression often fails to model the specific dependent (order)
structure in the dynamic phenotype data. In statistics, the
order nature of the time course data (i.e., smoothness prop-
erty) means that the two nearby measurements should have
closer values than the two with farther distances. Regarding
the smoothness assumption in the data, the following two

different improved statistical approaches have been used
for the dynamic trait analysis:

i. Combining phenotypes: The phenotypic information over
time points is combined by using some smoothing and/or
data reduction techniques, and the combined data are
used as the new response data for mapping QTL. Some
examples include Gee et al. (2003), Heuven and Janss (2010),
Hurtado et al. (2012), and Sillanpää et al. (2012). They first
fitted the repeated measures of the phenotype data at each
individual by the logistic growth curve or a high-order poly-
nomial curve, and next they used the estimated curve
parameters for all the individuals as the latent trait data
in a multivariate Bayesian regression model for mapping
QTL. Outside the genetics context, Meier and Bühlmann
(2007) proposed a combined-likelihood approach, where
they first reweighted the time course response variables by
kernel smoothing techniques and then performed univariate
regression (with a single response variable) independently
on each reweighted response.

ii. Combining genetic effects: In a multiple-trait model, the
parameters of the QTL effects (genotypic value) (i.e., time-
varying coefficients) are reparameterized by specifying
them as a smooth function over time. When the dynamic
pattern of the trait is simple, the effects of a QTL over time
can be specified as a parametric function (i.e., logistic
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function). For such cases, Ma et al. (2002) developed a
maximum-likelihood-based approach. Alternatively, if the
shape of the dynamic trait is complicated, one can fit the
nonparametric curve, applying methods such as Legendre
polynomials (Lin and Wu 2006; Yang and Xu 2007; Li
et al. 2012), wavelets (Zhao et al. 2007), or B-splines (J.
Yang et al. 2009; R. Yang et al. 2009; Xiong et al. 2011;
Gong and Zou 2012; Xing et al. 2012). In addition, the
residual terms of these models were often assumed to
share a certain covariance structure such as an autoregres-
sive process (Ma et al. 2002).

In this article, we concentrate on the second approach,
which models the smoothness of the marker effects instead
of the phenotype data. This might have the advantage of
finding the real underlying dynamic pattern of QTL that
characterize the developmental traits, so that we can easily
interpret the results.

As for a single-trait QTL analysis, variable selection (i.e.,
choosing a subset of markers that can approximately repre-
sent QTL) is an important issue also for mapping dynamic
traits. Most of the existing frequentist approaches (Ma et al.
2002; Lin and Wu 2006; Xiong et al. 2011; Gong and Zou
2012) follow single-locus functional mapping, which maps
the dynamic traits to each marker one at a time and uses
either likelihood methods or least-squares-estimating equa-
tions approaches (with independent residual covariance
structure). These approaches typically construct a test sta-
tistic (e.g., log-likelihood ratio or Wald statistic) to screen
the important variables (QTL) through a multiple-testing
procedure (e.g., adjusting the P-value by permutation or
by Bonferroni correction). In some Bayesian approaches
(Yang and Xu 2007; Min et al. 2011; Yang et al. 2011; Li
et al. 2012; Xing et al. 2012), the multilocus QTL analysis is
performed by assigning shrinkage-inducing priors or spike
and slab priors to the marker effects. Wald tests, credible
intervals (Li et al. 2011), or Bayes factors can then be used
to justify the QTL.

In this article, we develop a Bayesian multivariate re-
gression method with smoothing prior settings for functional
QTL mapping. In our model, we choose B-splines to repar-
ameterize the time-varying marker effects. The benefit of
using B-splines over Legendre polynomials, which have been
intensively used for nonparametric modeling in some earlier
functional mapping approaches, was explained in Xing et al.
(2012). Although both B-splines and Bayesian modeling have
been considered in some earlier works listed above, our ap-
proach has the following three new features. First, with B-
splines, our focus is on automatic adaptive determination of
the degree of smoothness (i.e., number of knots), which is
a crucial problem in B-splines modeling. In the earlier works
of Xiong et al. (2011) and Gong and Zou (2012), the degree
of smoothness of B-splines was chosen explicitly by cross-val-
idation or the Akaike information criterion (AIC). While here
we estimate the degree of smoothness implicitly by assigning
second-order penalty priors (Fahrmeir and Kneib 2011) to

the time-varying parameters. In other words, we estimate
the functional forms of the marker effects and infer their
degrees of smoothness simultaneously. This could greatly sim-
plify the whole estimation procedure. The original idea of
such prior settings was introduced as P-splines (or B-splines
with penalty) (Eilers and Marx 1996; Lang and Brezger
2004) and has been widely applied in the estimation prob-
lems of the generalized additive models. Second, the above-
mentioned Bayesian approaches were based on Markov chain
Monte Carlo (MCMC) simulation, which could be computa-
tionally inefficient for high-dimensional data with either
a large number of markers or a large number of time points.
Here, instead, we introduce a fast variational Bayes (Jaakkola
and Jordan 2000; Beal 2003) approach for posterior esti-
mation. Variational Bayes is a deterministic approximation
method, which has been used in several single-trait QTL map-
ping studies (Logsdon et al. 2010; Carbonetto and Stephens
2012; Li and Sillanpää 2012). We generalize these ideas in
a multivariate regression framework. Third, for model search
or variable selection, we adopt a matching pursuit-like algo-
rithm introduced in Nott et al. (2012) for a different context.
The idea is similar to the well-known forward/backward se-
lection (Hastie et al. 2009; Segura et al. 2012), but it differs
substantially from the Bayesian variable selection procedures
used currently for Bayesian QTL mapping (e.g., Yang et al.
2011). The rest of the article is organized as follows: in Meth-
ods, the concept of the (functional) multitrait model and B-
splines is reviewed, and the prior settings, the variational
Bayes algorithms, and the variable selection procedures are
introduced; in Example analyses, we show the results of ana-
lyzing two types of simulated data sets (including data repli-
cates) and one real mouse data set (Xiong et al. 2011); and
finally we summarize some key points of our functional ap-
proach in the Discussion.

Methods

Background

A multivariate Gaussian linear regression model for func-
tional QTL mapping can be specified as

yiðtrÞ ¼ b0ðtrÞ þ
Xp
j¼1

xijbjðtrÞ þ eiðtrÞ; (1)

for individuals i = 1, . . . , n and indexes of the time points
r = 1, . . . , k. Here yi(tr) is the measurement of the pheno-
typic value of individual i at time point tr, and b0(tr) is the
intercept term representing the nongenetic additive effect at
time point tr. Moreover, xij is the genotype of individual i at
marker j coded as 1 for genotype AA, 0 for Aa, and 21 for
aa; bj(tr) is the additive genetic effect of marker j at time tr;
and ei(tr) is the residual error that is assumed to indepen-
dently follow a common unknown temporal stochastic pro-
cess for all i = 1, . . . , n, with a multivariate normal
distributed form ei = [ei(t1), . . . , ei(tk)] � MVN(0, S0). In
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this article, we further assume that the residual covariance
follows (i) an independent diagonal covariance structure
S0 ¼ diagðs2

1; . . . ;s
2
kÞ and (ii) a stationary first-order autor-

egressive [AR(1)] structure (Fahrmeir and Kneib 2011),
which is defined as S0ðr; sÞ ¼ s2

0r
jr2sj=12 r2 (0 , r , 1)

for indexes of the time points r = 1, . . . , k, s = 1, . . . , k.

Remark: In principle, a QTL usually does not exactly locate
at any marker position, but here we consider using a marker
only to approximate the true QTL by assuming the high
marker density (Xu 2003).

Note that the model (1) differs from some single-locus
functional mapping approaches (Ma et al. 2002; Xiong et al.
2011). Those authors specify the model for marker j (j =
1, . . . , p) as

yiðtrÞ ¼ jij1gj1ðtrÞ þ
�
12 jij1

�
gj2ðtrÞ þ eiðtrÞ; (2)

where jij1 is the indicator of a particular genotype (e.g., AA)
for marker j and individual i, and gj1(tr) and gj2(tr) are the
corresponding genotypic values. Model (1) is different from
(2). In (1), the multiple loci are included in the same equa-
tion, and we assume no dominance effects.

A fundamental principle of functional mapping is that
bj(tr)(j = 0, . . . , p), which is defined at discrete time points
tr(r = 1, . . . , k), actually comes from a continuous function
bj(t) with the domain t 2 [t1, tk]. We may call bj(t) a trend
function of the genetic effects since it describes how the
effect size of a QTL changes over time. In this trend function,
the smoothness property should hold, meaning that the
nearby effects should share similar values. For instance,
we may expect that the difference between bj(t1) and
bj(t2) should be smaller than that between bj(t1) and
bj(t3). Introducing smoothness for the time course data
may have some advantage over the general methods for
modeling multiple traits, where each bj(tr) (r = 1, . . . , k)
is assumed to be independent from the other (Wu and Lin
2006). First, it could provide more biologically meaningful
results, where we can directly see a dynamic pattern of
a QTL contributing to the development of a trait. Second,
when estimating the parameter at a particular time point,
the information from the observations of the nearby time
points can be shared, and this might be able to increase
the statistical power to detect some true signals. One simple
parametric way to model the smoothness is to specify a
precise functional form to bj(t) over time tr. For example,
Ma et al. (2002) specified it as a logistic function
bjðtÞ ¼ aj=ð1þ bjexpð2 cjtÞÞ, and estimated the parameters
aj, bj, and cj by maximum likelihood to determine the exact
shape of bj(t). The parametric method is simple and usually
has only a small number of parameters to be estimated,
but it is able to describe only a quite simple trend such
as a monotonically increasing trend or, by other means,
to describe a very smooth function with no function values
changing abruptly at any time point. To model a more com-
plicated dynamic pattern such as the irregular periodic trend

shown in the mouse active-state probability data (Xiong
et al. 2011), some more flexible nonparametric or semipara-
metric methods such as basis expansions and kernels could
be good alternatives (Hastie et al. 2009). Many functional
mapping approaches are actually intensively based on basis
expansions, which represent the additive genetic effect bj(t)
as a linear combination of m basis functions as

bjðtÞ ¼
Xm
h¼1

cjhðtÞajh; (3)

where the basis functions cjh(t) are some sort of transforma-
tions of the time domain, and ajh are the parameters to be
estimated after such a reparameterization. By the given ob-
served time points tr, Equation 3 can be specified in a matrix
form,

bj ¼ Cjaj; (4)

where bj = [bj(t1), . . . , bj(tk)]T, aj = [aj1, . . . , ajm]T, and
Cjði9; j9Þ ¼ cjj9ðti9Þ;  i9 ¼ 1; . . . ; k;  j9 ¼ 1; . . . ;m. The common
choice of the basis functions could be, for example, the
high-order polynomials, Legendre polynomials, splines
(also called piecewise polynomials or truncated power series),
or wavelets. Note that, if Cj is chosen as a k · k identity
matrix, then we have bj = aj, which corresponds to the stan-
dard nonfunctional multivariate model. Therefore, the non-
functional multivariate regression could be regarded as
a special case of the functional multivariate regression with
basis expansions.

