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Abstract This study was designed to explore beneficial plant-associated rhizobacteria exhibiting

substantial tolerance against fungicide tebuconazole vis-à-vis synthesizing plant growth regulators

under fungicide stressed soils and to evaluate further these multifaceted rhizobacteria for protection

and growth promotion of greengram [Vigna radiata (L.) Wilczek] plants against phytotoxicity of

tebuconazole. Tebuconazole-tolerant and plant growth promoting bacterial strain PS1 was isolated

from mustard (Brassica compestris) rhizosphere and identified as Pseudomonas aeruginosa following

16S rRNA gene sequencing. The P. aeruginosa strain PS1 solubilized phosphate significantly and

produced indole acetic acid, siderophores, exo-polysaccharides, hydrogen cyanide and ammonia

even under tebuconazole stress. Generally, tebuconazole at the recommended, two and three times

the recommended field rate adversely affected the growth, symbiosis, grain yield and nutrient

uptake in greengram in a concentration dependent manner. In contrast, the P. aeruginosa strain

PS1 along with tebuconazole significantly, increased the growth parameters of the greengram

plants. The inoculant strain PS1 increased appreciably root nitrogen, shoot nitrogen, root phospho-

rus, shoot phosphorus, and seed yield of greengram plants at all tested concentrations of tebuconaz-

ole when compared to the uninoculated plants treated with tebuconazole. The results suggested that

theP. aeruginosa strain PS1, exhibiting novel plant growth regulating physiological features, can be

applied as an eco-friendly and plant growth catalyzing bio-inoculant to ameliorate the performance

of greengram in fungicide stressed soils.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
71 2702945.
iffmail.com (M. Ahemad),

).

Saud University.

g by Elsevier

y. Production and hosting by Else

03
1. Introduction

Rhizosphere microorganisms play a key role in biogeochemical
cycling of elements and supply plants with the vital nutrients
(Ahemad and Khan, 2011a). Bacteria of rhizosphere origin
vier B.V. All rights reserved.
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improving plant growth are generally, referred to as plant
growth promoting rhizobacteria (PGPR) (Zaidi et al., 2009).
Among PGPR, phosphate-solubilizing bacteria (PSB) supply

phosphorus (P) to plants by solubilizing insoluble P; princi-
pally through acidification process (Ahemad and Khan, 2012).
In addition, PSB enhance the growth of plants by other mecha-

nisms such as biological nitrogen fixation, providing trace ele-
ments (such as iron and zinc), synthesizing key plant growth
promoting substances including siderophores and indole acetic

acid (Tank and Saraf, 2003) and providing protection to plants
against soil borne pathogens (El-Mehalawy, 2009). PSBwithout
tolerance/resistance toward stress factors like fungicides in pol-
luted soils would likely not facilitate the growth and yields of

crops efficiently when used as bio-inoculants. To enhance the
overall performance of crops in polluted environment including
fungicide enriched soils, the bacterial cultures as inoculants

must possess the potential to tolerate/detoxify pollutants includ-
ing fungicide vis-à-vis the normal plant beneficial activities.

Prior to sowing, seed dressing with fungicides is regularly

practiced in farming which sometimes fails to protect the
seeds/plants against the intended pathogens or even suppress
the production of secondary metabolites by plant-beneficial

soil microbial communities (Yu et al., 2009; Ahemad and
Khan, 2011a,b) besides impeding the overall productive effi-
ciency of various crops including legumes (Fox et al., 2007).
Tebuconazole [(RS)-1-p-chlorophenyl-4,4-dimethyl-3-(1H-

1,2,4-triazol-1-ylmethyl) pentan-3-ol; CAS No. 107534-96] is
a systemic and broad spectrum fungicide belonging to triazole
group which is used widely as eradicant, and protectant to

counterbalance phyto-pathogenic fungi (e.g. Curvularia spp.,
Fusarium spp., etc.) which cause powdery mildew, loose smut,
and rust in both legume and non-legume crops (Kishorekumar

et al., 2007; Singh and Dureja, 2009; Mohapatra et al., 2010).
Mode of action of tebuconazole on fungal pathogens is to
hamper the sterol biosynthesis leading to disruption in mem-

brane formation (Tomlin, 1997). Despite its extensive use in
pest control, the simultaneous effects of tebuconazole on
PSB and greengram (Vigna radiata L. wilczek) are scarcely re-
ported. The present study was therefore, directed to evaluate

the possible impacts of tebuconazole on plant growth promot-
ing (PGP) potentials of Pseudomonas aeruginosa strain PS1.
The performance of the tebuconazole tolerant strain PS1 inoc-

ulated greengram [V. radiata (L.) Wilczek] plants was also as-
sessed in tebuconazole treated alluvial soils.

