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Abstract Excessive softening is the main factor limiting fruit shelf life and storage. It is generally

acceptable now that softening of fruit which occurs during the ripening is due to synergistic actions

of several enzymes on cell wall polysaccharides. As a subject for this study, we have assayed some gly-

cosidase activities using three tomato species (Lycopersicon esculentum) contrasted for their texture

phenotypes; the cherry tomato line Cervil (Solanum lycopersicum var. cerasiforme), a common taste

tomato line Levovil (S. lycopersicumMill.) and VilB a modern line, large, firmer and with good stor-

age capability. Four glycosidase activities namely a-galactosidase, b-galactosidase, b-mannosidase

and b-glucosidase were extracted from tomato’s cell wall of the three species. Cell wall protein from

fruits pericarp was extracted and compared among the three cultivars at the following stages; 14 days

post anthesis (14DPA) fruit; 21 days post anthesis (21DPA), turning (breaker), red and over ripe.

When glycolytic activities were also compared among these cultivars at the precited development

stages, gross variations were noticed from stage to stage and also from species to species in accordance

with the fruit firmness status. Interestingly, VilB cultivar, the firmer among the other two, though
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possessed the highest total protein content, exhibited the lowest enzymatic activities. Taken together,

these results may therefore allow us to conclude that studies of glycolytic activities in a single tomato

cultivar cannot be generalized to all species. On the other hand, relating fruit development to glyco-

sidase activities should logically be coupled to these enzymes from cell wall compartment.

ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Fruit ripening is genetically programed and involves physiolog-
ical, biochemical, and structural changes, such as cell wall

hydrolysis, pigment degradation and synthesis, carbohydrate
metabolism, and generation of secondary metabolism com-
pounds which influence fruit appearance, texture, flavor, and

aroma (Mworia et al., 2011) and (Prasanna et al., 2007). The
softening of fruits that occurs after harvest is a major factor
that contributes to the losses of good percentage of all fresh

produce grown world-wide. Many efforts to suppress expres-
sion of cell wall-degrading enzymes have not provided the in-
sight needed to genetically engineer fruits whose softening
can be adequately controlled (Meli et al., 2010) and (Giovan-

noni et al., 1989). Studying the biochemical mechanisms in-
volved in this loss is a global effort to modify plants
genetically so that they produce fruit that resists the softening

process. It was believed that polygalacturonase (PG) and pectin
methylestrase (PME) are principally responsible for fruit ripen-
ing (Giovannoni et al., 1989) and (Brummell and Harpster,

2001). However, several subsequent studies demonstrated that
inhibition of neither PG nor PME could interfere with fruit rip-
ening (Tieman and Handa, 1994; Tieman et al., 1992). Since

wall rigidity and intercellular cohesion in fruit tissue have also
been partially attributed to cross-linkages that contain arabi-
nose and galactose (Wong, 2008). The modification of cross-
linking polymers could contribute to the loss of wall structure

and fruit firmness that occur during ripening. If this were so,
softening could be at least partly attributable to the action of
enzymes that cleave bonds between sugars other than galact-

uronic acid (Ahmed and Labavitch, 1980; Giovannoni et al.,
1989). Reports are accumulating now emphasis on that fact
that glycosidases play fundamental role in loosening of cell wall

structure and finally fruit development and ripening in tomato
(Brummell andHarpster, 2001;Wallner andWalker, 1975), ber-
ries (Hilz et al., 2006), coffee beans (Marraccini et al., 2005),
mango (Ali et al., 1995), papaya (Manenoi and Paull, 2007)

and several other fruits, for a review see Prasanna et al. (2007).
The tomato (Solanum lycopersicum) is a major vegetable

crop that has achieved tremendous popularity over the last

century, with thousands of cultivars having been selected with
varying fruit types, and for optimum growth in differing grow-
ing conditions. The domestication of the tomato S. lycopersi-

cum and associated selective pressures eventually led to the
large-fruited varieties cultivated today. Cultivated tomatoes
vary in color intensity, shape, quality and size from tomberries,

about 5 mm in diameter, through cherry tomatoes, about the
same 1–2 cm (0.4–0.8 in.) size as the wild tomato to up to beef-
steak tomatoes 10 cm (4 in.) or more in diameter (Bai and
Lindhout, 2007; Barrett et al., 1998).