We choose B-splines as a univariate basis functions
setting in this article. To obtain an intuitive idea of B-
splines, it is worth mentioning the spline bases in a general
sense. According to Hastie et al. (2009), the spline bases of
order s with z (interior) knots are a series of truncated power
bases 1; x; . . . ; xs21;  ðx2z1Þs21

þ ; . . . ;  ðx2zzÞs21
þ , where the

z knots t1 , z1 , z2 , . . . , zz , tk are a sequence of
break points defined in the time domain [t1, tk], which divide
the domain into z + 1 subintervals. Truncated power bases
are not upper bounded, which may cause serious numerical
problems during the computation. On the other hand, a B-
spline basis, obtained by taking some appropriate differences
of the truncated power bases (Fahrmeir and Kneib 2011), has
a nice feature that the basis function values are upper bounded
by 1, which makes it numerically more stable when fitting the
curves. We leave the technical details of the B-splines (e.g.,
how to generate a B-spline basis by a recursive algorithm) to
other authors. Please refer to De Boor (2001) for the general
mathematical theory of B-splines and to Ramsay et al. (2009)
for the information on some practical implementations and
related software.

The total number of basis functions equals the total
number of (interior) knot points plus the spline order. For
B-splines, the choice of the spline order, the placement of
the knots, and especially their number together determine
how smooth the curve will be. Based on Hastie et al.
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(2009), it is usually not necessary to specify the spline
order to be higher than 4. Here we just set the order to
be 4, which corresponds to the widely used cubic splines.
We further simply set the knots to be equally spaced along
the time domain.

Prior settings for Bayesian P-spline smoothing

A remaining issue left from the last section is how to
appropriately choose the number of knots, which deter-
mines the degree of smoothness of the curve. If the trend of
the genetic effect is flat and simple, we should push a high
degree of smoothness to the curve by using only a small
number of knots. On the other hand, if the trend is
oscillating and complicated, then the smoothness assump-
tion should be relaxed by specifying a large number of knots.
According to Hastie et al. (2009), misspecifying the degree
of smoothness (or the number of knots) can easily cause
overfitting/underfitting of data. Because a large number of
markers may be present in the model, prechoosing an ap-
propriate number of knots for each of them explicitly by
using an approach such as cross-validation is an unrealistic
task. In Bayesian statistics, a random walk smoothing prior
(Lang and Brezger 2004) can be specified for the B-spline
parameters ajh to automatically infer the degree of smooth-
ness. The first- and the second-order random walk priors
(corresponding to the first- and the second-order difference
penalties) can be specified, respectively, as follows:

aj1jt2j � N
�
0; 1000t2j

�
; (5)

ajhjaj1; . . . ;ajh21; t
2
j � N

�
ajh21; t

2
j

�
; h ¼ 2; 3; . . . ;m;

(6)

and

aj1jt2j � N
�
0; 1000t2j

�
; (7)

aj2jt2j � N
�
0; 1000t2j

�
; (8)

ajhjaj1; . . . ;ajh21; t
2
j � N

�
2ajh21 2ajh22; t

2
j

�
; h ¼ 3; 4; . . . ;m:

(9)

More conveniently, the priors can be written in the matrix
form as

ajjt2j � MVN
�
0; t2j K

21
d

�
 for  d ¼ 1;2; (10)

where aj = [aj1, . . . , ajm]T, and K1 and K2 are m · m matri-
ces constructed from the above defined difference penalties.
More detailed description of the random walk priors can be
found in Appendix A.

The variance parameters t2j , j = 0, . . . , p, contributing to
determine the degree of smoothness for the time-varying
marker effects, can be included as a part of the posterior model.
For example, we may further assign an inverse gamma prior IG
(a, b) with predefined hyperparameters a . 0 and b . 0 to
each t2j , so that t2j can be estimated along with other param-
eters in the posterior. Here the inverse gamma density function
is defined as IGðt2j ja; bÞ ¼ ðba=GðaÞÞðt2j Þ2a21   exp  ð2ðb=t2j ÞÞ.
According to Fahrmeir and Kneib (2011), a typical choice of the
hyperparameters is (a, b) = (e, e), with e being a small value, so
that the prior for t2j is relatively noninformative. In all of our
numerical examples, we choose K2 as the penalty matrix, and
we set a = b = 0.0001.

After incorporating smoothness priors into the model, we
do not need to be concerned with the choice of knots any
more. We may simply specify a global B-spline basis C with
a large enough number of equally distributed knots to each
marker j. The random walk smoothness priors then play the
key role to automatically identify an optimal degree of
smoothness of the spline for each individual marker.

We have mentioned earlier that if C is chosen as a k · k
identity matrix instead of B-splines, then we exactly obtain
a standard nonfunctional multivariate regression model.
In this case, we may specify the hierarchical priors as
pðajjt2j Þ ¼ MVNðajj0; t2j Ik · kÞ and pðt2j Þ ¼ IGðt2j ja; bÞ for pa-
rameters aj (= bj). Note that here we assume the coeffi-
cients at the same locus j but different time points share
a global variance parameter t2j , which makes it differ from
those single-trait mapping methods where the coefficients at
different time points may be assigned with different variance
parameters. The same parameter estimation and variable se-
lection procedure can be applied to both functional and non-
functional multitrait models, which are described next.

Variational Bayes algorithm

Parameter estimation: Now everything can be put together.
In the basic form of the regression model (1), the param-
eters bj(tr)(r = 1, . . . , k) are reparameterized by ajh(h =
1, . . . ,m) defined in (3) and (4) after the B-spline basis expan-
sions, and then we can specify the likelihood function as

Table 1 Key features of the functional model and the nonfunctional model

Methods Basis expansions Priors Residual covariances

VBfun bj = Ck·maj, where Ck·m are the B-spline bases aj jt2j � MVNð0; t2j K2Þ
t2j � IGð0:0001; 0:0001Þ

Diagonal or AR(1)

VBnonfun bj = Ik·kaj, where Ik·k is an identity matrix aj jt2j � MVNð0; t2j Ik · kÞ
t2j � IGð0:0001; 0:0001Þ

Diagonal or AR(1)

Details are shown in the section Prior settings for Bayesian P-spline smoothing.
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p
�
Yja0;a1; . . . ;ap;S0

�
¼ Qn

i¼1
MVN

 
yijCa0 þ

Pp
j¼1

xijCaj;S0

!
;

(11)

where yi = [yi(t1), . . . , yi(tk)]T, and aj = [aj1, . . . , ajm]T. The
hierarchical smoothness priors pðajjs2

j Þpðs2
j Þ for aj (j =

0, . . . , p) were proposed in the last section. When the
residual covariance is assumed to be a diagonal matrix
S0, each diagonal entry s2

r (r = 1, . . . , k) is assigned a
flat Jeffreys’ prior as pðs2

r Þ} 1=s2
r to make pðS0Þ ¼

pðs2
1; . . . ;s

2
kÞ ¼

Qk
r¼1pðs2

r Þ. Let u ¼ ½a0;a1; . . . ;ap; t
2
0;

t21; . . . ; t
2
p ;s

2
1; . . . ;s

2
k� with K = 2(p + 1) + k components.

The posterior distribution can be specified as

pðujYÞ} pðYjuÞpðuÞ
¼ p
�
Yja0;a1; . . . ;ap;s

2
1; . . . ;s

2
k

�
·
Qp
j¼0

h
p
�
ajjt2j

�
p
�
t2j

�i Qk
r¼1

p
�
s2
r
�
:

(12)

A variational Bayes (VB) algorithm based on the mean field
theory (Jaakkola and Jordan 2000; Beal 2003; Bishop 2006)
can be used to efficiently evaluate the unknown parameters
in the model. Specifically, the above defined intractable pos-
terior is approximated by a tractable factorized form,

qðujYÞ ¼ QK
l¼1

qðuljYÞ

¼ qða0jYÞ⋯q
�
apjY

�
q
�
t20jY

�
⋯q
�
t2p jY

�
q
�
s2
1jY
�

⋯q
�
s2
k jY
�
:

(13)

We seek an optimal factorized approximate posterior distri-
bution q̂ðujYÞ by minimizing the Kullback–Leibler divergence
KLðqkpÞ ¼ RQqðujYÞ  ln  ðqðujYÞ=pðujYÞÞdu or, equivalently,

maximizing a lower bound of the log-marginal distribution ln
p(Y) defined as LðqðujYÞÞ ¼ R

QqðujYÞ  ln  ðpðu;YÞ=qðujYÞÞdu,
where Q represents the whole parameter space of u. It can be
shown that such a minimization/maximization is reached at

q̂ðuljYÞ} exp 
n
Eq̂ðu2ljYÞ½ln  pðu;YÞ�

o
; l ¼ 1; . . . ;K; (14)

where Eq̂ðu2l jYÞ½�� is the posterior expectation with respect to
the factorized approximate distribution with the lth compo-
nent removed. Since the posterior model belongs to the
conjugate exponential family, all the required approximate
distributions q̂ðuljYÞ in (14) can be recognized as standard
distributions. Then an iterative coordinate descent algo-
rithm can be easily used to update q̂ð�jYÞ in (13) for each
parameter based on Equations 14 sequentially until conver-
gence. After obtaining the approximate posterior distribution
q̂ðajjYÞ for marker j (j = 1, . . . , p), interesting quantities such
as posterior mean and posterior covariance matrix are directly
available.