2. Materials and methods

2.1. Soil samples and microbial diversity

The soil samples were collected from the rhizospheric soils of
chickpea (Cicer arietinum L.), lentil (Lens esculentus), green-

gram, pea (Pisum sativum) and mustard (Brassica compestris)
grown at the experimental fields of Faculty of Agricultural Sci-
ences, Aligarh Muslim University, Aligarh (27�290 latitude and
72�290 longitude), Uttar Pradesh, India. These agricultural

fields were specifically selected to isolate the rhizobacteria be-
cause the selected sites were continuously exposed to a wide
range of pesticides in crop production since 10 years. From

each site, three soil samples were collected in sterilized
polythene bags (15 · 12 cm2). The samples were mixed well
and were used to determine microbial diversity including total
bacterial population, fungal population and phosphate solubi-
lizing microorganisms (PSM) using standard microbiological
methods (Holt et al., 1994). The soil samples were serially di-

luted in sterile normal saline solutions and 10 ll of diluted sus-
pension was spread plated on nutrient agar, Martin’s medium
and Pikovskaya (Pikovskaya, 1948) medium for total bacterial

count, fungal populations and phosphate solubilizers, respec-
tively. Each sample was in three replicates and incubated at
28 ± 2 �C for 3, 5 and 7 days for total bacteria, fungi and

phosphate solubilizing microorganisms, respectively.

2.2. Isolation of tebuconazole-tolerant and phosphate
solubilizing bacteria

A total of 50 PSB were isolated from the rhizosphere of mus-
tard (due to the maximum diversity of PSM) using soil dilution
plate technique and tested for their phosphate-solubilizing

activity (King, 1932). The sensitivity of bacterial strains
against the increasing concentrations (100–3200 lg ml�1; at a
dilution interval of 100 lg ml�1) of technical grade tebuconaz-

ole (a.i. 100% w/w; Parijat Agrochemicals, New Delhi, India)
was evaluated by the plate assay using minimal salt agar med-
ium (g/l: KH2PO4 1; K2HPO4 1; NH4NO3 1; MgSO4�7H2O

0.2; CaCl2�2H2O 0.02; FeSO4�7H2O 0.01; agar 15; pH 6.5).
Plates were incubated at 30 �C for 7 days. The maximum con-
centration of tebuconazole supporting bacterial growth was
defined as the maximum tolerance level (MTL). Subsequently,

18 bacterial strains: PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS9,
PS10, PS12, PS14, PS16, PS17, PS19, PS20, PS21, PS22 and
PS23 endowed with the higher MTL (>400 lg ml�1) against

tebuconazole were selected (Fig. 1).
Exponentially grown cultures of the test organisms were

inoculated into minimal salt medium treated with 0 (control),

100, 200, and 300 lg l�1 of tebuconazole and incubated at
30 �C in rotary shaker (150 g). Growth was determined tur-
bidometrically at different time intervals by measuring optical

density (OD) at 540 nm.

2.3. Assay of plant growth promoting traits

Bacterial strains were evaluated for phosphate solubilization,

indole-3-acetic acid (IAA), siderophores [salicylic acid (SA)
and 2,3-dihydroxy benzoic acid (DHBA)], exo-polysaccharide
(EPS), hydrogen cyanide (HCN) and ammonia both in the ab-

sence and the presence of tebuconazole 100 (recommended
dose), 200 and 300 lg l�1. The various concentrations of
tebuconazole used in experiments were corresponding to the

field doses. Phytohormone, IAA was quantitatively analyzed
by the method of Gordon and Weber (1951), later modified
by Brick et al. (1991). The siderophore production by bacterial

isolates was determined qualitatively using Chrome azurol S
(CAS) agar (Alexander and Zuberer, 1991) as well as quantita-
tively (Reeves et al., 1983). The EPS and HCN produced by
the rhizobacterial strains were determined by the method of

