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Abstract RNA interference is a post transcriptional gene silencing mechanism that is triggered by

double-stranded RNA (dsRNA). Various attributes of the 30 end structure, including overhang

length and sequence composition, plays a primary role in determining the position of the Dicer

cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA). The specificity and

robustness of RNAi have triggered an immense interest in using RNAi as a tool in various settings.

RNAi is a mechanism for controlling normal gene expression which has recently began to be

employed as a potential therapeutic agent for a wide range of disorders, including cancer, infectious

diseases and metabolic disorders. Clinical trials with RNAi have now begin, but major obstacles,

such as off-target effects, toxicity and unsafe delivery methods, have to be overcome before RNAi

can be considered as a conventional drug. It is also used as a tool to improve crops by providing

resistance against parasites and modified versions of siRNA that are directed against disease caus-

ing genes are being developed, some of which are already tested in clinical trials. In this paper, we

first reviewed the RNAi mechanism and then focussed on some of its applications in biomedical

research such as treatment for HIV, viral hepatitis and several other diseases.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

RNA interference (RNAi) is an evolutionary regulatory mech-
anism of most cells that uses �21–25 long siRNA transcripts

to effectively control the expression of desired genes. By inhib-
iting the expression of mRNA transcripts through degrading
or binding sequence specifically thus hindering translation into

proteins. It is a conserved biological mechanism controlling
normal gene expression. The silencing mechanism occurs at
the levels of transcription, post-transcription and translation.
RNAi can also cause augmentation of gene expression due

to direct effects on the translation (Ebbesen et al., 2008).
Two types of small ribonucleic acid (RNA) molecules –
micro-RNA (miRNA) and small interfering RNA (siRNA) –

are central to RNA interference.
Figure 1 Mechanism of RNAi.
1.1. DNA-directed RNAi

DNA-directed RNA interference (ddRNAi) uses DNA tem-
plates to synthesize si/shRNA in vivo. ddRNAi depends on
U6 or H1 [RNA polymerase III], or U1 [RNA polymerase

II] promoters for the expression of siRNA target sequences
that have been transfected into mammalian cells (Miyagishi
and Taira, 2002). si/shRNA target sequences can be generated
by PCR, creating ‘‘expression cassettes’’ that can be transfec-

ted directly into cells (Castanotto et al., 2002) or cloned into
expression vectors (Sui et al., 2002).ddRNAi technology in-
volves inserting a DNA construct into a cell, triggering the

production of double stranded RNA (dsRNA), which is then
cleaved into small interfering RNA (siRNA) as part of the
RNAi process, resulting in the destruction of the target mRNA

and knocking-down or silencing the expression of the target
gene. It is not just the size that complicates the cellular uptake
and release of the nucleic acid, but the requirement for getting
the DNA from the cytoplasm to the nucleus is the major rate-
limiting step differentiating it from synthetic siRNA delivery.

1.2. Mechanism of RNA interference

RNA interference (RNAi) is a phenomenon in which double-
stranded RNA (dsRNA) suppresses the expression of a target
protein by stimulating the specific degradation of the target

mRNA. Long dsRNA is processed to short interfering RNAs
(siRNAs) by the action of a dsRNA-specific endonuclease
known as Dicer (Fig. 1) (Bernstein et al., 2001 and Hammond

et al., 2000). The resultant siRNAs usually 21–24 nt in length,
are double stranded, and have 3 overhangs of 2 nt. Exogenous
synthetic siRNAs or endogenously expressed siRNAs can also

be incorporated into the RNA-induced silencing complex
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(RISC), thereby bypassing the requirement for dsRNA pro-
cessing by Dicer. siRNAs are incorporated into the multi pro-
tein RISC. A helicase in RISC unwinds the duplex siRNA,

which then pairs by means of its unwound antisense strand
to messenger RNAs (mRNAs) that bear a high degree of se-
quence complementarities to the siRNA (Freda, 2004). Cleav-

age of the target mRNA begins at a single site 10 nt upstream
of the 5-most residue of the siRNA-target mRNA duplex
(Elbashir et al., 2001). Although the composition of RISC is

not completely known, it includes members of the Argonaute
family (Angaji et al., 2010) that have been implicated in pro-
cesses directing post transcriptional silencing (Freda, 2004).
Argonaute proteins are essential components of the RNAi