When the stationary AR(1) residual covariance is used,
the covariance matrix S0 is actually controlled by two
parameters, s2

0 and r (0 , r , 1). We may further assign
a noninformative Jeffreys’ prior for s2

0 as pðs2
0Þ} 1=s2

0 and
a uniform prior for r as p(r) = 1[0,1]. A factorized form of
the approximate posterior distribution similar to that in
Equation 13 can be specified, and the marginal distributions
q(�|Y) for all the parameters except r can be optimized
based on Equation 14 as above. The parameter r is not
conjugate in the posterior and it is difficult to incorporate
into the above-mentioned VB updating procedure. To han-
dle this, we can apply the idea of fixed-form VB approxima-
tion (Salimans and Knowles 2013), by preassuming q(r|Y)
to be a Beta(r|m1, m2) distribution with unknown shape
parameters m1 and m2. The parameters m1 and m2, controlling

Table 2 The results of QTLMAS2009 data analysis, including the selected markers, their locations (in brackets), the corresponding Wald
scores, and the closest true simulated QTL

VBfun VBnonfun

Marker Wald score Marker Wald score Closest simulated QTL

35 (0.4029) 320.68 35 (0.4029) 270.29 (0.4525) 36–37a

37 (0.4447) 5037.53 37 (0.4447) 4874.49 (0.4525) 36–37a

81 (0.9137) 183.05 81 (0.9137) 107.43 (0.8765) 77–78b

99 (1.0516) 1114.62 None None (1.0455) 98–99a

115 (1.2566) 220.05 115 (1.2566) 171.32 (1.3302) 118–119c

138 (1.4852) 130.74 138 (1.4852) 95.57 (1.4889) 138–139b

140 (1.5242) 143.13 140 (1.5242) 169.91 (1.4889) 138–139b

178 (1.9011) 155.87 178 (1.9011) 164.75 (1.8864) 174–175a

222 (2.3108) 139.91 222 (2.3108) 127.97 (2.2622) 216–217b

None None 288 (3.048) 126.70 (3.0962) 293–294b

338 (3.7168) 248.46 338 (3.7168) 171.26 (3.6979) 336–337a

None None 358 (3.8517) 65.43 (3.8639) 358–359b

415 (4.6311) 90.95 415 (4.6311) 70.41 (4.5971) 411–412c

None None 452 (4.9494) 62.84 (4.7719) 432–433a

For the Wald tests, the critical value corresponding to the significance level 0.05 is 18.31 for the estimates of VBfun (chi-square distribution with 10 d.f.) and 11.07 for the
estimates of VBnonfun (with 5 d.f.), respectively (assuming the diagonal covariance structure in the model).
a Simulated QTL effects on f1 of the simulated logistic growth curves (traits), respectively.
b Simulated QTL effects on f3 of the simulated logistic growth curves (traits), respectively.
c Simulated QTL effects on f2 of the simulated logistic growth curves (traits), respectively.
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the shape of the approximate marginal posterior distribution,
can be estimated by using the novel Monte Carlo sampling-
based method introduced in Salimans and Knowles (2013).
Details of these VB algorithms are presented in Appendix B.

Variable selection: In principle, it is possible to execute the
VB algorithm on the multivariate posterior model with
a whole set of markers included and then construct the
Wald test statistic based on the posterior mean and co-
variance estimate of aj for the jth marker (see Appendix A) to
detect QTL. A similar strategy has been used in some
MCMC-based functional mapping studies (Xing et al.
2012). However, it has been shown that although the VB
can generally provide accurate posterior mean estimates for
the parameters, posterior uncertainties (e.g., posterior var-
iances) are often underestimated (Grimmer 2011; Li and
Sillanpää 2012), compared with MCMC. Therefore, the
Wald test statistic constructed based on a VB estimate may
not be reliable for screening the true positive signals, which
motivates us to seek an alternative way to detect QTL un-
der the VB scheme. However, we can nevertheless compute
the Wald statistic for each marker and consider them as
scores for ranking the markers. Specifically, if we consider
a model denoted as M with only a subset of markers in-
cluded, the corresponding marginal distribution p(Y|M) is
called the model evidence or marginal likelihood. The
parameter vector in the model M can be defined as
uM ¼ ½a0;aj; j 2 M; t20; t

2
j ; j 2 M;s2

1; . . . ;s
2
r �. With the mar-

ginal likelihoods for all the models computed, we may go

in two directions: (i) calculate the posterior distribution
p(M|Y) } p(Y|M)p(M) of different models given the
data to find which model is preferable [if the prior p(M)
is uniform, then p(M|Y)} p(Y|M) (Bishop 2006)], and (ii)
compare two models M1 and M2 by the Bayes
factor BF ¼ pðYjM1Þ=pðYjM2Þ (Kass and Raftery 1995). Al-
though the marginal likelihood p(Y|M) cannot be
analytically computed for our problem, in variational
Bayes estimation, the above-mentioned lower bound
Lðq̂ðuMjY;MÞÞ ¼ R

QM
q̂ðuM jY;MÞlnðpðuM ;YjMÞ=q̂ðuM jY; MÞÞ

duM can be treated as an approximation (Bishop 2006). We
assume that the prior p(M) is uniformly distributed, and
then we can choose an optimal model (the best subset of
markers) by satisfying M̂ ¼ arg maxMLðq̂ðuM jY;MÞÞ (Beal
and Ghahramani 2003). Since it is impractical to perform
the VB and compute the lower bounds for all possible com-
binations of markers, we use a matching pursuit-like greedy
algorithm, which is adapted here from Nott et al. (2012),
who considered a different model structure. This procedure
produces a sequence of candidate models, and we choose
the one corresponding to the largest value of the lower
bound. Since usually we are interested only in a small num-
ber of QTL with large effects, we could stop the algorithm at
an early stage by selecting only a small number of variables
into the model without considering the whole solution
path. In this case, the algorithm will search only through
the low-dimensional space, which can be implemented
very efficiently. Further details of this algorithm are shown
in Appendix C.

Figure 1 Analysis of
QTLMAS2009 data: Estimated
trends of genetic effects for
the 11 selected markers by
using VBfun, which assumed
the diagonal residual covariance
structure.
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Example Analyses

We evaluate performance of our methods with both simu-
lated and real data examples. Our simulation analyses are
largely based on the simulated data from the QTLMAS2009
workshop (Coster et al. 2010), and the real data were orig-
inally analyzed in Xiong et al. (2011). For parameter esti-
mation and variable selection, we implemented both the
functional multitrait VB approach and the nonfunctional
multitrait VB approach presented in this article on all these
data sets. For simplicity, here we name them as VBfun and
VBnonfun, respectively. Furthermore, both diagonal and AR
(1) structures were considered in each case to model resid-
ual covariance. For the remainder, some of the key features
of VBfun and VBnonfun are summarized in Table 1. The
methods were implemented in MATLAB on a desktop with
an Intel Core 2 2.13 GHz processor and 2 Gb memory. In
practice, we used the MATLAB codes (publicly available at
http://www.psych.mcgill.ca/misc/fda/software.html) de-
veloped by Ramsay et al. (2009) to generate cubic B-spline
bases. Our own MATLAB codes for implementing VBfun and
VBnonfun methods are available in Supporting Information,
File S1.

Analysis of QTLMAS2009 simulated data

Briefly, the simulated data set includes 453 SNP markers
distributed over five chromosomes of 1 M each from
2025 individuals with a certain population structure
and the growth traits following logistic curves yðtÞ ¼
f1=ð1þ exp  ððf2 2 tÞ=f3ÞÞ measured over five time points
(0, 132, 265, 397, and 530 days). In total, 18 additive QTL
were simulated, with 6 contributing to each of the three
parameters f1 (asymptotic yield), f2 (inflection point),
and f3 (slope of the curve) of a growth curve. Both geno-
type (with map information) and phenotype data are pub-
licly available (Coster et al. 2010). The same data set has
been analyzed by an MCMC approach of Heuven and Janss
(2010) and Sillanpää et al. (2012). A fundamental difference

in model strategies between their approaches and ours has
been explained in the Introduction. To compare with Heuven
and Janss (2010), the same subsample of 1000 individuals
is used in our simulation analyses.

In VBfun, we specified six equidistant knots on the time
domain [0, 530]. Note that the number of B-spline bases
equals the number of knots plus the spline order, so if the
spline order is 4, we obtain 10 B-spline bases in total. For
both VBfun and VBnonfun, we ran the VB forward selection
for 20 steps that continued with a backward selection
procedure (we use the same procedure for the other two
data examples). We then identified the best set of variables
corresponding to the maximum of the lower bounds. Here
we first describe the results by assuming the diagonal
residual covariance structure, which might be a more
reasonable assumption for the QTLMAS2009 data, since no
residual dependence structure was simulated there. The
information from the detected QTL is summarized in Table
2. The best model selected by VBfun includes 11 markers,
which are all located very close to some of the true simu-
lated QTL. The estimated trend functions of the genetic
effects for the 11 selected markers are shown in Figure 1.
The trend functions have similar shapes to the logistic
growth curves. VBnonfun detects 13 markers that are
largely overlapping with the markers found by VBfun, in
which all the others are located close to some simulated
QTL except marker 452. The estimated trend functions from
VBnonfun are shown in Figure S1. In total, VBfun and
VBnonfun detected 9 and 11 true simulated QTL, respec-
tively, which is comparable to the results shown in Heuven
and Janss (2010), where they reported 9 correctly detected
QTL (with false discovery rate ,0.05). Similarly to that in
Heuven and Janss (2010), our methods are able to detect
most of the QTL controlling the parameters f1 and f3 of the
logistic growth curve, but find fewer that control f2. In
addition, Sillanpää et al. (2012) correctly detected 6 QTL
(with QTL inclusion probability .0.5) and 8 QTL (with QTL
inclusion probability.0.05). Note that they considered only
500 individuals, which may reduce the statistical power to
detect QTL with high probability. Compared to the MCMC
approaches of Heuven and Janss (2010) and Sillanpää et al.
(2012), one major benefit of our VB method is its computa-
tional efficiency. For both VBfun and VBnonfun, the whole
computational procedure took only ,1 min, whereas the
MCMC methods may take hours.

Additionally, the results by assuming AR(1) residual
covariance structure are shown in Table S1, Figure S2,
and Figure S3. Here, the analyses took a longer time, be-
cause a stochastic optimization step is built into the VB al-
gorithm for updating the nonconjugate part of the model.
The results of both VBfun and VBnonfun here turned out to
be slightly worse than in the case of the diagonal covariance
structure, in the sense that fewer numbers of QTL are cor-
rectly detected. Amazingly, the mean estimate of the param-
eter r, measuring the decline of the correlation with time
lag, is 0.91. This indicates that the temporal correlation

Table 3 The simulated trend functions for the intercept and
nine QTL

Descriptions Trend functions

The intercept with a logistic
growth curve

b0 ¼ 30
1þexp  ð20:3tÞ

Loci 52 and 358 have constant
effects over time

b52 ¼ 2
b358 ¼ 1

Locus 118 has linear growth
effect over time

b118 ¼ 0.1t + 1

Loci 174 and 216 are active only
at the early stage

b174 ¼ 1
1þexp  ð2 tþ5Þ

b216 ¼ 3
1þexp  ð2 tþ20Þ

Loci 98 and 433 are active only
at the late stage

b98 ¼ 3
1þexp  ðt25Þ

b433 ¼ 2
1þexp  ðt215Þ

Locus 78 is active only at the middle stage b78 ¼ 2
1þððt215Þ=4Þ10

Locus 35 has the periodic effects over time b35 ¼ 2þ 2sinðpt   =  12Þ
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among the (non-QTL) residual errors is extremely high, al-
though no such residual dependencies were actually simu-
lated. Note that the QTL effects were simulated to the latent
trait variables f1, f2, and f3, so that they only indirectly
influenced the characteristic of the real phenotypes. Their
way of simulation might accidently introduce the high re-
sidual correlation to the phenotype data, and the methods
assuming AR(1) residual covariance may have difficulties in
associating observed dependency into the correct origin.
However, the detected QTL between two residual structures
partially coincide.