Mody et al. (1989) and Bakker and Schipper (1987), respec-
tively. The synthesis of ammonia by the bacterial strains was
assayed using peptone water (Dye, 1962). Each individual

experiment was repeated three times at different time intervals.
Out of 18 rhizobacterial strains, four bacterial strains (PS1,

PS2, PS9 and PS19) producing the PGP substances in the

highest amount and concurrently possessing greater values
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Figure 1 Maximum tolerance levels of phosphate solubilizing strains grown in minimal salt agar medium (devoid of carbon and nitrogen

sources).
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Figure 2 Plant growth promoting (PGP) activities of rhizobacterial strains recovered from mustard rhizosphere. Vertical bars represent

mean of three replicates ± standard errors. Set 1, Set 2, Set 3 and Set 4 represent the PGP traits of the rhizobacterial strain PS1, PS2, PS9

and PS19, respectively. Salicylic acid; DHBA = 2,3-dihydroxy benzoic acid; IAA = indole acetic acid; EPS = exo-polysaccharides.

Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] 453
for MRL against tebuconazole were further selected (Fig. 2).
Among these four rhizobacterial strains, the strain PS1 was se-

lected to be used as a promising bio-inoculant owing to better
growth in tebuconazole amended minimal salt agar medium
(Fig. 3) and the comparatively higher production of PGP sub-

stances in vitro (Fig. 2).
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2.4. Bacterial characterization

Morphological, physiological and biochemical properties of
the strain PS1, that included Gram reaction, citrate utilization
test, indole production test, methyl red test, nitrate reduction,
Voges Proskaur, catalase test, carbohydrates (dextrose, manni-

tol and sucrose) utilization test, starch hydrolysis, and gelatin
liquefaction test, were determined as per the standard methods
following Bergey’s Manual of Determinative Bacteriology

(Holt et al., 1994). On the basis of the above tests (Table 2),
the strain PS1 was tentatively identified as Pseudomonas. The
partial gene sequencing of 16S rRNA of the strain PS1 was

performed commercially at DNA Sequencing Service, Macro-
gen Inc., Seoul, South Korea. Subsequently, nucleotide se-
quence data (Gen-Bank accession number FJ705886) was
deposited in the Gen-Bank sequence database. The online pro-

gram BLAST (Basic Local Alignment Search Tool) was used
to find out the related sequences with known taxonomic infor-
mation in the databank at NCBI website (http://

www.ncbi.nlm.nih.gov/BLAST) to accurately identify the
strain PS1. The BLAST program indicated that the strain
PS1 shared a close relationship with the 16S rRNA gene se-

quence of P. aeruginosa strain MW3AC (99% similarity with
the reference strain GQ180118) in NCBI database. Such high
similar values confirmed the strain PS1 as P. aeruginosa.

2.5. Plant growth under fungicide-stress

The experimental soil was an alluvial sandy clay loam (sand
667 g kg�1, silt 190 g kg�1, clay143 g kg�1, organic matter

6.2 g kg�1, Kjeldahl N 0.75 g kg�1, Olsen P 16 mg kg�1, pH
7.2 and WHC 0.44 ml g�1, cation exchange capacity
11.7 cmol kg�1 and 5.1 cmol kg�1 anion exchange capacity).

Surface sterilized seeds of greengram var. K851 were
bacterized with P. aeruginosa strain PS1 grown in LB broth
by soaking the healthy seeds in liquid culture medium for 2 h

using 10% gum arabic as sticker to deliver approximately
108 cells/seed. The un-inoculated but sterilized seeds were
served as control. Inoculated and un-inoculated seeds were
sown in clay pots (25 cm high, 22 cm internal diameter) con-

taining 3 kg unsterilized soils with control (without tebuconaz-
ole) and three treatments with 100 [recommended field rate
(1·)], 200 [two times the recommended field rate (2·)] and