Glycosidases have been related to tomato development and
ripening in several reports. However since, fruit ripening and
development have been extensively, in part, related to the dy-
namic activities of the glycol-hydrolases localized to cell wall,
it becomes more logical to study these enzymes from cell wall
and not whole cell extract where they could also be present.

Since tomato cultivars, currently commercialized, are of vast
texture variations, no information on relating the texture of
these cultivars with endogenous glycolytic hydrolases isolated
from cell wall at different stages of development and ripening,

are available. In this investigation, to our knowledge for first
time glycosidases were isolated from cell walls from three tex-
ture contrasted tomato cultivars; the cherry tomato line Cervil

(S. lycopersicum var. cerasiforme), a common taste tomato line
Levovil (S. lycopersicum Mill.) and VilB a modern line, large,
firmer and with good storage capacity, with the objective to

check for any possible correlation between fruit texture and
glycosidase activities not from whole cell extract, as previous
studies reported, but from cell wall, in order to pave way for

further understanding the mechanism underlying the softening
process which restrict the longer shelf life of fresh fruits.
2. Materials and methods

2.1. Tomato growth conditions

Six plants per cultivar of Cervil, Levovil and VilB were grown
in pots in a greenhouse under standard conditions. Tomatoes
were collected at varying six stages of development and ripen-

ing; 14 days post-anthesis (14DPA), 21 days post-anthesis
(21DPA), turning (breaker), red and over ripe. To harvest
the first two stages, flowers were tagged at anthesis. For the

latter three stages, fruits were harvested based on fruit color.

2.2. Protein extraction methods

2.2.1. Total protein extraction

Five hundred mg of pericarp powder material was directly ex-
tracted in 1.2 mL of Laemmli sample buffer (Laemmli, 1970)

during 15 min at room temperature. After 15 min centrifuga-
tion at 5500g the protein content of the supernatant was as-
sayed using the Biorad protein assay kit with bovine serum

albumin (BSA) as a standard according to the manufacturer
prescriptions.

2.2.2. Soluble cell wall proteins extraction

The method was adapted from Chivasa et al. (2002). Unless
otherwise stated all steps were carried out at 4 �C. Red riped
tomato pericarps were cut with a cleaned razor into small

pieces and immediately immersed in ice-cold 20 mM
K2HPO4 pH 6.0 buffer, excess buffer was blotted away from
pericarp segments by filter paper before weighing. They were

then rinsed twice with degassed ice-cold 3 mL/g 10 mM MES
buffer, pH 5.5 and immersed in flasks containing the same
solution. Rinsing buffer was discarded and tissue pieces were



Table 1 Wall protein purity confirmation with detection of

intracellular glucose-6 phosphate dehydrogenase.

Extract Activity

(nM/min/g)

% Activity

Whole cell 770 100

Vacuum infiltrate (soluble wall protein) 0.76 0.1
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vacuum infiltrated at 60 kPa for 30 s for removal of gas
trapped in veins. Ice-cold degassed 100 mM KCl, 10 mM
MES, pH 5.5 buffer plus 5 lL of protease inhibitor cocktail

(Sigma) was added on the basis of 5 mL per gram of plant
material then soaked pericarp segments were subjected to
60 kPa vacuum for 3 min with gentle intermittent shaking.

Vacuum was released; pericarp pieces were allowed to stand
in the infiltration buffer for 3 min. Infiltration buffer was then
removed and excess buffer was blotted away from tomato seg-

ments. Pericarp pieces were then transferred into 15 mL Fal-
con tube internally lined with mesh into a U-shape and
previously holed at their bottom part. The whole unit was in-
serted into a 50 mL clean Falcon tube and centrifuged for

10 min at 1000 rpm. Infiltration juice collected at the bottom
of the 50 mL Falcon tube from various vacuum infiltration
experiments was collected, concentrated with Marosep centrif-

ugal device (15 mL capacity/10 kDa membrane cutoff) fol-
lowed by desalting by washing using three volume of 50 mM
Na-Acetate buffer, pH 6 with 1 lL/mL protease inhibitor

cocktail. Protein was quantified using Bio-Rad protein estima-
tion kit and preserved at �80 �C till further use.