More complicated simulation studies

Here on the basis of the genotype data with 453 markers
and 1000 individuals from the QTLMAS2009 workshop, we
simulated new phenotype data by having nine additive QTL
at markers 35, 52, 78, 98, 118, 174, 216, 358, and 433
together with an intercept term in the simulation model.
The trend functions of the genetic and nongenetic effects
simulated within the time domain [0, 24] (hr) are given in
Table 3. Generally, they were simulated as different curves
(linear, logistic, sine . . .) with various degrees of smooth-
ness. All the other 444 markers were assumed to be inactive
over time. The k simulated time points are equally spaced
from 0 to 24. The residual terms ei(tr) (r = 1, . . . , k) were
simulated from the AR(1) process. The dynamic phenotype
data were then generated based on Equation 1.

Again, VBfun and VBnonfun were compared using either
diagonal residual covariance structure or AR(1) structure.

Evaluation of parameter estimation:We first evaluate how
accurately our methods can estimate the trend functions of
the intercept and the genetic effects without any variable
selection. We simulated four data sets with all possible
combinations of k = 10, 100 (number of time points) and
r = 0.5, 0.8 (residual correlation). The noise level s2

0 was
fixed to be 15. The average heritabilities over time points

varied from 0.09 to 0.23 for those four data sets. We used
both VBfun and VBnonfun with the assumption of AR(1)
residual covariance structure to estimate the effects of nine
simulated QTL. In VBfun, we specified 16 and 46 equidistant
knots (corresponding to 20 and 50 B-spline bases) when k=
10 and k = 100, respectively. Based on our experiments, the
results were not sensitive to the number of knots we chose if
the number was set to be large enough. However, it is not
recommended to use too large a number of knots to save
computation time. To measure the accuracy of the parame-
ter estimates, we calculated the mean squared error (MSE)
for each simulated QTL (including the intercept term) as

MSEbj
¼ 1

k

����
����b̂j2bj

����
����2
2
¼ 1

k

����
����Câj2bj

����
����2
2
; (15)

where bj is the simulated trend function for marker j, and
Câj is the estimated trend function. The results are summa-
rized in Table 4. Also see Figure 2 including a comparison
between the estimated trends and the true simulated trends
for the case of k = 100 and r = 0.5. Results for the other
three cases are presented in Figure S4, Figure S5, and Figure
S6. For all the data sets, the posterior mean estimates of the
parameters r and s2

0 are not far from their true simulated
values, indicating the good performance of the fixed-form
VB estimation. Regarding the QTL effects, VBfun tends to
provide more accurate estimates than VBnonfun. Taking the
case of k = 100 and r = 0.5 as an example (see Figure 2),
the trend functions estimated by VBfun are almost identical
to the true simulated trends. Whereas VBnonfun mistakenly
shrinks the estimated effects (over time) of marker 174 to-
ward zero, the estimates of other markers show highly os-
cillating patterns. VBfun seems to perform best when the
number of time points is large (i.e., k = 100) and the re-
sidual correlation is not high (i.e., r = 0.5).

If the diagonal residual covariance structure is assumed
in the model (results are shown in Table S2, Figure S7,

Table 4 The mean squared error comparing the estimated trend functions to the simulated ones

k = 10 k = 10 k = 100 k = 100
u = 0.5 k = 0.8 u = 0.5 u = 0.8

h2 = 0.2265 h2 = 0.0922 h2 = 0.2347 h2 = 0.1259

QLT effects F N F N F N F N

b0 0.2194 2.0375 0.4933 14.5590 0.0246 1.7757 0.1166 19.4684
b35 0.0704 0.1483 0.1138 0.5161 0.0189 0.1267 0.0573 0.5326
b52 0.2535 0.7231 0.0616 3.9968 0.0247 0.2045 0.0324 3.9995
b78 0.0921 0.1037 0.0937 0.1542 0.0248 0.1185 0.1442 1.2072
b98 0.1505 0.0725 0.4961 0.5038 0.0160 0.2116 0.4147 1.5341
b118 0.0127 0.0239 0.1416 0.1495 0.0063 0.0695 0.0185 0.1778
b174 0.0513 0.7201 0.1866 0.7229 0.0129 0.7464 0.1099 0.7473
b216 0.0459 0.0586 0.2224 0.0369 0.0099 0.0606 0.0677 1.1692
b358 0.0069 0.0493 0.0385 0.9960 0.0022 0.0481 0.0085 0.9988
b433 0.2278 0.0278 0.2753 2.2965 0.0332 0.1145 0.3022 2.3295
E½s2

0� 14.8034 14.7677 14.9339 14.9758 14.9081 14.9560 15.0325 15.1299
E[r] 0.5088 0.5138 0.7796 0.7882 0.4987 0.5036 0.7779 0.7876

F and N represent VBfun and VBnonfun, respectively [assuming the AR(1) covariance structure in the model], and h2 is the averaged heritability over time.
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Figure S8, Figure S9, and Figure S10), VBfun seems to pro-
vide identical estimates compared to the case when AR(1)
structure is assumed. On the other hand, VBnonfun per-
forms better together with diagonal covariance structure
than with AR(1), in the sense that it does not mistakenly
shrink the effects of any QTL toward zero.

Evaluation of variable selection: Next, to evaluate the
quality of the variable selection, we again simulated four
data sets. First, we randomly sampled a subset of genotype
data with n = 200 or n = 500 (of 1000) individuals. Based
on these, we simulated phenotypic measurements with k =
10 or k = 100 time points. For the residuals, the noise level

Figure 2 (A and B) Simulated
data with k = 100, u = 0.5: The
estimated trend curves (red
dashed lines) against the simu-
lated trend curves (blue solid
lines).
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s2
0 and correlation level r were fixed to be 10 and 0.5, re-

spectively. These simulations were repeated 50 times. We
then applied the proposed VB methods assuming the AR
(1) residual covariance structure on the data and monitored
how many times each QTL was correctly identified by VBfun
and VBnonfun in each of the four simulated conditions. The
results are presented in Table 5. Overall, the VBfun method
consistently performed better than VBnonfun. Especially
when the number of individuals is small and the number
of time points is large (i.e., n = 200 and k = 100), VBfun
tends to correctly detect eight of nine QTL with very high
frequency, but VBnonfun detected none of them. When n =
500 and k = 100, VBfun is able to correctly identify all nine
QTL in almost all 50 replicates, while VBnonfun detects only
three. However, when n = 200 and k = 10, VBfun and
VBnonfun behave similarly by selecting only two QTL
frequently.

The results of both methods assuming the diagonal
residual covariance structure are presented in Table S3.
VBfun assuming the residual diagonal covariance structure
identifies the correct set of QTL equally as well as the
method together with the AR(1) residual covariance, but
assuming the diagonal residual covariance results in more
false positive QTL. On the other hand, VBnonfun assuming
the residual diagonal covariance seems to correctly detect
more true QTL than assuming AR(1) covariance.

To further evaluate how well our proposed methods can
avoid false positive signals, we simulated another four
replicated null data sets, where only an intercept term but
no QTL influenced the phenotypes. The sample sizes,
number of time points, and residual covariance structures
were simulated as above. Results of the average number of
false positive QTL over 50 replicates are shown in Table 6.
We found that only VBfun together with the diagonal co-
variance structure may tend to produce a few false positives
in some of the replicates, when the nontrivial temporal re-
sidual covariance structure indeed exists.

Analysis of mouse behavioral data

In the real data analysis, we considered a mouse behavioral
data set, which has been previously analyzed by Xiong et al.
(2011) and is publicly available at QTL Archive (http://
qtlarchive.org/db/q?pg=projdetails&proj=xiong_2011).
The phenotype data contain active state probabilities (ASP)
(y 2 [0, 1]) with 222 repeated measurements at each con-
secutive 6-min time interval within 24 hr (from 1:48 PM to
1:54 PM to 11:54 AM to12:00 AM, with 7 PM to 7 AM as the
dark period and otherwise as the light period) for 89 back-
cross mice. The genotype data consist of 233 informative
polymorphic SNP markers distributed over 19 chromo-
somes. Note that the data are quite challenging from the
analysis point of view mainly due to the fact that (1) both
the numbers of markers and time points are larger than the
number of individuals and (2) considerable variations were
shown among the active-state probabilities of the mice
(Xiong et al. 2011), and the shape of the mean trajectory
(see Figure 3A) is also quite complex. For detailed informa-
tion on phenotyping and genotyping, please refer to Gould-
ing et al. (2008) and Xiong et al. (2011). Before the
statistical analysis, we performed the following three pre-
processing steps:

1. The missing genotypes were replaced by their conditional
expectations estimated from their flanking markers with
known genotypes (Haley and Knott 1992) once before
the analysis.

2. We performed the logit transformation lnðy=ð12 yÞÞ to
the phenotypic measurements (Warton and Hui 2011),
so that their values were not restricted to the domain
[0, 1]. Specially, for those measurements with ASP of
0 and 1, we first changed values to 0.001 and 0.999,
respectively, and then performed logit transformation.
The mean trajectories of original and transformed phe-
notypic data are shown in Figure 3, A and B, respectively.
Although the logit transformation did not reduce any
complexity in the original data, we found that, by directly
applying our VB approaches to the original percentage
phenotypes without any transformation, the methods
would produce some unreasonable results [i.e., the esti-
mated lower bound Lðq̂ðuM jY;MÞÞ gave positive values].

3. To generate B-spline bases, we discretized the 222 time inter-
vals by a set of single time points [1.9, 2, . . . , 23.9, 24] (e.g.,
1.9 represents 1:48 PM, and 24 represents 12:00 AM).

Table 5 The number of times each QTL has been correctly selected
over 50 replications, together with the average number of
wrongly selected markers (false positives)

n = 200 n = 200 n = 500 n = 500
k = 10 k = 100 k = 10 k = 100

QTL F N F N F N F N

35 50 47 50 0 50 50 50 50
52 4 0 49 0 44 0 50 0
78 0 0 50 0 37 3 50 0
98 0 0 45 0 36 0 50 0

118 49 43 50 0 50 50 50 50
174 0 0 11 0 2 0 46 0
216 19 1 49 0 47 38 50 0
358 4 0 50 0 43 0 50 0
433 0 0 43 0 27 0 50 0
Average false positive 0.04 0.04 0.32 0 0.06 0.07 0.08 0

F and N represent VBfun and VBnonfun, respectively [assuming the AR(1)
covariance structure in the model].

Table 6 Simulation study under the null: the average number of
wrongly selected markers (false positives) over 50 replications

n = 200 n = 200 n = 500 n = 500
k = 10 k = 100 k = 10 k = 100

QTL F N F N F N F N

Diagonal 0.08 0 0.38 0 0.08 0 0.40 0
AR(1) 0 0 0 0 0 0 0 0

F and N represent VBfun and VBnonfun [assuming the AR(1) residual covariance
structure in the model], respectively.