machinery that are associated with distinct classes of small
RNAs to exert their effector functions. Argonaute proteins
are associated with small interfering RNAs (siRNAs) or

microRNAs (miRNAs), and silence gene expression by either
siRNA guided cleavage of the target mRNA transcript, or
by miRNA mediated post transcriptional repression involving

both translational inhibition and/or mRNA degradation.
Functional specialization extends to the biogenesis path-

ways associated with these small RNAs; miRNAs are pro-

cessed from endogenous hairpin precursors by cleavage
events involving the RNAse III enzymes Drosha and Dicer1
(Dcr-1) with its partner loquacious (Loqs). There are two small
RNAs in the RNAi pathway: small interfering RNAs (siR-

NAs) and micro-RNAs (miRNAs) that are generated via pro-
cessing of longer dsRNA and stem loop precursors. Dicer
enzymes play a critical role in the formation of these two effec-

tors of RNAi (Tijsterman et al., 2002). They can cleave long
dsRNAs and stem-loop precursors into siRNAs and miRNAs
in an ATP-dependent manner, respectively.

1.3. Influence of overhang structure and sequence on Dicer

specificity and efficiency

Dicer processes long double-stranded RNA (dsRNA) and pre-
microRNAs to generate the functional intermediates (short
interfering RNAs and microRNAs) of the RNA interference
pathway. Although overhang composition has no impact on

cleavage product sizes, nucleotide sequence does play a role
in determining Dicer efficiency. Overhangs that contain a C
and A in the penultimate and terminal positions (respectively)

are processed most efficiently, while those containing an A in
the penultimate position and a U in the terminal position are
less optimal substrates. Overall, ranking the Dicer cleavage

efficiency of substrates with different overhangs reveals a hier-
archy with C > U= G >A being the preference at the pen-
ultimate position and A > G= U >C being the order of
terminal nucleotides (Annaleen et al., 2005).

Some studies of substrates with varying 30 overhang lengths
showed that the number of nucleotides in the overhang was a
critical factor in Dicer specificity. Substrates with overhang

lengths of 1, 2, and 3 nt showed concomitant shifts in the pri-
mary Dicer cleavage position. Increasing the overhang length
further reduced the diversity of cleavage products generating

primarily a 21-nt product. Thus, when the overhang length is
0–3 nt it appears as though Dicer cleaves dsRNA by ‘‘count-
ing’’ a distance of approximately 23 nt from the 30 end of the

overhang to cleave both strands. However, when the overhang
length is P4 nt, the primary cleavage product is similar to that
observed in duplexes containing 3-nt overhangs. Therefore, in
cases where the overhang length extends beyond 3 nt, Dicer no
longer uses the 30 end of the overhang to determine cleavage

position.
Therefore, RNA end structure, particularly 30 overhang

length, plays a critical role in determining the position and effi-

ciency of Dicer cleavage. (Annaleen et al., 2005) This knowl-
edge has a profound implication for siRNA and shRNA
design. shRNA expression by the Pol III promoter results in

shRNA termini with variable overhang lengths (1–5 Us).
And this variation drastically affects the specificity of Dicer
cleavage and consequently the functionality of cleaved siRNA.

1.4. Effect of siRNA end structure on silencing efficiency

It has recently been suggested that Dicer is involved in siRNA
RISC loading (Lee et al., 2004). In vitro Dicer cleavage assays

demonstrate that end structure influences Dicer efficiency. This
could be due to the fact that siRNA end structure impacts
overall silencing efficiency. In general, siRNAs with asymmet-

ric overhangs on the antisense strand (i.e., a 30 overhang on the
antisense strand) performed better than siRNAs with asym-
metric sense strand overhangs. When compared, the difference

in functionality was more profound between structurally asym-
metric siRNA (blunt–overhang, overhang–blunt) than sym-
metric molecules (overhang–overhang, blunt–blunt). This
indicates that the effect on functionality may be the result of

a shift in equilibrium between sense and antisense loading
rather than overall RISC loading efficiency (Annaleen et al.,
2005).