300 lg kg�1 soil [three times the recommended field rate (3·)]
of tebuconazole. A total of six pots arranged in a complete
randomized design were included for each treatment. One

week after emergence, plants were thinned to three per pot
and maintained in open field conditions. The experiments were
repeated for two consecutive years to establish the reproduc-
ibility of the results. All plants in three pots for each treatment

were uprooted 50 and 80 days after seeding (DAS) and nodu-
lation was recorded. Nodules were quantified, dried at 80 �C,
and weighed. Plants removed at 50 and 80 DAS were oven-

dried at (80 �C) and dry biomass was measured. The leghae-
moglobin (Lb) content in fresh nodules collected from the
roots of both inoculated and un-inoculated plants was mea-

sured at 50 DAS (Sadasivam and Manikam, 1992) while total
N and P content in roots and shoots was assayed at 80 DAS by
micro-Kjeldahl (Iswaran and Marwah, 1980) and Jackson

(1967) method, respectively. The remaining pots (three pots)
for each treatment having three plants per pot were maintained
until harvest (80 DAS) and seed yield (SY) and grain protein
(GP) (Sadasivam and Manikam, 1992) was determined.

2.6. Statistical analysis

In vitro experiments were carried out in three replicates at dif-

ferent time intervals. The difference among the treatment
means was compared by honestly significant difference
(HSD) using Tukey test at 5% probability level by statistical

software SPPS10. The pot experiments were conducted for
two consecutive years under similar environmental conditions
using same treatments to ensure the reproducibility of the re-

sults. Since the data of the measured parameters obtained were
homogenous, they were pooled together and subjected to anal-
ysis of variance (ANOVA). The difference among treatment
means was compared by two-way ANOVA at 5% level of

probability using statistical software Mini-Tab11.
3. Results

3.1. Microbial diversity in different rhizospheric soils

The rhizospheric soils of chickpea, greengram, lentil, pea and
mustard were subjected to microbial analysis. The viable
counts of bacteria, fungi and PSM differed considerably

among rhizosphere soils. Generally, the microbial populations
were the highest in mustard rhizosphere compared to other soil
samples. The bacterial populations in the rhizosphere of chick-

pea, greengram, lentil and pea were 3.2 · 107, 2.9 · 107,
3.5 · 107 and 3.1 · 107 CFU/g soil, respectively. In contrast,
the rhizospheric soils of mustard exhibited 36%, 52%, 23%
and 29% bacterial populations higher compared to those that

recovered from chickpea, greengram, lentil, and pea rhizo-
spheres, respectively. The fungal populations in the rhizo-
spheric soils ranged from 1.2 · 105 (lentil) to 2.1 · 105

(greengram) CFU/g soil. Overall, the populations of PSB were

http://www.ncbi.nlm.nih.gov/BLAST
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Table 2 Morphological and biochemical characteristics of the

P. aeruginosa strain PS1.

Characteristics Strain PS1

Morphology

Gram reaction �
Shape Rods

Pigments +

Biochemical reactions

Citrate utilization +

Indole �
Methyl red �
Nitrate reduction +

Oxidase +

Voges Proskaur �

Carbohydrate utilization

Glucose +

Mannitol �
Sucrose +

Hydrolysis

Starch +

Gelatin +

Tolerance to

Tebuconazole 1600 lg ml�1

‘+’ indicates positive and ‘�’ indicates negative reactions.
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comparatively higher than phosphate solubilizing fungi (PSF)
in all soil samples. Among all the rhizosphere soils, the popu-
lations of PSB were the maximum in the rhizosphere of both

chickpea and mustard and PSF counts were the highest in both
pea and mustard rhizosphere. However, No PSF was recov-
ered from chickpea rhizosphere. In general, mustard rhizo-

sphere exhibited the highest PSM diversity (Table 1).

3.2. Fungicide-tolerance, characterization and plant growth
promoting traits

In this study, a total of 50 rhizobacterial strains were isolated
from the rhizopheric soils of mustard. Each rhizobacterial

strain was tested for the tolerance level against tebuconazole
on minimal salt agar medium. Of the 50 isolates, 18 rhizobac-
terial strains possessing higher tolerance against triazole fungi-
cide were further selected (Fig. 1) and their plant growth

promoting (PGP) traits were determined. Generally, the types
and the amount of PGP substances were found to be higher for
the rhizobacterial strain PS1, PS2, PS9 and PS19 (Fig. 2).