1006 Z. Li and M. J. Sillanpää

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152736/-/DC1/genetics.113.152736-12.pdf
qtlarchive.org/db/q?pg=projdetails&tnqh_x0026;proj=xiong_2011
qtlarchive.org/db/q?pg=projdetails&tnqh_x0026;proj=xiong_2011


Here we first describe the results of VBfun when the AR
(1) residual covariance structure is assumed. As in the last
simulated example, we generated 50 B-spline bases needed
in VBfun as an upper limit for complexity. VBfun then
suggested the best model with three putative QTL, whose
positions are shown in Table 7. The posterior mean esti-
mates of AR(1) parameters s2

0 and r are 1.79 and 0.66,
respectively. Among these three putative QTL, loci 16
(rs3689947) and 123 (rs6207781), with the largest Wald
scores, are located at 81.40 cM on chromosome 1 and at
20.74 cM on chromosome 9, respectively. The estimating
equations approach of Xiong et al. (2011) detected two ma-
jor QTL, which are located at 75 cM (between loci 15 and
16) on chromosome 1 and at 10 cM (at locus 119) on
chromosome 9 [S. Sen (University of California, San Fran-
cisco), personal communication]. Note that in the ge-
notype data some adjacent markers are very highly
correlated with each other, and our greedy search algo-
rithm tends to select only a single marker from a group of
highly correlated markers. This might explain why the
positions found by our method are slightly different from
theirs. In addition, our method detected another interest-
ing locus 140, on chromosome 10. An overall genetic
effect trend of the three putative QTL is calculated
by(
P89

i¼1ððxi16CE½a16 þxi123CE½a123 þxi140CE½a140 Þ=89Þ��� ),
and the curve is shown in Figure 4. The overall trend of the
genetic effects shows a peak between 5 AM and 2 PM, during
which time the mean trajectory of the phenotypes also shows
a clear peak. This indicates that the three putative QTL

detected by our method may contribute to the phenotypic
variation during the time period when the mice are highly
activated. We may further reestimate the phenotypes by
summing the estimated intercept and genetic effects of the
selected loci. The mean trajectory of the reestimated pheno-
types is also shown in Figure 4, which provides a smooth
description of the original mean phenotype curve.

On the other hand, when the diagonal covariance struc-
ture is assumed (results are shown in Table S4, Figure S11,
and Figure S12), VBfun is able to detect loci 18, 123, and 137
(note that loci 18 and 137 are near to loci 16 and 140), which
were also found in the AR(1) case. However, additionally,
VBfun tends to find many other markers with relatively small
effects that are false positives. Thus, we can conclude that
assuming a time-dependent AR(1) residual covariance seems
to effectively control false positive signals.

Finally, VBnonfun and two different residual covariance
structures were applied on the mouse data as well, but they
did not detect any signals (results not shown).

Discussion

We have developed here an efficient Bayesian nonparamet-
ric estimation procedure for mapping dynamic traits. Com-
pared to several earlier approaches such as the estimating
equation approach of Xiong et al. (2011), one major benefit
of our Bayesian approach is that some prior information for
achieving smoothness can be easily built into the model,
which is helpful to simplify the estimation procedure (i.e.,

Figure 3 The results of mouse
behavioral data analysis by using
VBfun, which assumed the AR(1)
residual covariance structure: (A–
E) The mean trajectory of the
original ASPs (A), the mean tra-
jectory after logit transformation
(B), and estimated trends of ge-
netic effects (in logit scale) (C–E)
for markers 16, 123, and 140,
respectively. The shaded area
represents the dark period (7 PM

to 7 AM).

Nonparametric Mapping of Dynamic Traits 1007

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152736/-/DC1/genetics.113.152736-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152736/-/DC1/genetics.113.152736-10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152736/-/DC1/genetics.113.152736-18.pdf


without the need to explicitly determine the optimal number
of B-spline bases). Our nonparametric method should be
generally applicable to many kinds of dynamic traits
whether their trajectories are smooth or rather complicated.
In this article, we have not considered yet the possible im-
pact of some environmental covariates such as temperature
and age variables and their interactions with QTL, as well as
the QTL–QTL interactions on the target dynamic traits. Fol-
lowing works such as Zhang and Xu (2005), Yi and Banerjee
(2009), Min et al. (2011), and Li and Sillanpää (2012), it
is not difficult to extend our current marker set by includ-
ing the environmental covariates or the pairwise marker–
environment or pairwise marker–marker interaction terms
as new “marker” variables for variable selection.

Our model specification is largely based on the Bayesian
P-splines, which has been applied in various nonparametric
modeling fields such as structured additive models (Fahrmeir
et al. 2010) and time-varying coefficient models (Lee and
Shaddick 2007). One common problem of such a model
specification is that a relatively large number of B-spline
bases need to be used in the model, which makes the sim-
ulation-based MCMC algorithm infeasible for large-scale
data sets with hundreds of markers and time points. This
motivates us to alternatively use a fast deterministic vari-
ational Bayes algorithm for computation. The VB approxi-
mation method can not only provide accurate posterior
mean estimates to the parameters of genetic effects, but
also provides a lower bound estimate of the model evi-
dence that can be used to guide variable selection (Beal
and Ghahramani 2003). The matching pursuit-like algo-
rithm adapted here from Nott et al. (2012) is a simple
and efficient method for searching an “optimal subset ” of
markers that roughly maximizes lower bounds. However,
since such a greedy algorithm does not fully explore the
whole model space, it usually cannot find a “perfect model
” that corresponds to the global maximum of the lower
bounds especially in the case of polygenic traits. We rec-
ommend using such a procedure only in the case of sparse
genetic architecture to seek a small number of markers
with relatively large genetic effects.

An important goal of our data analyses was to com-
pare the functional (multivariate) mapping approach (i.e.,
VBfun) and the general nonfunctional multiple-trait ap-
proach (i.e., VBnonfun) for analyzing the functional valued
dynamic traits. Overall, the results from those three exam-

ples showed that the functional approach performs better
than or at least equally as well as the nonfunctional ap-
proach, from the perspective of both parameter estimation
and variable selection. Especially when the number of time
points is relatively large and the number of individuals is
relatively small, the functional approach tends to show
much higher statistical power to detect QTL than the non-
functional approach, indicating that the functional approach
owns the advantage of combining the information from dif-
ferent repeated measurement points by specifying basis
expansions and smoothing priors for genetic effects in the
model. Dynamic phenotype data measured at a large num-
ber of time points are often available from some high-
throughput automated phenotyping platforms (e.g., Eberius
and Lima-Guerra 2009). On the other hand, when the num-
ber of time points is small, the benefit of using the functional
approach is reduced. Note that our VB framework is quite
flexible in the sense that the B-splines can be substituted by
many other possible methods of basis expansions and corre-
sponding priors as well. In practice, it is useful to compare
different methods and choose the most preferable one.

The primary aim of our nonparametric method is to
determine a subset of important markers approximating QTL
and estimate the trends of their genetic effects over time. We
also tested two possible residual covariance structures, (i) a
nonstationary diagonal covariance structure and (ii) a station-
ary AR(1) covariance structure, and evaluated their impacts
on the QTL mapping. In most of our analyses, we found that
compared to the AR(1) covariance structure, the simple
diagonal structure assuming time independence of residual
errors does not significantly affect the accuracy of the parameter
estimation, but tends to significantly underestimate the

Table 7 The results of mouse behavioral data analysis by using
VBfun, which assumed the AR(1) residual covariance structure,
including the selected markers, their chromosomes, locations,
and the corresponding Wald scores

Marker Chromosome Location (cM) Wald score

16 (rs13476259) 1 81.40 148.6427
123 (rs6207781) 9 20.74 122.1237
140 (rs3654717) 10 55.93 110.5854

For the Wald tests, the critical value corresponding to the significance level 0.05 is
67.50 for the estimates (chi-square distribution with 50 d.f.).

Figure 4 Cyan solid line is the mean trajectory of the real phenotypes in
logit scale, the same as in Figure 3. Red dotted line represents an overall
trend of the genetic effects of the three putative QTL. Dark green dotted-
dashed line is the estimated intercept. Blue dashed line represents the
mean of the reestimated phenotypic trajectory (the genetics effects plus
the intercept) in the red dashed line.
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uncertainty (i.e., the posterior covariance for each marker),
which may result in including some false positive QTL into
the variable selection procedure. Therefore, even though the
computation with AR(1) covariance structure is more expen-
sive due to the presence of nonconjugacy in the posterior, it
might be a more suitable choice especially when the herit-
abilities of the dynamic traits under study are low. Other
more complicated covariance structures such as some non-
stationary parametric structures (Liu and Wu 2009) or non-
parametric structures (Yap et al. 2009) can be possibly
incorporated if needed, but they require the development
of more specific algorithms for the computation of those
newly involved parameters. Furthermore, it is necessary to
point out that due to the approximative nature of the VB
algorithm, the uncertainty estimates for markers may still be
underestimated even by using an appropriate residual co-
variance structure or, by other means, the estimated Wald
statistic might be upward biased. On the other hand, the
MCMC method is able to provide more accurate uncertainty
estimates than the VB methods. Thus, after obtaining a small
subset of markers from our VB variable selection procedure,
we may then apply a MCMC algorithm to more accurately
estimate the Wald statistics and perform the formal hypoth-
esis testing. These can be taken as topics for future research.
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Appendix A
Our modeling strategy is largely based on an idea of a combination of B-splines with a difference penalty added on the
parameters ajh defined in Equation 3 or so called P-splines (Eilers and Marx 1996). An important property of B-splines is that
if all the parameters are the same, then the fitted curve is a horizontal line (a constant value). Inspired by this fact, the
frequentist P-splines with the first- and second-order penalties are defined as

Xm
h¼1

cjhðtÞajh þ lj
Xm
h¼2

�
ajh2ajh21

�2 (A1)

and

Xm
h¼1

cjhðtÞajh þ lj
Xm
h¼3

�
ajh22ajh21 þ ajh22

�2
; (A2)

respectively, where lj . 0 is a tuning parameter. The difference penalties lj
Pm

h¼2ðajh2ajh21Þ2 or
lj
Pm

h¼3ðajh22ajh21 þ ajh22Þ2 play a role to push the adjacent parameters of B-splines to share similar values to induce
the smoothness to the curve. The tuning parameter lj . 0 for marker j determines how smooth a curve will be. Note that the
higher-order penalties can be specified as well, but only the first-order and second-order penalties are widely used in practice
(Fahrmeir and Kneib 2011). From the perspective of the Bayesian statistics, the difference penalties above can be interpreted
as the random walk smoothing priors (Lang and Brezger 2004), which have been introduced previously in Equations 5–9.