2. Designing siRNAs

Small interfering RNAs (siRNAs), the guides that direct RNA

interference (RNAi), provide a powerful tool to reduce the
expression of a single gene in human cells. (Schwarz et al.,
2008) The ability of an siRNA to silence the gene expression

is determined by its sequence and not all target sites are equal
(Peek and Behlke, 2007; Amarzguioui et al., 2006). Other con-
siderations such as cross hybridization and chemical modifica-

tion can also alter the effectiveness of siRNA in addition to the
actual sequence (Peek and Behlke, 2007).

2.1. Location of siRNA

The location of siRNA within the entire gene is less of a con-
cern for potency than the localization of siRNA within a par-
ticular gene exon structure. (Peek and Behlke, 2007) Targets

should be located 50–100 nt downstream of the start codon
(ATG). Therefore, the knowledge of when specific splice vari-
ants are used is essential to determine how to most effectively

target the desired isoform(s) of the gene.

2.2. Modification

siRNAs must have phosphate groups at the 50 end in order to
have activity so it is important not to block the 50 end of the
antisense strand with any modifications other than the phos-
phate group. (Peek and Behlke, 2007) However, transfected

unmodified 50OH ends are rapidly phosphorylated by cellular



Table 1 Applications of RNA interference (RNAi) and genes

involved.

Genes Fungi Animals Plants

RdRp QDE1 EGO1 SGS2/SDE1

Elf2c QDE2 RDE1 AGO1

Rnase D – MUT7 –

RNA Helicase – – MUT6

Coiled Coil – – SGS3

Compiled from: http://www.ejb.org accessed on 3.08.2012.
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kinases, indicating not to phosphorylate synthetic siRNAs.
Regardless of the target sequence, DNA ‘TT’ dinucleotide
overhangs are often added to the 30 ends; however some evi-

dence suggests that using RNA bases may lead to greater po-
tency (Peek and Behlke, 2007).

2.3. Thermodynamic stability

The thermodynamic stability of siRNAs has a significant influ-
ence on their potency; thermodynamic asymmetry is funda-

mentally important for siRNA function and strand loading
into RISC. The most effective siRNA has a relatively low
Tm and duplex stability (less stable, more A/U rich) toward

the 50 end of the guide strand and a relatively high Tm (more
stable, more G/C rich) toward the 50 end of passenger strand.
For situations in which selecting thermodynamically favorable
regions is impossible, introducing mismatches (to lower Tm) or

adding modified bases (to increase Tm) to the siRNA duplex
can create thermodynamic asymmetry. If non-complementary
bases must be introduced, it is important that it is at the 30 end

of the sense strand (passenger strand) rather than the 50 end of
the AS strand (guide strand) to avoid impairing the ability of
the AS strand to anneal to the active target (Peek and Behlke,

2007).

2.4. Sequence characteristics and specificity

To maintain specificity, certain sequence characteristics should

be avoided in the guide strand such as homopolymeric runs
(those with four or more identical nucleotides) and nine –base
or greater segments of G/C bases in addition, the secondary

structure of the target and the site accessibility are important
factors in the activity of siRNAs. A moderate to low GC
content (30–52%) tends to be a feature of functional siRNA.

Due to the high specificity of nucleic acid base pairing, even
a single mismatch in a 19-base sequence can prevent duplex
formation; however, cross hybridization can and does occur.

Therefore, it is very important to screen all candidate siRNAs
for homology to other targets and exclude those with signifi-
cant complementarity.

Like targeted effects, off-target effects (OTEs) are dose

dependent. Therefore, it is important to establish dose re-
sponse profiles for all siRNAs in use and always use the lowest
concentration of siRNA that will provide adequate target

knockdown. An additional measure to prevent OTE bias is
to ensure that at least two, and ideally three, independent siR-
NAs against a target give the same result (Peek and Behlke,

2007).

3. Applications of RNA interference in various areas

Besides being an area of intense, upfront basic research, the
RNAi process holds the key to future technological applica-
tions in various sectors, such as in functional genomics, thera-

peutic intervention, agriculture and other areas. Since the
discovery of RNAi, the idea of RNAi therapeutics has blown
into a creative and highly competitive field that has attracted
some of the most brilliant minds and it is one of the most

highly invested in fields in biotechnology research. Some stud-
ies have demonstrated that it is safe to systemically deliver
therapeutically effective doses of siRNAs to primates, leading
the way for other future systemic applications of RNAi. Some
potential diseases that may be therapeutic targets for RNAi in
the near future include viral diseases, genetic diseases and can-

cer. However, the major obstacles, such as off-target effects,
toxicity and unsafe delivery methods, have to be overcome be-
fore RNAi can be considered as a conventional drug.