Among the four strains, the P. aeruginosa strain PS1 was pref-
erably selected due to its ability to (i) tolerate tebuconazole to
the highest level up to 1600 lg ml�1 on minimal salt agar med-

ium (Fig. 1), (ii) synthesize maximum amounts of plant growth
promoting substances like IAA, siderophores, EPS, HCN and
ammonia (Fig. 2), and (iii) grow well in minimal salts medium
supplemented with tebuconazole at the recommended, two and

three times of the recommended rate (Fig. 3). The tebuconaz-
ole-tolerant strain PS1 was further identified following bio-
chemical tests (Table 2) and 16S rRNA gene sequencing. The

strain PS1 produced a significant amount of PGP substances
in the presence of the recommended, two and three times the
recommended field rate of tebuconazole despite of tebuconaz-

ole-concentration dependent progressive decline in the produc-
tion of PGP substances (except EPS) (Table 3). Interestingly,
EPS production increased when the strain PS1 was exposed

to tebuconazole stress. Consequently, the most promising P.
aeruginosa strain PS1 was used as a promising bio-inoculant
in pot trials.

3.3. Plant growth under fungicide-stress

The effect of three concentrations of tebuconazole including
the recommended dose as well as tebuconazole-tolerant and

plant growth promoting P. aeruginosa strain PS1 was assessed
on the performance of greengram grown in tebuconazole-
Table 1 Microbial diversity in different soil samples collected from

Muslim University, Aligarh, India.

Sampling site Microbial populations (colony forming

Bacteria (·105) Fungi (

Chickpea field 321 13

Greengram field 286 21

Lentil field 353 12

Pea field 311 16

Mustard field 435 19

Each value is a mean of three independent replicates.
stressed sandy clay loam soils. When greengram plants were
grown in soils amended with the three concentrations of
tebuconazole, a considerable decline in measured growth

parameters like plant dry biomass, nodulation, nutrient-
uptake and yield was observed. The measured parameters
decreased rather linearly as the concentration of tebuconazole

was increased from 100 soil to 300 lg kg�1 soil irrespective of
whether the inoculant (P. aeruginosa strain PS1) was used or
not. However, the decline in plant growth parameters was pro-
portionally low when strain PS1 was also used along with

tebuconazole.
In the absence of bioinoculant, the toxicity of tebuconazole

to greengram plants gradually increased with increasing con-

centration. For example, 100 lg kg�1 soil of tebuconazole sig-
nificantly (p 6 .05) declined the root dry biomass by 17 and
21% at 50 and 80 DAS respectively while 300 lg kg�1 soil of

tebuconazole at 50 and 80 DAS decreased the root dry bio-
mass by 34% and 43%, respectively above the uninoculated
control. Similarly, the sole application of 100 lg kg�1 soil
experimental fields of Faculty of Agricultural Sciences, Aligarh

units/g soil)

·104) Phosphate solubilizers (·105)

Bacteria Fungi

6 –

2 0.2

3 0.2

4 0.3

6 0.3



Table 3 Plant growth promoting activities of the P. aeruginosa strain PS1� both in the presence and absence of tebuconazole.

Dose rate (lg l�1) Phosphate solubilized (lg ml�1) IAAa (lg ml�1) Siderophores EPSe (lg ml�1)

CASb agar (mm) Phenolates (lg ml�1)

SAc 2,3-DHBAd

0 (control) 345a 39a 15a 41a 21a 18b

100 93b 9b 14b 27b 8bc 19b

200 25c 5c 13b 23c 7c 20b

300 17d 3d 12c 20 5d 23a

F value 148.5 101.4 68.4 115.7 228.3 63.5

Values indicate the mean of three replicates. Mean values followed by different letters are significantly different within a row or column at

p 6 0.05 according to Tukey test.
a Indole acetic acid.
b Chrome azurol s agar.
c Salicylic acid.
d 2,3-Dihydroxy benzoic acid.
e Exopolysaccharide.

� P. aeruginosa strain PS1 also produced hydrogen cyanide (HCN) and ammonia at all three concentrations of tebuconzole.

Table 4 Effect of three concentrations of tebuconazole on growth and symbiotic properties of greengram plants grown in soil

inoculated with the P. aeruginosa strain PS1 and without bio-inoculant.