Next, we explain briefly how to convert the random walk smoothing priors (5)–(9) to the matrix form, which is defined in
(10). For the first-order case, from (5) and (7), we can obtain pðajÞ} exp  ð2ðð 1

1000a
2
j1 þ

Pm
h¼2ðajh2ajh21Þ2Þ=t2j ÞÞ. It is not

difficult to show that

1
1000

a2
j1 þ

Xm
h¼2

�
ajh2ajh21

�2¼ aT
j U1aj þ

�
D1aj

�TD1aj; (A3)

where

Um·m
1 ¼

0
BB@

1
1000 0 ⋯ 0
0 0 ⋮
⋮ ⋱ ⋮
0 ⋯ ⋯ 0

1
CCA and Dðm21Þ ·m

1 ¼

0
BB@

21 1 0
2 1 1

⋱ ⋱
0 2 1 1

1
CCA
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Then we have ajjt2j � MVNð0; t2j K21
1 Þ with K1 ¼ U1 þ DT

1D1. Similarly for the second-order case, we obtain
ajjt2j � MVNð0; t2j K21

2 Þ with K2 ¼ U2 þ DT
2D2, where

Um ·m
2 ¼

0
BBBB@

1
1000 0 ⋯ ⋯ 0
0 1

1000 ⋮
⋮ 0 ⋮
⋮ ⋱ 0
0 ⋯ ⋯ ⋯ 0

1
CCCCA and Dðm22Þ ·m

2 ¼

0
BB@

1 2 2 1 0
1 2 2 1

⋱ ⋱ ⋱
0 1 2 2 1

1
CCA

Finally, note that, in the original article on Bayesian P-splines (Lang and Brezger 2004), the prior specifications in (5) or (7)
and (8) were replaced by p(aj1) } 1 or p(aj1) } 1 and p(aj2) } 1, which results in a rank deficient penalty matrix K1 or K2.
Our prior setting given above, proposed by Chib and Jeliazkov (2008), guarantees K1 or K2 to be full rank, which is required
to proceed to the variational Bayes estimation that is introduced in Appendixes B and C.

Appendix B

VB Estimation

As mentioned earlier, the mean field variational Bayes algorithm can be applied to compute a factorized approximate
posterior distribution qðujYÞ ¼QK

l¼1qðul   jYÞ, by minimizing the Kullback–Leibler divergence between it and the true
posterior distribution. It is known that the minimization of the KL divergence with respect to each q(ul|Y) is reached at
q̂ðuljYÞ, defined by formula (14). If the posterior belongs to the conjugate exponential family so that q̂ðuljYÞ for l =
1, . . . , K can be derived as standard parametric distributions, then a simple coordinate descent algorithm can be used for
sequentially updating each q̂ðul   jYÞ. However, if for one parameter ul9  , the marginal distribution q̂ðul9  jYÞ defined by (14) is
not recognized as any standard distribution, then proceeding with the VB algorithm based on (14) is no longer
straightforward, since it might not be possible to derive an analytical form of the expectation Eq̂ðul 9jYÞ½ln  pðu;YÞ�. Instead,
we may assume that the marginal approximate distribution of ul9is in a fixed form qhðul9  jYÞ ¼ hðul9Þ  exp  ðtðul9Þh2 aðhÞÞ
belonging to the exponential family, where h is a u · 1 vector of natural parameters that determines the shape of the
approximate distribution, tðul9Þ is a 1 · u vector of statistics, a(h) defines the normalizing constant, and hðul9Þ is a base
measure. The minimization of the above-mentioned KL divergence with respect to qhðul9  jYÞ is now equivalent to the
optimization problem

ĥ ¼ argmin
h

Eqhðul 9jYÞ
h
ln  qh

�
ul9  jY

�
2 Eqhðu2l9 jYÞ½ln  pðu;YÞ�

i
; (B1)

where the expectation Eqhðu2l9 jYÞ½ln  pðu;YÞ� can be easily computed, if q̂ð�jYÞ defined in (14) for all other parameters expect ul9
are standard parametric distributions.

Salimans and Knowles (2013) demonstrated that the minimization is given at

~h ¼ Eqĥðul 9jYÞ
h
~t
�
ul9ÞT~tðul9Þ

i21
Eqhðul 9jY Þ

h
~t
�
ul9ÞTEqĥðu2l9 jYÞ½ln  pðu;YÞ�

i
; (B2)

where ~h ¼ ½2aðhÞ; ĥT �T , and ~tðul9Þ ¼ ½1; tðul9Þ�. If we can sample from qĥðul9  jYÞ, then the two expectations in (B2) can be
evaluated by the Monte Carlo simulation methods. Based on these ideas, Salimans and Knowles (2013) designed a stochastic
optimization algorithm to estimate ĥ or, alternatively, an optimal marginal approximate distribution q̂ðul9  jYÞ ¼ qĥðul9  jYÞ. We use
Algorithm 1 in their article for evaluating the approximate distribution of r, which is a key parameter defining the AR(1)
covariance matrix.

Next, following the above principles, we present the specific VB algorithms for estimating the marker effects. The variable
selection part is then explained in Appendix C.

First, let us focus on the case of the diagonal covariance structure, which is S0ðr; rÞ ¼ s2
r for r= 1, . . . , k. The logarithm of

the joint distribution is
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ln  pðu;YÞ ¼ ln

8<
:p
�
Yja0;a1; . . . ;ap;s

2
1; . . . ;s

2
k
�Yp
j¼0

h
p
�
ajjt2j

�
p
�
t2j

�iYk
r¼1

p
�
s2
r
�9=;

¼ 2
1
2

Xn
i¼1

2
4k  ln  2p þ

Xk
r¼1

ln  s2
r þ
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@yi2Ca02

Xp
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xijCaj

1
AT

S21
0

0
@yi2Ca02

Xp
j¼1

xijCaj

1
A
3
5

2
1
2

Xp
j¼0

h
m  ln  2p þm  ln  t2j þ lnjKdj þ t22

j aT
j K

21
d aj

i
þ
Xp
j¼0

h
a  ln  b2 ln  GðaÞ2 ðaþ 1Þln  t2j 2 bt22

j

i

2
Xk
r¼1

ln  p
�
s2
k
�
; (B3)

where a= b= 0.0001. By using formula (14), we can derive the analytical form of q(•|Y) for each parameter in u as follows.

I. Derivation of q̂ða0jYÞ
By keeping only terms containing a0, we obtain

ln  q̂ða0   j  YÞ} Eq̂ðu=a0jYÞ½ln  pðu;YÞ� ¼ 2 1
2a

T
0C

T�nCTE½S21
0 �Cþ E

�
t22
0

�
Kd
�
Ca0 þ

Pn
i¼1

 
yi2

Pp
j¼1

xijCE½aj�
!T

E½S21
0 �Ca0 þ C;

(B4)

where C represents those terms that do not contain a0, and E½S21
0 � represents a k · k diagonal matrix with

E½S21
0 ðr; rÞ ¼ E½s22

r ��
for r = 1, . . . , k. Here the notation E[•] represents the posterior expectation (first moment) of the

parameter • with respect to its approximate marginal distribution q̂ð•jYÞ. We can recognize from (B4) that q̂ða0jYÞ is
a multivariate normal distribution with mean

E½a0� ¼ COV½a0�CTE½S21
0 �
Xn
i¼1

0
@yi 2

Xp
j¼1

xijCE
�
aj
�1A (B5)

and covariance matrix

COV½a0� ¼
�
nCTE

�
S21
0
�
Cþ E½t22

0 �Kd
�21

: (B6)

Furthermore, the second moment can be calculated as E½a0a
T
0 � ¼ E½a0� E½a0�T þ COV½a0�.

II. Derivation of q̂ðajjYÞ (j = 1, . . . , p)

ln  q̂
�
ajjY

�
} Eq̂ðu=ajjYÞ½ln  pðu;YÞ� ¼ 2 1

2a
T
j C

T
	Pn

i¼1
x2ijC

TE½S21
0 �Cþ E

h
t22
j

i
Kd



Caj (B7)

þ
Xn
i¼1

0
@yi2CE½a0�2

Xp
l 6¼j

xilCE½al�
1
ATxijE½S21

0 �Caj þ C: (B8)

We recognize q̂ða0jYÞ as a multivariate normal distribution with mean (or the first moment)

E
�
aj
� ¼ COV

�
aj
�
CTE½S21

0 �
Xn
i¼1

0
@yi 2CE½a0�2

Xp
l 6¼j

xilCE½al�
1
Axij (B9)

and covariance matrix

COV
�
aj
� ¼

 Xn
i¼1

x2ijC
TE
�
S21
0

�
Cþ E

�
t22
j

�
Kd

!21

: (B10)

Furthermore, the second moment can be calculated as E
�
aja

T
j

� ¼ E
�
aj
�
E
�
aj
�T þ COV

�
aj
�
.
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III. Derivation of q̂ðt2j jYÞ (j = 1, . . . , p)
We have

ln  q̂
�
t2j jY

�
} Eq̂ðu=t2j jYÞ½ln  pðu;YÞ� ¼ 2

�
A1j þ 1

�
  ln  t2j 2

B1j

t2j
þ C; (B11)

where

A1j ¼ m
2
þ a; (B12)

and

B1j ¼
Trace

�
E
�
aja

T
j
�
Kd
�

2
þ b: (B13)

q̂ðt2j jYÞ is recognized as an inverse gamma distribution, IG(A1j, B1j). The moment function can be computed as
E½t22

j ¼ A1j=B1j
�

.

IV. Derivation of q̂ðs2
r jYÞ (r = 1, . . . , k)

We have

ln  q̂
�
s2
r jY
�
} Eq̂ðu=s2

r jYÞ½ln  pðu;YÞ� ¼ 2 ðA2r þ 1Þ   ln  s2
r 2

B2r
s2
r
þ C; (B14)

where

A2r ¼ n
2
; (B15)

and

B2r ¼
Pn

i¼1

�
yiðtrÞ2crE½a0�2

Pp
j¼1xijcrE½aj�

�2þncrCOV½a0�cT
r þPn

i¼1
Pp

j¼1x
2
ijcrCOV

�
aj
�
cT
r

2
; (B16)

where cr represents the rth row vector ofC. q̂ðs2
r jYÞ is recognized as an inverse gamma distribution IG(A2r, B2r). In addition,

the moment function E½s22
r ¼ A2r=B2r� needs to be computed.