3.1. RNAi as a potential therapeutic for humans; genetic

diseases

Dominant negative genetic disorders, in which a mutant allele
of a gene causes disease in the presence of a second, normal
copy, have been challenging since there is no cure and treat-

ments are only to alleviate the symptoms. Current therapies
involving pharmacological and biological drugs are not
suitable to target mutant genes selectively due to structural
indifference of the normal variant of their targets from the

disease-causing mutant ones (Table 1). In instances when the
target contains single nucleotide polymorphism (SNP),
whether it is an enzyme or structural or receptor protein are

not ideal for treatment using conventional drugs due to their
lack of selectivity. Although there is a cooling trend by the
pharmaceutical industry for the potential of RNA interference

(RNAi), RNAi and other RNA targeting drugs (antisense,
ribozyme, etc.) still hold their promise as the only drugs that
provide an opportunity to target genes with SNP mutations
found in dominant negative disorders, genes specific to patho-

genic tumor cells, and genes that are critical for mediating the
pathology of various other diseases (Seyhan, 2011).

A promising lead toward using RNAi for the treatment of

genetic diseases has been provided by preliminary studies dem-
onstrating how single nucleotide polymorphisms (SNPs) in
mutant allele transcripts can be used as selective targets for

RNAi. Disease causing polyglutamine proteins encoded by
CAG repeat containing transcripts found in several neurolog-
ical diseases present especially challenging targets because

CAG repeats are common to many normal transcripts as well,
and cannot be selectively targeted by siRNAs. Alternatively,
single nucleotide polymorphisms are very often found in mu-
tant allele transcripts, and represent potential selective targets.

Systematic analyses of siRNAs in which the polymorphic
nucleotide is complementary to the mid region of the siRNA
provides an siRNA/SNP combination that is highly selective.

In certain examples, the siRNAs direct selective degradation
of only the mutant transcripts, leaving the wild type transcripts
intact despite having only a single mismatch with the wild type

sequence (Miller et al., 2004a, Miller et al., 2004b). Particular
purine–purine mismatches at positions 10 and 16 relative to 50

end of the guide strand provide selectivity (Schwarz et al.,

http://www.ejb.org


RNA interference: A futuristic tool and its therapeutic applications 399
2008). Since the wild-type SOD1 performs important functions
it is important to selectively eliminate the expression of only
the mutant allelic transcript. Many SOD1 mutations are single

nucleotide changes. Since delivery of siRNAs and viral vectors
expressing siRNAs to affected regions of the brain is techni-
cally feasible (McCaffrey et al., 2003), the promise of clinical

use of RNAi for treatment of degenerative, neurological dis-
eases may approach reality soon. Despite the excitement and
promise of therapeutic RNAi, there are many obstacles, the

greatest of which is delivery. Systemically delivered siRNAs
face degradation by nucleases, and the use of viral vectors to
target organs of interest is still in its infancy.

3.2. RNAi in gene regulation and antiviral responses

RNAi and RNAi-related mechanisms play essential roles in the
regulation of cellular gene expression, as well as in innate anti-
viral immune responses. RNAi is regarded as a natural defense

mechanism against mobile endogenous transposons and inva-
sion by exogenous viruses which have dsRNA as an intermedi-
ate product. With this defense mechanism, organisms maintain
genetic integrity and hinder infection (Ebbesen et al., 2008). For

many applications, it may be complicated to introduce short
dsRNAs directly into cells. However, many groups have now
shown that appropriately designed DNA molecules containing

inverted repeat sequences can be transcribed into RNA mole-
cules that form RNA hairpins. If the sequences are chosen cor-
rectly, these are processed by the Dicer nuclease to form

siRNAs. Thus all the methods derived for delivering genes into
cells can in principle be used to deliver siRNAs as well. This
made the application of RNAi therapy for the prevention