2.2.3. Calculation of fruit water content

Equal amount of fresh pericarp of Cervil, Levovil and VilB
was washed with distilled water and placed in open previously
weighed container, the container was then placed in an oven at

70 �C and the pericarp was dried to a constant weight. The
container, plus dry tissue were weighed and recorded. The peri-
carp dry weight was determined by subtraction of the empty

container from container with the dried tissues.

2.2.4. Protein estimation

Protein content was quantified with Bio-Rad Bradford assay

protein using BSA as a standard.

2.2.5. Wall protein purity assessment

This was carried out by following the intracellular marker glu-

cose-6 phosphate as reported (Li et al., 1989) in brief: in 1 mL
reaction volumes. Glucose-6 phosphate dehydrogenase (G6P-
D, EC 1.1.1.49) in a reaction mixture containing 25 lMTricine,

pH8, 25 lMglucose-6-phosphate, 0.1 MMgCl2, 25 lMNADP,
and enzyme, following the reduction of NADP+ at 340 nm.

2.2.6. Protein electrophoresis

Cell wall proteins were separated by SDS–PAGE according to
Laemmli (1970). 40 lg protein samples were loaded on 13%
acrylamide SDS–PAGE gels. Gels were stained with coomassie

colloidal as per Scheler et al. procedures (Christian Scheler
et al., 1998). Briefly, proteins were first fixed ca. 1 h in 50%
ethanol, 2% phosphoric acid. Gels were then washed 1 h in
2% phosphoric acid. Gels were submitted to a sensitization

step for 20 min in 17% ethanol, 15% ammonium sulfate,
and 2% phosphoric acid, and 0.1% Coomassie colloidal was
then added to this buffer. After 3 days of staining, gels were

washed 10 min in deionized water, 10 min in 20% ethanol,
and finally, 10 min in deionized water.

2.2.7. Estimation of glycosidase activities

b-Mannosidase, b- and a-galactosidase and b-glucosidase were
determined according to Li and Li (1970). One unit of enzyme
was expressed as lmole of q-nitrophenol liberated per mL per
min under the assay conditions using a molar extinction coef-
ficient of 1.77 · 104 for q-nitrophenol (Li, 1967).

3. Results and discussion

Plant cell wall has been long known to be a common residence

for many glycosidases and acid hydrolases (Asamizu et al.,
1981; Murray and Bandurski, 1975; Pierrot and Wielink,
1977). However, since glycosidases are also documented to

be localized in other cellular compartments like mitochondria,
protein bodies, plastid, etc. (Nikus et al., 2001; Sekhar and
DeMason, 1990; Thornton, 2005), it was urging to start our

work with isolation of glycosidases from cell wall. A mild iso-
lation strategy that meant for purifying wall proteins with
maintaining cytoplasmic compartment intact was employed.

To validate cell wall protein purity, we assayed wall extract
for activity of the intracellular marker glucose-6 phosphate
dehydrogenase (G6P-D). The obtained result for purity confir-
mation is shown in Table 1, as it is clear from these results that

the obtained wall protein purity was of acceptable limit as only
0.1% of total cellular G6P-D activity was detected in the ex-
tract. Almost the same intracellular contamination limit was

obtained in the wall protein extracted from other cultivars.
The wall protein extract obtained from Cervil, Levovil and
VilB varied in volume and protein quantity in which Cervil

was the richest in protein content followed by VilB and finally
Levovil. The highest juice volume was obtained for Levovil
which is justifiable on the high softness characterizes this cul-
tivar as compared to Cervil and VilB (Table 2). To gain an idea

about total water content in the three varieties, we calculated
the water accumulation percentage at the varying development
stages (Fig. 1); maximum water accumulation was detected in

breaker stage for both Levovil and VilB. Cervil had the least
water accumulation as compared to the formers.