Treatments Dose rate (lg kg�1 soil) Dry biomass (g plant�1) Nodulation

Root Shoot No. plant�1 Dry biomass (mg plant�1)

50 DAS 80 DAS 50 DAS 80 DAS 50 DAS 80 DAS 50 DAS 80 DAS

Un-inoculated Control 0.35 0.47 1.59 2.08 21 17 66 52

100 0.29 0.37 1.18 1.34 16 13 50 44

200 0.24 0.32 1.06 1.20 12 9 44 38

300 0.23 0.27 0.95 1.08 10 8 40 32

Inoculated Control 1.76 2.56 8.70 11.66 41 36 399 316

100 1.03 1.50 6.86 8.53 28 25 152 125

200 0.83 1.40 4.46 7.70 28 22 137 110

300 0.73 1.10 3.53 6.86 27 16 128 83

LSD 0.003 0.007 0.04 0.03 0.7 1.8 0.8 1.4

F value Inoculation(df = 1) 2288* 451* 1028* 2460* 252* 1027* 93.4* 258*

Fungicide (df = 3) 421* 95.2* 272* 423* 28* 63* 7.7* 29.0*

Inoculation · fungicide (df = 3) 502* 86.3* 276* 392* 18.6* 73* 6.6* 20.8*

Values are mean of three replicates where each replicate constituted three plants pot�1.
* Significantly different from the control at p 6 0.05.
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tebuconazole, significantly (p 6 .05) decreased the shoot dry
biomass by 26% and 36% at 50 DAS and 80 DAS, respectively

whereas 300 lg kg�1 soil tebuconazole mediated reduction in
the shoot dry biomass was found to be 40 (at 50 DAS) and
48%, (at 80 DAS), relative to the uninoculated control (Table

4). In contrast, bioinoculant PS1 in the presence of tebuconaz-
ole (300 lg kg�1 soil) significantly (p 6 .05) improved the dry
matter accumulation in roots and shoots by 217 and 271%,

respectively at 50 DAS and 307% and 535%, respectively at
80 DAS compared to uninoculated plants but treated with
the same dose of tebuconazole (Table 4).

Moreover, 100 lg kg�1 soil of tebuconazole decreased the

nodule numbers by 24% at both 50 DAS and 80 DAS while
nodule biomass declined by 25% and 15% at 50 DAS and
80 DAS, respectively. In contrast, 300 lg kg�1 soil of tebuco-

nazole decreased the nodule numbers and their dry mass by
52% and 49% respectively, at 50 DAS and by 53% and
38% respectively, at 80 DAS compared to control. Despite
tebuconazole mediated deleterious effects on symbiosis, bioin-

oculant strain PS1 relatively ameliorated the symbiotic attri-
butes of greengram plants for all concentrations of fungicide
when strain PS1 inoculated and uninoculated greengram

plants exposed to the same concentrations of fungicide were
compared. For example, increment in nodule numbers and
nodule dry mass was observed by 170% and 220%, respec-

tively at 50 DAS and 100% and 159%, respectively at 80
DAS respectively, while comparing the effect of 300 lg/kg soil
tebuconazole treated uninoculated and inoculated plants
(Table 4).

Generally, tebuconazole declined the chlorophyll content
marginally both in the presence or absence of bioinoculant.
In the absence of bioinoculant, 12% and 50% decline in Lb

content was observed at 100 and 300 lg kg�1 soil of tebuco-
nazole, respectively compared to uninoculated control. Inter-



Table 5 Effect of three concentrations of tebuconazole on biological and chemical properties of greengram plants grown in soil

inoculated with the P. aeruginosa strain PS1 and without bio-inoculant.

Treatments Dose rate

(lg kg�1 soil)
Leghaemoglobin

content

[mM (g f.m.)�1]

Chlorophyll

content

(mg g�1)

N content (mg g�1) P content (mg g�1) Seed yield

(g plant�1)

Seed

protein

(mg g�1)
Root Shoot Root Shoot

Un-inoculated Control 0.08 0.82 36 50 0.27 0.36 7.4 261

100 0.07 0.75 29 41 0.21 0.29 4.8 246

200 0.05 0.72 25 37 0.18 0.26 4.3 244

300 0.04 0.70 27 35 0.17 0.24 3.8 241

Inoculated Control 0.09 0.96 48 69 0.35 0.48 12.7 272

100 0.08 0.84 36 56 0.30 0.39 9.2 257

200 0.06 0.80 31 51 0.26 0.37 8.5 250

300 0.05 0.75 29 45 0.21 0.35 7.8 246

LSD 0.005 0.04 1.5 2.4 0.05 0.02 0.3 2.5

F value Inoculation (df = 1) 326* 7.2* 363* 47.3* 771.7* 1155* 265.5* 19*

Fungicide (df = 3) 8.7* 1.1 201.9* 35.1* 347.7* 74.7* 32.7* 11*

Inoculation · fungicide

(df = 3)