and treatment of viral infection convenient (Fig. 2).
RNAi has got a potential for the treatment of viral diseases

such as those caused by the hepatitis C virus (HCV) and the
human immunodeficiency virus (HIV). However, there are

important issues and concerns about the therapeutic applica-
tion of this technology, including difficulties with delivery
and uncertainty about potential toxicity that needs to be

solved. The HCV genome is a positive-strand RNA molecule
with a single open reading frame encoding a polyprotein that
is processed post-translationally to produce at least ten pro-
Figure 2 Antiviral mechani
teins. The only therapy currently available uses combined
interferon (IFN) and ribavirin. Subgenomic and full-length
HCV replicons that replicate and express HCV proteins in sta-

bly transfected human hepatoma cell-derived Huh-7 cells have
been used to study viral replication and the effects of various
antiviral drugs.

Small inhibitory RNAs targeting the internal ribosome en-
try site (IRES) and non-structural protein NS3 and NS5b
encoding mRNAs were shown to inhibit HCV replicon

function in cell culture (Wilson et al., 2003). Furthermore,
anti-HCV siRNAs were shown to ‘‘cure’’ Huh-7.5 cells bearing
persistently replicating HCV replicons. Delivery of the siRNAs
or vectors that carry siRNA expression cassettes is the major

challenge for treatment of HCV. The method of delivery used
in a number of in vivo studies, hydrodynamic intravenous
injection, is not feasible for the treatment of human hepatitis.

Delivery is a problem that must be confronted for any thera-
peutic application of RNAi. A recent report demonstrates that
it is feasible to introduce genetic material into hepatocytes

using catheters or even localized hydrodynamic procedures
(Eastman et al., 2002).

Numerous studies have established the proof of concept that

diseases can be targeted by therapeutic RNAi, and several small
interfering RNAs (siRNAs) are currently being tested in clini-
cal trials (Grimm and Kay, 2007). Despite these rapid ad-
vances, significant hurdles still need to be overcome for the

widespread therapeutic application of siRNAs. Perhaps the
greatest challenge is the delivery of effective quantities of siR-
NAs into the cytoplasm of relevant target cells in vivo (Dykxho-

orn and Lieberman, 2006).
HIV was the first infectious agent targeted by RNAi per-

haps owing to the fact that the life cycle of HIV is well under-

stood as is its pattern of gene expression. Synthetic and
expressed siRNAs have been used to target a number of early
and late HIV-encoded RNAs including the TAR element, tat,

rev, gag, env, vif, nef (Jacque et al., 2002) and reverse trans-
criptase. Cellular cofactors, such as NFjb, the HIV receptor
CD4 and co-receptors CXCR4 and CCR5 have also been suc-
cessfully down regulated by RNAi resulting in an inhibition of

HIV replication. Moreover, inhibition of HIV replication has
been achieved in numerous human cell lines and primary cells
sm of RNA interference.
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including T lymphocytes and hematopoietic stem cell derived
macrophages.

Despite the success of in vitro RNAi-mediated inhibition of

HIV-1, for future clinical applications, targeting the virus di-
rectly represents a substantial challenge since the high viral
mutation rate will certainly lead to escape mutants (Boden

et al., 2003). RNAi-mediated down regulation of cellular co-
factors required for HIV infection is an attractive alternative
or complementary approach.

Delivery of siRNAs or shRNA encoding genetic units to
HIV infected cells is also a challenging problem. The target
cells are primarily T lymphocytes, monocytes and macro-
phages. Since synthetic siRNAs will not persist for long peri-

ods in cells, delivery would have to be done repetitively for
years to effectively treat the infection. Systemic delivery of siR-
NAs to T lymphocytes is a major barrier and probably not fea-

sible. T-cell isolation from patients followed by transduction,
expansion of the transduced cells and re-infusion has been
found to be the preferred path (Dropulic, 2001; Davis et al.,