Electrophoretic pattern analysis of the wall protein extracts

from the three cultivars exhibited, unexpectedly, bands pat-
terns variation. Cervil and VilB electrophoretic pattern shared
some degree of resemblances. However, Levovil pattern was

very different as compared to Cervil and VilB patterns. Since
Cervil and Levovil are relatively soft as compared to VilB,
which is very firm with highest storage capacity, we expected
VilB to exhibit a different electrophoretic protein profile as

compared to Cervil and Levovil, but that was not the case as
shown in Fig. 2.

To correlate between texture and glycosidase activities we

intensionally chosen to study the activities of a-galactosidase,
b-galactosidase, b-mannosidase and b-glucosidase, for three
reasons firstly their known localization in cell wall, secondly

direct involvement in ripening mechanism and finally their
easy detection. Plants were grown and fruits were collected
at five varying development stages; 14 days post-anthesis



Table 2 Summary for wall protein from the three tomato cultivars Cervil, Levovil and VilB.

Gentype FM* (g) Juice (mL) Protein (lg/mL) Total protein (mg) Protein (lg/g FM)

Cervil 360 16 84 1350 4

Levovil 360 26 23 612 2

VilB 360 20 52 1040 3

* FM: Fresh material.
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Figure 1 Percentage of total cellular water content in the three

cultivars. Calculation for each genotype was done in three

independent experiments. Details on experimental conditions are

given in Section 2.

Figure 2 Polyacrylamide gel electrophoresis of cell wall protein

from Cervil, Levovil and VilB tomato cultivars: 40 lg protein

samples were loaded on 13%acrylamide SDS–PAGEgels. Gels were

stained with coomassie colloidal (see experimental body). Protein

markers used were: phosphorylase (97 kDa), BSA (66 kDa), egg

albumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor

(20 kDa) and a-lactalbumin (14 kDa).
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(14DPA), 21 days post-anthesis (21DPA), at turning (when
fruit just starts getting red), red (fully red fruit) and over ripe

(when fruit becomes very soft). All of these enzymes were de-
tected in both total fruit protein and cell extract, however, with
some variations. Strong activities were exhibited by b- and a-
galactosidase whereas b-mannosidase and b-glucosidase were,
comparatively, of weak activities.

3.1. Total protein content

In the current study, we freshly collected fruits and immedi-
ately processed for total whole cell protein content as shown
in the experimental body. Evaluation of protein content at

each development stage is exhibited in Fig. 3. Protein content
(dry matter) at each developmental stage exhibited interesting
results in which the three cultivars accumulated maximum pro-

tein content at 14DPA (stage of cell expansion) (Mapelli et al.,
1978). The highest protein content was noticed for Cervil fol-
lowed by VilB and finally Levovil. Protein content, in all cul-

tivars, sharply declined following cell expansion stage to
reach minimum level at the onset of fruit ripening (turning).
Another elevation was observed as the fruit progressed toward

over ripe stage.

3.2. b-Glucosidase activity

Beta-D-glucoside glucohydrolase, EC 3.2.1.21, is the enzyme

which acts upon b1–4 bonds linking two glucose or glucose-
substituted molecules (i.e., the disaccharide cellobiose). In this
investigation weak activity was detected in the three cultivars

with a relative higher activity in Levovil. The week activity
of b-glucosidase in tomato may justify the scarcity on litera-
ture related to tomato b-glucosidase. Among the three tomato

species, b-glucosidase showed clear activity disparity at the five
ripening stages. Interestingly, throughout Cervil development
stages, the enzyme retained a plateau activity (Fig. 4). In the

previous report, this enzyme had been shown to localize in
both periplasm as well as cytoplasm, with no clear assignment
in cell wall during ripening (Odoux et al., 2003). This may clar-
ify the feeble activity of this enzyme in our cell wall

preparation.