31.5* 0.4 50.1* 14.5* 76.4* 119.5* 20.9* 3.5*

Values are mean of three replicates where each replicate constituted three plants pot�1.
* Significantly different from the control at p 6 0.05; (g.f.m.)�1 = (gram fresh biomass)�1.
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estingly, bioinoculant PS1 increased the Lb content in nodules
significantly (p 6 .05) by 25% in the presence of 300 lg kg�1

soil of tebuconazole when compared to the uninoculated treat-

ment having the same concentration of tebuconazole (Table 5).
Furthermore, N and P content, SY and GP decreased progres-
sively with increase in the dose rate of tebuconazole (Table 5)

either in the presence or the absence of PS1 strain. Grain pro-
tein was however, marginally affected. For instance, the per-
cent reduction in root N, shoot N, root P, shoot P, and SY

of greengram at 100 lg kg�1 soil of tebuconazole was 19, 18,
22, 20 and 35, respectively while the decrease in percent was
25, 30, 37, 33 and 49 for root N, shoot N, root P, shoot P,
and SY, respectively at 300 lg kg�1 soil of tebuconazole, com-

pared to the control. In contrast, the inoculant strain signifi-
cantly (p 6 0.05) increased the root N, shoot N, root P,
shoot P, SY and GP at all concentrations of fungicide com-

pared to the sole application of fungicide. For example, the
inoculant when used with fungicide, increased the same param-
eters by 7%, 28%, 23%, 46%, 105% and 2%, respectively, at

300 lg kg�1 soil of tebuconazole when compared with only
fungicide treated soils (Table 5).

Moreover, the two-factor ANOVA revealed that the indi-

vidual effects of inoculation and fungicide and their interactive
effect (inoculation · fungicide) were significant (p 6 0.05) for
all plant growth parameters except the effect of fungicide
and its interaction with inoculant PS1 for chlorophyll content

(Tables 4 and 5).
4. Discussion

4.1. Microbial diversity of rhizospheric soils

Microbial communities of soils play pivotal roles in various
biogeochemical cycles and influence the fertility of soils. In
addition, soil microflora influence above-ground ecosystems

by providing nutrients to plants; improve soil structures and
consequently, affect soil health (Ahemad et al., 2009). Such mi-
crobes are also involved in many other soil processes e.g.

decomposition of organic matter, nutrient mobilization and
mineralization, mineral phosphate solubilization, denitrifica-
tion, bioremediation of pollutants and suppression of soil
borne phytopathogens (Rameshkumar and Nair, 2009; Khan

et al., 2010; Ahemad and khan, 2011c). Furthermore, micro-
bial diversity varies greatly from soil to soil or plant genotype
to genotype. In the present study, viable counts of diverse

microbial communities including phosphate solubilizers and
fungal populations inhabiting rhizospheric soils of different
plants were determined. A significant variation in microbial

diversity in rhizospheric soils of legume (pea, chickpea, lentil
and greengram) and non-legume (mustard) crops was ob-
served. Generally, PSM population was the high in the soil
samples collected from mustard rhizosphere compared to le-

gume rhizospheres; the minimum microbial count was how-
ever, recorded in greengram rhizosphere. The variation in
heterogeneous microbial populations in tested rhizospheric

soils may probably be attributed to the changes in physico-
chemical properties (such as, pH, temperature, moisture
content, organic matter content) of tested soils (Ahemad

et al., 2009) or due to difference in the concentration and types
of nutrients exuded by different plant species (Zaidi et al.,
2009).

4.2. Effect of fungicide on greengram growth

The application of tebuconazole at all doses tested in this study
showed a significant (p 6 0.05) phytotoxicity to greengram

plants and severely affected the dry matter accumulation,
nitrogen fixing determinants: nodule numbers, nodule dry bio-
mass and Lb, nutrient-uptake, and yield and quality of grains.