2004).
There are additional challenges for using siRNAs in the

treatment of HIV-1 infection, including validating the ap-

proach in a relevant animal model and preventing the emer-
gence of variants resistant to treatment because of the high
sequence diversity of the virus. In this issue, Kumar et al.
(2008) exploit a series of recent technical advances to overcome

these obstacles. They demonstrate that targeting a combina-
tion of host and viral proteins with siRNAs can efficiently in-
hibit HIV-1 infection in a humanized mouse model. It has been

shown previously that antibodies can be used to deliver siR-
NAs into the cytoplasm of specific target cells (Song et al.,
2005). This approach decreases the amount of siRNA that is

needed, thereby minimizing the risk of undesired effects in by-
stander cells. In their new work, Kumar et al. use a single-
chain antibody to the CD7 receptor conjugated to a nonamer

arginine peptide (9R) (Fig. 1). The CD7-specific antibody is
well suited for siRNA delivery because CD7 is expressed by
most T cells and is rapidly internalized. Moreover, this anti-
body has already been used in clinical studies to target toxins

to T cell lymphomas and leukemias. In previous work, Kumar
et al. (2007) demonstrated that the positively charged 9R pep-
tide binds to polyanionic nucleic acids and can be used to de-

liver siRNA to neuronal cells. They now show that these
techniques can be used to suppress HIV-1 replication and pre-
vent CD4+ T cell depletion in vivo in a humanized mouse

model of acquired immune deficiency syndrome (AIDS). This
is a significant advance, not only because these findings en-
hance the prospect of a new HIV-1/AIDS therapy but also be-
cause this study introduces an siRNA delivery system that

could be adapted to target different receptors and hence other
cell types. Moreover, given that the binding of the siRNA to
the 9R tag is noncovalent, this approach should make it possi-

ble to easily compare the efficacy of different siRNAs.

3.3. Cancer

The use of RNAi for cancer therapeutics could transform
treatment of this devastating disease. The strong appeal of
RNAi in therapeutics is the potency and specificity with which

gene expression can be inhibited. What makes RNAi so excit-
ing to many researchers is its potential for knocking out a pro-
tein without harming the cell. By comparison, chemotherapy
invariably kills tumors by destroying cancerous cells as well
as healthy cells nearby. The possible targets for various dis-

eases range from oncogenes to growth factors and single nucle-
otide polymorphisms (SNPs).

Animal models are widely used to investigate the therapeu-

tic efficiency of RNAi. In vivo utilization of siRNA was effec-
tively performed by targeting the colorectal cancer-associated
gene beta-catenin. Decreased proliferation and diminished

invasiveness were observed following siRNA-mediated silenc-
ing of this gene in human colon cancer cells. Additionally,
when treated cancer cells were placed in a nude mouse, pro-
longed survival was seen compared with mice receiving unma-

nipulated tumors. Similarly, silencing the oncogene H-ras led
to the inhibition of in vivo tumor growth of human ovarian
cancer in a SCID mouse model (Ebbesen et al., 2008). The

challenges for cancer are similar to those faced for other dis-
eases which include finding good targets, delivery and minimiz-
ing toxicity. Perhaps the most significant work utilized

transferin containing nano-particles to target Ewing’s sarcoma
cells in a mouse xenograph model (Boden et al., 2003). This
study demonstrated the feasibility of using non-lipid based

nano-particles for the targeted delivery of siRNAs in a cancer
model, and provides a powerful proof of principle for systemic
delivery of siRNAs to a metastatic cancer.

Interestingly, RNAi may also be exploited to silence path-

ways that facilitate the effects of traditional cancer drugs. This
includes targeting of the multidrug resistance gene (MDR1) for
re-sensitization to chemotherapy and silencing of double-

strand break repair enzymes for enhanced effects of radio-
and chemotherapy (Olivier et al., 2008). Although the trials
are in their early phase, the promises they are showing now

are only indicative of the potential RNAi has for future ther-
apeutic process. There has been progress over the last 4 years
in terms of different delivery system technologies and the

movement of RNAi therapeutics from pre-clinical into human
trials. With the first substantial patient data from these RNAi-
based therapies on the near-term horizon, and new studies
likely to begin soon, it is too early to dismiss RNAi therapeu-

tics for cancer treatment.