Furthermore, the lower bound Lðq̂ðujYÞÞ can be evaluated as

L
�
q̂ðujYÞ� ¼ RQ q̂ðujYÞ ln pðu;YÞ

q̂ðu  jYÞ du ¼ EQK

l¼1
q̂ðuljYÞ½pðu;YÞ�2

PK
l¼1

q̂ðuljYÞ  ln  q̂ðuljYÞ

¼ pmþm
2

2
nk
2
  ln  ð2pÞ þ ðpþ 1Þ  ln  ðjKdjÞ

2
þ
Xp
j¼0

ln  COV
�
aj
�

2
þ ðpþ 1Þa  ln  ðbÞ2 ðpþ 1Þ 

ln  GðaÞ2
Xp
j¼0

�
A1j   ln 

�
B1j
�
2 ln  G

�
A1j
��

2
Xk
r¼1

½A2r   ln  ðB2rÞ2 ln  GðA2rÞ�:

(B17)

To proceed with the VB algorithm, we need to update these approximate marginal posterior distributions q̂ð•Þ for each
parameter sequentially or, by other means, we just need to update the values of the quantities including E[a0], COV[a0],
E½a0a

T
0 �, E[aj], COV[aj], E½aja

T
j �, A2r, B2r, E½s22

r � (for r = 1, . . . , k), A1j, B1j, and E½t22
j � (for j = 1, . . . , p) in turn, until

convergence. The convergence can be checked by the lower bound. In step t, we calculate
��LðtÞ 2 Lðt21Þ��=��LðtÞ��. If it is smaller

than some predefined threshold (some small positive value such as 10210), then the algorithm can stop.
On the other hand, if an AR(1) structure S0ðr; sÞ ¼ s2

0ðrjr2sj=ð12 r2ÞÞ for r = 1, . . . , k, s = 1, . . . , k is used, the above
steps I–III can be used to update q̂ðajjYÞ and q̂ðt2j jYÞ for j = 0, . . . , p here as well. Next, we add two extra steps (IV* and V*)
for updating q̂ðs2

0jYÞ and q̂ðrjYÞ, respectively. Note that q̂ðs2
0jYÞ is updated based on formula (14), whereas q̂ðrjYÞ is

estimated by the above-mentioned fixed-form variational method of Salimans and Knowles (2013).

IV*. Derivation of q̂ðs2
0 jYÞ

We have

ln  q̂
�
s2
0jY
�
} Eq̂ðu=s2

0jYÞ½ln  pðu;YÞ� ¼ 2 ðA3 þ 1Þ  ln  s2
02

B3
s2
0
þ C; (B18)
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where

A3 ¼ nm
2
; (B19)

and

B3 ¼ traceðD · E½G�Þ
2

; (B20)

where

D ¼ Pn
i¼1

 
yi2CE½a0�2

Pp
j¼1

xijCE
�
aj
�! 

yi2CE½a0�2
Pp
j¼1

xijCE½aj�
!T

þCCOV½a0�CT þPn
j¼1

xijCCOV
�
aj
�
CT

(B21)

and

G ¼

0
BBBB@

1 2 r 0 . . . 0
2 r r2 þ 1 2 r 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ 2 r r2 þ 1 2 r
0 ⋯ 0 2 r 1

1
CCCCA

q̂ðs2
0jYÞ is recognized as an inverse gamma distribution IG(A3, B3). In addition, the moment function E½s22

0 ¼ A3=B3� needs to
be computed.

V*. Derivation of q̂ðrjYÞ
Since 0 , r , 1, it is reasonable to preassume q(r|Y) to be a beta(r|m1, m2) (m1 . 0, m2 . 0) distribution. It is well known
that the beta distribution belongs to the exponential family, with shape parameters h = [m1, m2]T and sufficient statistics
t(r) = [ln(r), ln(1 2 r)]. Then it is straightforward to apply the above-mentioned stochastic optimization algorithm to
estimate optimal values of m̂1 and m̂2 and obtain q̂ðrjYÞ ¼ Betaðrjm̂1; m̂2Þ, with mean E½r ¼ m̂1=ðm̂1 þ m̂2Þ� , variance
VAR½r� ¼ m̂1m̂2=ðm̂1 þ m̂2Þ2ðm̂1 þ m̂2 þ 1Þ, and the second moment E[r2] = E[r2] + VAR[r]. Then we need to evaluate
the expectation E½S21

0 ¼ E½s22
0 E½G ¼ ðA3=B3ÞE½G����

, where

E½G� ¼

0
BBBB@

1 2 E½r� 0 . . . 0
2 E½r� E

�
r2
�þ 1 2 E½r� 0

⋮ ⋱ ⋱ ⋱ ⋮
⋮ 2 E½r� E

�
r2
�þ 1 2 E½r�

0 ⋯ 0 2 E½r� 1

1
CCCCA;

which is required in steps I and II.
The lower bound is computed as

L
�
q̂ðujYÞ� ¼ RQq̂ðujYÞ  ln  pðu;YÞq̂ðujYÞ du ¼ pmþm

2
2

nk
2
  ln  ð2pÞ þ n

2
Eq̂ðrjYÞ½ln  jGj�

þ ðpþ 1Þ  ln  ðjKdjÞ
2

þ
Xp
j¼0

ln  COV
�
aj
�

2
þ ðpþ 1Þa  ln  ðbÞ2 ðpþ 1Þln  GðaÞ2

Xp
j¼0

�
A1j   ln

�
B1j
�

2 ln  G
�
A1j
��

2 ½A3   lnðB3Þ2 ln  GðA3Þ�2
�
m̂1 2 1

��
c
�
m̂1
�
2c

�
m̂1 þ m̂2

��
2
�
m̂22 1

��
c
�
m̂1
�

2c
�
m̂1 þ m̂2

��þ ln  Be
�
m̂1; m̂2

�
;

(B22)

where Be(�) and c(�) represent the beta function and the digamma function (Bishop 2006), respectively. The expectation
Eq̂ðrjYÞ½ln  jGj� can be computed by Monte Carlo integration. Alternatively, we may do the approximation
Eq̂ðrjYÞ½ln  jGj ¼ Eq̂ðrjYÞ½ln  ð12 r2Þ � ln  ð12 E½r2 Þ���

, which should not affect the results significantly based on our own empir-
ical experimentation.
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After obtaining the posterior mean and covariance estimate of aj, the Wald test statistic (score), needed in the variable
selection, can be obtained as

Wj ¼ E½aT
j �COV

�
aj
�21E

�
aj
�
; (B23)

which asymptotically follows a chi-square distribution with m d.f.

Appendix C

VB Variable Selection

The aim of the model (variable) selection is to seek a model M̂ with the highest value of a lower bound. A model search
algorithm adopted from Nott et al. (2012) is used here. Starting from a null model with the intercept term only, the
algorithm adds one marker into the model at a time, so that it produces a sequence of candidate models. Conventionally,
when a model M with a subset of selected markers as well as the corresponding approximate distribution q̂ðuMjY;MÞ and the
lower bound Lðq̂ðuM jY;MÞÞ have been obtained, we may pick up a new marker ĵnew from Mc, the complementary set of M,
which satisfies

ĵnew ¼ arg max
jnew2Mc

L
�
q̂
�
uM[jnew jY;M [ jnew

��
; (C1)

where the lower bounds can be computed by the VB algorithm introduced in Appendix B. In practice, this involves a repeated
computation of the approximate distribution q̂ðuM[jnew jY;M [ jnewÞ for all possible new models M [ jnew (jnew 2 Mc), which
will be inefficient for a data set with a large number of markers. This motivates us to find a faster way to rank the markers in
Mc instead of using (C1). It is easy to see that, for eachM [ jnew, the computational burden appears if we try to update all the
components in q̂ðuM[jnew jY;M [ jnewÞ as we have done in the regular VB computation. Instead, here we consider the following
approximation:

q̂
�
uM[jnew jY;M [ jnew

� � q̂*
�
bjnew jY;M [ jnew

�
q̂*
�
t2jnew jY;M [ jnew

�
q̂ðuM jY;MÞ (C2)

By other means, we update only the approximate distributions for two parameters ajnew and t2jnew of the new marker jnew, by
fixing the other part to the approximate distribution q̂ðuM jY;MÞ, which should have already been evaluated for the model M
in the earlier round. This procedure is roughly equivalent to using VB to approximate the following posterior distribution,

p
�
ajnew ; t

2
jnew

���Y*
�
}
Yn
i¼1

MVN
�
y*i jxijnewCajnew ; E½S21

0 jM��MVN
�
ajnew j0; t2jnewK21

d

�
IG
�
t2jnew ja; b

�
; (C3)

where Y* ¼ ½y*1; . . . ; y*n�T , y*i ¼ yi 2CE½a0jM�2 P
j2M CE½ajjM� for i = 1, . . . , n, and E½S21

0   jM�, E[a0 | M], and E[aj | M]
(j 2 M) are moment functions of the approximate distribution q̂ðuMjY;MÞ, which are considered as fixed values here. By
applying the VB algorithm on the above posterior, we obtain an approximate distribution for ajnew,

q̂*
�
ajnew jY;M [ jnew

� ¼ MVN
�
ajnew jE*

�
ajnew jM [ jnew

�
;COV*

�
ajnew jM [ jnew

��
; (C4)

with mean

E*
�
ajnew jM [ jnew

� ¼ COV*
�
ajnew jM [ jnew

�
CTE½S21

0 jM�
Xn
i¼1

y*i xijnew (C5)

and covariance matrix

COV*
�
ajnew jM [ jnew

� ¼
 Xn

i¼1

x2ijnewC
TE
�
S21
0 jM

�
Cþ E

�
t22
jnew

�
Kd

!21

; (C6)

and for tjnew, we have
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q̂*
�
t2jnew jY;M [ jnew

�
¼ IG

�
Ajnew ;Bjnew

�
(C7)

with

Ajnew ¼ m
2
þ a; (C8)

and

Bjnew ¼
Trace

�
E*
�
ajnewa

T
jnew jM [ jnew

�
Kd
�

2
þ b: (C9)

Other required moment functions can be computed by

E*
�
ajnewa

T
jnew jM [ jnew

� ¼ E*
�
ajnew jM [ jnew

�
E*
�
ajnew jM [ jnew

�TþCOV*
�
ajnew jM [ jnew

�
; (C10)

and

E
h
t22
jnew

i
¼ Ajnew

Bjnew
: (C11)

The corresponding lower bound is

L*
�
q̂*
�
ajnew jY;M [ jnew

�
q̂*
�
t2jnew jY;M [ jnew

��
¼ m

2
2

nk
2

ln  ð2pÞ þ ln  ðjKdjÞ
2

þ ln  COV
�
ajnew jM [ jnew

�
2

þ n
2
  ln  E

�
S21
0 jM�2Trace

�
UE
�
S21
0 jM

��
2

þ a  ln  ðbÞ2 ln  GðaÞ

þ Ajnew ln  Bjnew 2 ln  G
�
Ajnew

�
;