The doses of fungicide higher than the recommended one had
displayed more toxicity to greengram plants. The reduction in
of greengram growth following fungicide application in this

study, could be due to the adverse effects of tebuconazole on
N2-fixation (owing to the disruption of signaling between phy-
tochemicals and RhizobiumNod D receptors) (Fox et al., 2007)

or viability/activity of PGPR (Guene et al., 2003) or as a result
of inhibition of enzymes involved in growth and metabolisms
of plants (Zablotowicz and Reddy, 2004). Moreover, our study
also showed that the toxic effect of two and three times the rec-



458 M. Ahemad, M.S. Khan
ommended dose of tebuconazole to the greengram plants was
more severe than that of the recommended dose. Fungicides at
lower rates are generally not toxic possibly because of the buf-

fering nature of soils these chemicals become diluted (Ayansi-
na, 2009).

4.3. P. aeruginosa PS1-mediated growth promotion and
protection against fungicide

Interestingly, the measured parameters were increased follow-

ing inoculant (the P. aeruginosa strain PS1) application with
tebuconazole compared to plants grown in soils treated solely
with tebuconazole. This increment in growth parameters may

be attributed either to the detoxification of fungicides by the
strain PS1 (Yang and Lee, 2008) or secretion of the plant
growth regulating substances in rhizosphere (Zaidi et al.,
2009). The fungicide-detoxifying potential of the strain PS1

is also supported by the luxurious growth of this strain on min-
imal media having tebuconazole as only C and N source
(Fig. 3). Moreover, the introduced agrochemical may be a

new source of carbon, nitrogen, phosphorus and sulfur which
if utilized by one microbial community allows them to prolif-
erate and out-compete other microbial communities (Ayansi-

na, 2009). Hence, this trait confers the selective advantage to
the strain PS1 in greengram rhizosphere to alienate other soil
microflora. Consequently, the strain PS1 not only protected
the greengram plants from fungicide toxicity but also increased

the growth and symbiotic attributes of the test plants substan-
tially in fungicide-amended soils.

The strain PS1 produced EPS substantially even in the pres-

ence of tested fungicide (Table 3). EPS is believed to play an
important role in attachment of bacterial cells to varied sur-
faces, osmoregulation and ion transport (Spaink, 2000). These

EPS might have masked the toxic effects of tebuconazole by
forming a polymeric network around this fungicide, and hence,
prevented the uptake of fungicide by growing plants. It has

also been reported earlier that EPS influence legume root infec-
tion and nodulation (Leigh et al., 1988; Parveen et al., 1997;
Muthomi et al., 2007). In this study, the N content in plant or-
gans (root and shoot) was therefore, also higher in inoculated

plants (Table 5) probably due to increased N2 fixation which
led to a considerable increase in N uptake (Joshi et al.,
1990). Further, the phosphate solubilizing P. aeruginosa strain

PS1 showed remarkable phosphate solubilizing potency until
three times the recommended dose of tebuconazole in vitro
conditions (Table 3). It is possible that the inoculant PS1 sup-

plied the available forms of phosphorus to greengram plants in
surplus amount. Therefore, the P content significantly in-
creased in the strain PS1-inoculated plants compared to the
uninoculated ones. The increased P uptake in plants in re-

sponse to PSB inoculation is well reported (Zaidi et al.,
2009; Ahemad and Khan, 2011d). As well, the synthesis of sid-
erophores and IAA by the test strain PS1 might also have in-

duced root growth and uptake of soil minerals by the host
plants.
5. Conclusions

Tebuconazole-tolerant P. aeruginosa strain PS1 as seed inocu-
lant not only shielded the greengram plants from the phytotox-

icity of tebuconazole but also increased the overall growth of
greengram plants. The increased growth of inoculated green-
gram plants even in the presence of fungicide, in this study,
might have possibly been due to the synthesis and release of

plant growth promoting substances like IAA, siderophores
and EPS by the P. aeruginosa strain PS1 in addition to its
intrinsic ability of mineral phosphate solubilization. This study

inferred that the P. aeruginosa strain PS1 with multiple PGP
traits can be used as bio-inoculant to increase the productivity
of legumes in fungicide contaminated soils.
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