4. RNAi technology

Developments like the 20-acetoxyethyl (ACE) RNA chemistry
and the incorporation of modified, especially cationic, nucleo-
tides form the basis for the synthesis of highly stable effective

siRNAs. One of the major problems with synthetic siRNAs is
their low stability in serum. A study was conducted with much
different chemistry at the 20O ribose position such as amino-

ethyl and guanidinoethyl (Odadzic et al., 2008), and it was
shown that siRNA half life and efficacy can be greatly en-
hanced by introducing modifications at specific positions both
in the passenger and the guide strand of the siRNA. In this

study off-target effects caused by the incorporation of the pas-
senger strand in RISC were effectively avoided by design of a
nicked passenger strand in the so called small internally seg-

mented interfering RNA (sisiRNA) design. Furthermore, off-
target effects could be avoided by incorporation of specific
modifications in the guide strand of the siRNA. Nano-particles

based on chitosan are highly effective for siRNA delivery, par-
ticularly in organs like the lungs.
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RNAu, is a new technique based on expression of U1 small
nuclear RNA (snRNA) of which the 50 nucleotides 2–11 are
modified to base-pair with a 10 nucleotide target within the

30 terminal exon of a gene of interest. Binding of the modified
U1 snRNA inhibits polyadenylation, resulting in degradation
of the transcript and gene knockdown. The U1 snRNA mech-

anism tolerates a single mismatch at positions 1, 2, 9 and 10,
the central 6 nucleotides require perfect base-pairing but do al-
low a single G–U base-pair. The presence of multiple target

sites within the 30 exon enhances inhibition, and a knockdown
of gene expression of up to 700-fold can be achieved.

4.1. Technological applications of RNA interference in Gene
knockdown

The RNA interference pathway is often used to study the func-
tion of genes in cell culture and in vivo in model organisms

(Daneholt, 2007). Double-stranded RNA is synthesized with
a sequence complementary to a gene of interest and introduced
into a cell or organism, where it is recognized as exogenous ge-

netic material and activates the RNAi pathway. Using this
mechanism, researchers can cause a drastic decrease in the
expression of a targeted gene. Studying the effects of this de-

crease can show the physiological role of the gene product.
Since RNAi may not totally abolish expression of the gene,
this technique is sometimes referred as a ‘‘knockdown’’, to dis-
tinguish it from ‘‘knockout’’ procedures in which expression of

a gene is entirely eliminated (Voorhoeve and Agami, 2003).
Extensive efforts in computational biology have been direc-

ted toward the design of successful dsRNA reagents that

maximize gene knockdown but minimize ‘‘off-target’’ effects.
Off-target effects arise when an introduced RNA has a base se-
quence that can pair with and thus reduce the expression of

multiple genes at a time. Such problems are more frequent
when the dsRNA contains repetitive sequences.

Depending on the organism and experimental system, the

exogenous RNA may be a long strand designed to be cleaved
by Dicer, or short RNAs designed to serve as siRNA sub-
strates. In most mammalian cells, shorter RNAs are used be-
cause long double-stranded RNA molecules induce the

mammalian interferon response, a form of innate immunity
that reacts nonspecifically to foreign genetic material (Naito
et al., 2006). Mouse oocytes and cells from early mouse em-

bryos lack this reaction to exogenous dsRNA and are there-
fore a common model system for studying gene-knockdown
effects in mammals. Specialized laboratory techniques have

also been developed to improve the utility of RNAi in mam-
malian systems by avoiding the direct introduction of siRNA,
for example, by stable transfection with a plasmid encoding
the appropriate sequence from which siRNAs can be tran-

scribed, (Reynolds et al., 2006) or by more elaborate lentiviral
vector systems allowing the inducible activation or deactiva-
tion of transcription, known as conditional RNAi (Stein

et al., 2005).

5. Current trends in clinical trials using RNAi

Since the discovery of RNAi, the idea of RNAi therapeutics
has blown into a creative and highly competitive field that
has attracted some of the most brilliant minds and it is one

of the most highly invested in fields in biotechnology research.
Many pharmaceutical companies devoted to RNAi research
are coming up with interesting insights into how human ail-
ments can be cured using the RNAi mechanism. Although

the trials are in their early phase, the promises they are show-
ing now are only indicative of the potential RNAi has for fu-
ture therapeutic process. For example, Nucleonics Inc., a

pharmaceutical company, has initiated a phase l clinical trial
of the systemically administrated RNAi-based therapeutic
NUCB-1000 for the potential treatment of HBV infection.