(C12)

where U ¼Pn
i¼1ðy*i 2 xijnewCE*½ajnewa

T
jnew jM [ jnew�Þðy*i2xijnewCE*½ajnewa

T
jnew jM [ jnew�ÞTþ

Pn
i¼1x

2
ijnewCCOV½ajnew jM [ jnew CT�

.
After computing the lower bound L* for each marker in Mc, we choose the marker j*new that corresponds to the maximum
of L*. It can be interpreted as a marker that contributes the most to the increment of the lower bound of the model M. We
then add j*new into the modelM to obtain a newMnew ¼ M [ j*new, and at the same time j*new should be deleted from the setMc.
In addition, the approximate distribution q̂ðuMnew jY;MnewÞ and the lower bound Lðq̂ðuMnew jY;MnewÞÞ can be fully evaluated by
the standard VB algorithm now and can be used for the next round. These forward selection steps can be iteratively
implemented until the maximum number of markers (say T) is reached, and a sequence of candidate models Mf

i (i =
1, . . . , T) with their lower bound estimates can be obtained. Since such a selection strategy is greedy, it may pick up some
wrong markers into the model. To improve the reliability of model selection, we may further add a backward elimination
procedure. In reverse, starting from the final model Mf

T constructed by the forward selection, one marker was dropped
from the model at a time until the null model is reached. This procedure produces another sequence of models Mb

i (i = T 2
1, . . . , 1). Specifically, at the stage of model Mb

i (i . 1), the standard VB algorithm is used to estimate the approximate
posterior distribution q̂ðuMb

i
jY;Mb

i Þ, and then the Wald test statistic (see Appendix B) can be calculated for every marker in the
model. The Wald test statistic here is interpreted as a score for measuring the importance of one marker. Then we drop the
marker corresponding to the smallest Wald test statistic out of the current model and obtain the next model Mb

i21. After
completing both the forward and the backward selection procedures, we then select an optimal model with the maximum
value of the lower bounds from all the candidate models.
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Figure S1    QTLMAS2009 data: estimated trends of genetic effects for the 13 selected markers by using 

VBnonfun which assumed the diagonal residual covariance structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Z. Li and M. J. Sillanpää  3 SI 
 

 
Figure S2    QTLMAS2009 data: estimated trends of genetic effects for the 12 selected markers by using VBfun 

which assumed the AR(1) residual covariance structure in the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 SI  Z. Li and M. J. Sillanpää 
 

 
Figure S3    QTLMAS2009 data: estimated trends of genetic effects for the 9 selected markers by using VBnonfun 

which assumed the AR(1) residual covariance structure in the model. 
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(a) Estimates of VBfun which assumed the AR(1) residual covariance structure 

 

(b) Estimates of VBnonfun which assumed the AR(1) residual covariance structure 

 

Figure S4    Simulated data with k = 10, u = 0:5: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 
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(a) Estimates of VBfun which assumed the AR(1) residual covariance structure 

 

(b) Estimates of VBnonfun which assumed the AR(1) residual covariance structure 

 

Figure S5    Simulated data with k = 10, u = 0:8: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 



  Z. Li and M. J. Sillanpää  7 SI 
 

 

(a) Estimates of VBfun which assumed the AR(1) residual covariance structure 

 
(b) Estimates of VBnonfun which assumed the AR(1) residual covariance structure 

 

Figure S6 Simulated data with k = 100, u = 0:8: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 
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(a) Estimates of VBfun which assumed the diagonal residual covariance structure 

 
(b) Estimates of VBnonfun which assumed the diagonal residual covariance structure 

 

Figure S7    Simulated data with k = 10, u = 0:5: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 
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(a) Estimates of VBfun which assumed the diagonal residual covariance structure 

 
(b) Estimates of VBnonfun which assumed the diagonal residual covariance structure 

 

Figure S8    Simulated data with k = 10, u = 0:8: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 
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(a)    Estimates of VBfun which assumed the diagonal residual covariance structure 

 

(b)    Estimates of VBnonfun which assumed the diagonal residual covariance structure 

 

Figure S9    Simulated data with k = 100, u = 0:5: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 
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(a) Estimates of VBfun which assumed the diagonal residual covariance structure 

 
(b) Estimates of VBnonfun which assumed the diagonal residual covariance structure 

 

Figure S10    Simulated data with k = 100, u = 0:8: the estimated trend curves (red dashed lines) against the 

simulated trend curves (blue solid lines) 
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Figure S11    The results of mouse behavioral data analysis by using VBfun which assumed the diagonal residual 

covariance structure: estimated trends of genetic effects (in logit scale) for markers 18, 123, and 137, 

respectively. The shadow area represents the dark period (7pm‐7am). 
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Figure S12    Mouse behavioral data: estimated trends of genetic effects (in logit scale) for markers 6, 23, 37, 50, 

64, 74, 81, 91, 108, 118, 145, 156, 165, 202, 205, 217 and 224 by using VBfun which assumed the diagonal 

residual covariance structure. The shadow area represents the dark period (7pm‐7am). 
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File S1 

 

MATLAB codes for implementing VBfun and VBnonfun methods 

 

File S1 is available for download at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.152736/‐/DC1. 
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Table S1      The results of QTLMAS2009 data analysis, including the selected markers, their locations (in 

brackets), the corresponding Wald scores, and the closest true simulated QTLs. Regarding to the Wald tests, the 

critical value corresponding to the significance level 0:05 is 18.31 for the estimates of VBfun (chi‐square 

distribution with 10 degrees of freedom), and 11.07 for the estimates of VBnonfun (with 5 df), respectively 

(assuming the AR(1) residual covariance structure in the model). The symbols *, † and ‡ indicate the simulated 

QTLs effects on  , 2 , 3  of the simulated logistic growth curves (traits), respectively.  

 

VBfun                                                          VBnonfun 

Marker  Wald score  Marker  Wald score  Closest simulated 

QTL 

35 (0.4029)  163.63  35 (0.4029)  335.64  (0.4525) 36-37* 

37 (0.4447)  5844.14  37 (0.4447)  5019.23  (0.4525) 36-37* 

88 (0.9952)  82.39  88 (0.9952)  112.35  (0.8765) 77-78‡ 

98 (1.0359)  1150.48  none  none  (1.0455) 98-99* 

99(1.0516)  1914.20  107(1.1536)  130.01  (1.0455) 98-99* 

115(1.2566)  63.13  115(1.2566)  177.15  (1.3302) 118-119† 

178 (1.9011)  178.99  178 (1.9011)  168.59  (1.8864) 174-175* 

216 (1.9011)  102.91  none  none  (2.2622) 216-217* 

222 (2.3108)  68.81  none  none  (2.2622) 216-217‡ 

none  none  270 (2.8203)  73.85  (2.8984) 276-277* 

338(3.7168)  154.04  338(3.7168)  202.16  (3.6979) 336-337* 

415(4.6311)  95.59  none  none  (4.5971) 411-412† 

452 (4.9494)  57.88  452( 4.9494)  74.86  (4.7719) 432-433* 
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Table S2    The mean squared error comparing the estimated trend functions to the simulated ones. F and N 

represent VBfun and VBnonfun (assuming the diagonal residual covariance structure in the model), respectively 

(assuming the diagonal residual covariance structure in the model), and h2 is the averaged heritability over time. 

 

  k=10 

u=0.5 

h2=0.2265 

k=10 

u=0.8 

h2=0.0922 

k=100 

u=0.5 

h2=0.2347 

k=100 

u=0.8 

h2=0.1259 

  F  N  F  N  F  N  F  N 

0  0.1765  0.2481  0.9436  0.5591  0.0199  0.4005  0.1113  0.6785 

35  0.0896  0.1279  0.1863  0.1882  0.0188  0.0811  0.0341  0.1163 

52  0.2814  0.4121  0.2839  0.2703  0.0245  0.1376  0.0918  0.2739 

78  0.0840  0.0748  0.1214  0.0667  0.0256  0.0693  0.1312  0.2146 

98  0.0997  0.0710  0.1480  0.1233  0.0073  0.0931  0.0584  0.2867 

118  0.0067  0.0245  0.1209  0.1550  0.0071  0.0719  0.0273  0.1222 

174  0.0327  0.0341  0.0877  0.2032  0.0087  0.0941  0.0732  0.1650 

216  0.0658  0.0478  0.2431  0.1284  0.0157  0.0608  0.0574  0.1031 

358  0.0221  0.0432  0.0556  0.0403  0.0036  0.0403  0.0230  0.0717 

453  0.1556  0.0706  0.2629  0.0403  0.0225  0.0864  0.1547  0.2198 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Z. Li and M. J. Sillanpää  17 SI 
 

 

 

 

 

Table S3    The number of times each QTL has been correctly selected over 50 replications, together with the 

average number of wrongly selected markers (false positives). F and N represent VBfun and VBnonfun, 

respectively (assuming the diagonal residual covariance structure in the model). 

 

  n=200 

k=10 

n=200 

k=100 

n=500 

k=10 

n=500 

k=100 

QTL  F  N  F  N  F  N  F  N 

35  50  50  50  50  50  50  50  50 

52  17  0  50  0  46  0  50  0 

78  10  1  50  0  45  34  50  33 

98  6  0  45  0  38  0  50  0 

118  50  50  50  50  50  50  50  50 

174  1  0  11  0  14  0  49  0 

216  35  3  49  1  44  46  50  41 

358  23  13  50  0  47  25  50  30 

433  9  0  0  43  34  0  50  0 

ave. fal. 

pos.   

1.34  0.38  1.68  0  0.90  0.90  0.24  0.40 
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Table S4    The results of mouse behavioral data analysis by using VBfun which assumed the AR(1) residual 

covariance structure, including the selected markers, their chromosomes, locations, and the corresponding 

Wald scores. Regarding to the Wald tests, the critical value corresponding to the significance level 0:05 is 67.50 

for the estimates (chi‐square distribution with 50 degrees of freedom). 

 

Marker  Chromosome  Location (cM)  Wald Score 

6 (gnf01_085_746)  1  43.48  292.83 

18 (rs3689947)  1  96.11  795.93 

23 (rs13476507)  2  30.83  173.80 

37 (rs13477019)  3  9.16  277.01 

50 (rs3657112)  3  75.42  206.72 

64 (rs3688968)  4  54.61  353.39 

74 (rs3726547)  5  50.68  278.76 

81 (rs13478621)  6  4.38  441.15 

91 (rs6387265)  6  77.70  426.03 

108 (rs6216320)  7  69.01  280.63 

118 (gnf08_109_993)  8  53.04  360.41 

123 (rs6207781)  9  20.74  1242.01 

137 (rs13480657)  10  39.72  379.31 

145 (rs3023251)  11  13.71  241.39 

156 (rs13481230)  11  75.02  256.88 

165 (rs13481509)  12  26.44  194.32 

202 (rs6326790)  15  45.98  346.22 

205 (rs4180773)  16  29.53  175.19 

217 (rs4231494)  17  19.56  183.36 

224 (rs6358426)  18  10.10  375.13 

 

 

 