3.3. b-Mannosidase activity

When activity of b-mannosidase at the five ripening stages was
assayed in the three cultivars, activity disparity was noticed.
These variations made any interpretation difficult. Glycosi-
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Figure 4 Beta-glucosidase activity in varying development and

ripening stages of Cervil, Levovil and VilB cultivars. Each point is

a mean of three independent experiments.
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dases are usually found in isoforms that are expressed at differ-
ent development stages (Giannakouros et al., 1991; Jagadeesh
et al., 2004b; Morant et al., 2008). b-Mannosidase from tomato

seed was purified and studied to genetic level, in which a single
gene was reported to code for this enzyme in tomato (Mo and
Bewley, 2002) (Fig. 5). Studies on tomato seeds b-mannosidase

and endo-b-mannanase by Mo and Bewley indicated that these
enzymes are involved in the mobilization of the mannan-con-
taining cell walls of the tomato seed endosperm (Mo and Bew-

ley, 2002). However, another report published by Bewley and
his colleagues who worked with tomato (Lycopersicon esculen-
tum Mill.) fruit of the cultivar Trust, had shown the enzyme to
tightly bound to the cell wall and removal of which would re-
quire a high salt buffer and is only detectable in the early stages

of fruit development (Bewley et al., 2000). Since we used a buf-
fer of a mild salt strength and non-destructive experimental
procedures, our results jointly taken with the work of Mo

and Bewley (2002) may reasonably allow us to conclude either
the enzyme is sparingly extracted under our buffer system or
the enzyme may not be playing a role in the development
and ripening of tomato.

3.4. a-Galactosidase activity

Alpha-galactosidase is known to reside in both cell wall and

cytoplasm (Bassel et al., 2001; Marraccini et al., 2005). In cell
wall the enzyme involves in the modification or degradation
of plant galactomannans and thereby assists in fruit softening.

In the present study, we have found the enzyme to elevate, for
Levovil and Cervil, during both development (14DAP) and rip-
ening (turning) stages. On the other hand, unlike the formers,
VilB enzyme showed little activity rising in the ripening stage.

Since this enzyme is believed to take part in tomato ripening
(Jagadeesh et al., 2004a) the weak enzyme activity exhibited
in the firmest cultivar VilB becomes justifiable. Levovil, which

is fleshy and very soft with minimal shelf life, possesses the
highest a-galactosidase activity as compared to others (Fig. 6).

3.5. b-Galactosidase activity

Beta-galactosidase (EC 3.2.1.23) activity is characterized by
the ability to hydrolyze terminal nonreducing b-D-galactosyl
residues from b-D-galactoside polymers. At least seven iso-
forms of this enzyme have been reported to get expressed at
different fruit development stages. b-Galactosidase activity
had shown to increase in parallel with tissue ripening (Smith

and Gross, 2000) and genetically inhibition of TBG4 gene of
several other genes for the enzyme delayed fruit softening
(Carey et al., 2001). In the current investigation, the enzyme

activity was increased sharply just before the breaker stage
when the fruit starts to get red. This increase was clear in case
of both Cervil and Levovil, which are known for their shorter

shelf life, whereas VilB which is characterized by high degree of
firmness and preservation period showed minimal activity for
the enzyme at development and ripening stages (Fig. 7). These

results will again emphasize on the implication of b-galactosi-
dase in the fast fruit softening.

To further investigate on the wall localization of b-galacto-
sidase. We assayed the enzyme activity in both cell wall and
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whole cell extract for three cultivars at ripening stage. High in-
crease in the enzyme activity was obtained for wall enzyme as

compared to whole cell enzyme activity. As expected, Levovil
possessed highest activity followed by Cervil and finally by
the firmest cultivar VilB (Fig. 8).

4. Conclusion

Taken together, these results may allow us to conclude that

studies of glycolytic activities in a single tomato cultivar cannot
be generalized to whole species. On the other hand, it is more
logical to correlate fruit ripening and development to wall gly-

cosidases rather than to whole cell glycosidase activities.
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