NUCB-1000 consists of a plasmid DNA construct designed
to produce four different shRNAs, targeting different se-
quences of the HBV genome, under the control of an RNA
polymerase III promoter. The plasmid DNA was formulated

with a proprietary cationic-lipid delivery system. Another anti-
viral strategy that has received much attention is currently un-
der development in a phase l clinical trial for the potential

treatment of HIV. In this approach, CD34+ cells were col-
lected from patients after induction and treated ex vivo. A mix-
ture of shRNA, ribozyme and RNA decoy targeting three

different HIV-related genes: trans-activator of transcription/
regulator of virion (tat/rev), CCR5, and transactivation-
response genes, respectively, were delivered by a lentiviral vec-

tor. The trial combined gene therapy with RNAi, and involved
transfecting CD34+ hematopoietic progenitor cells ex vivo
and then returning the cells to the patients; RNAi treatment
thereby influences all the CD34+ hematopoietic progenitor

cells’ future progeny, including T-cells. This represents an
important trial since it is the first in which a lentivirus was used
as a vector in combination with DNA-directed shRNAs. Pre-

clinical safety and efficacy parameters were encouraging and
the pluripotent precursor cells were able to differentiate nor-
mally after lentiviral transduction (Thu Ngyuen et al., 2008).
6. Prospects of utilizing RNAi techniques

Since the onset of its discovery, few breakthroughs in history

can match the level of understanding and research progress
made in RNAi in such a short time. Already, the time when
RNAi research in vitro cell cultures used to attract an awe

stricken attention is long gone as in vivo trials using RNAi
dominate the biotechnology scene.

In a remarkably short time since its discovery in model
organisms, the RNAi pathway has emerged as a powerful tool

for the study of gene function in mammals. The future of
RNAi researches is exciting and there are many applications
to be considered in this field. An instance where RNAi technol-

ogy can be used to silence the gene(s) responsible for the pro-
duction of b-oxalylaminoalanine-L-alanine (BOAA), a
neurotoxin found in a leafy vegetable known as Lathyrus sat-

ivus, which is commonly used as a food by the people in the
lower socioeconomic class of the poor nations. Another case
where RNAi may be successfully applied is in the production
of banana varieties resistant to the Banana Bract Mosaic Virus

(BBrMV), currently devastating the banana population in
Southeast Asia and India (Rodoni et al., 1999).

With the use of RNAi in whole animals increasing, a grow-

ing enthusiasm for using RNAi triggers in therapy is antici-
pated. Despite considerable hurdles to overcome it seems
likely that RNAi will find a place along side of many conven-

tional approaches in the treatment of diseases, although it is
unclear as how long we have to wait to witness the first RNAi
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based drug. The future studies of RNAi will pertain to it for
being investigated for more applications of human, animal
and plant therapeutics. There is great hope that in the near fu-

ture RNAi based treatment for diseases such as Huntington’s
disease, HIV, cancer and other genetic based or infectious dis-
eases will be available.

7. Limitations of RNAi

Despite the proliferation of promising cell culture studies for

RNAi-based drugs, some concern has been raised regarding
the safety of RNA interference, especially the potential for
‘‘off-target’’ effects, in which a gene with a coincidentally sim-

ilar sequence to the targeted gene is also repressed. A computa-
tional genomics study estimated that the error rate of off-target
interactions is about 10%. One major study of liver disease in

mice led to high death rates in the experimental animals, sug-
gested by researchers to be the result of ‘‘oversaturation’’ of
the dsRNA pathway (SrinivasaRao et al., 2011).

8. Conclusion

Clinical trials with RNAi have now begun, but major obsta-
cles, such as off-target effects, toxicity and unsafe delivery

methods, have to be overcome before RNAi can be considered
as a conventional drug. Generally, the success of the therapeu-
tic use of RNAi relies on lack of toxicity, specificity of silencing

effects and efficacy in vitro and in vivo. So if RNAi is to be used
therapeutically one should weigh the possible harms against
the possible benefits of this method and perform a risk-benefit

analysis. Moreover, as discussed already, delivery methods and
clinical trials are nowhere complete and are under rigorous
developmental programs. With the increase in technological

advancements and novel breakthroughs though it can only
be but anticipated that the future of RNAi therapeutics is
going to be a bright one.
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