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Abstract Synthesis and hardening of a new exoskeleton are essential to the arthropod molting pro-

cess. The present study emphasizes the variations in the levels of hemolymph total free sugars, hepa-

topancreas glycogen and cuticular proteins during the molting stages of Portunus pelagicus. It also

reports the effect of short-term starvation conditions on the biochemical constituents of the hemo-

lymph. Intermolt crabs were subjected to 6 days of starvation and hemolymph samples were taken.

Standard biochemical procedures were followed toward the quantification of total proteins, total free

sugars and total lipids. The total free sugar level in the hemolymph of P. pelagicus was observed to

increase during early premolt D0 (3.108 ± 0.032 g/ml) and a gradual decrease till late postmolt B

stage (0.552 ± 0.124 g/ml), suggesting the need for total free sugars to provide energy for the apolysis

process. Increase in the levels of hepatopancreas glycogen was observed from 1225 ± 0.04 lg/mg in

early premolt D0 to 1700 ± 0.3 lg/mg in late premolt D2–3. This is in correlation with the decreased

levels of free sugars during premolt stages, suggesting an increase in the storage of glycogen reserves in

the hepatopancreas. Cuticular proteins increased during stage B (2.702 ± 0.093 g/ml) and stage C

(3.065 ± 0.012 g/ml), indicating exoskeleton hardening and mineralization. Results of the starvation

studies clearly showed a steady decline in the level of total free sugars till day 6 (0.099 ± 0.00 g/ml)

when compared to the control (8.646 ± 0.08 g/ml). Gradual decrease of total lipids was also observed

from the first day of the experiment (6.088 ± 2.44 g/ml) to the last day of the study (0.401 ± 0.20 g/ml)

which was 85% lesser than the control (8.450 ± 0.49 g/ml)suggesting the efficient usage of total

sugars to consolidate the loss of energy reserves during starvation. The knowledge of Molt-cycle

events can be used as a tool for the evaluation of the developmental state providing a morphological

reference system for physiological and biochemical studies related to crab aquaculture. Starvation

studies enlightens that increasing carbohydrate levels in crab feed together with good protein content
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could alleviate the natural effects of starvation, improve farm productivity and reduce the deleterious

impact of nitrogen pollution generated by rich-protein feeds used in crab farming.

ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction
Comparative biochemistry in crustaceans has developed in re-

cent years due to the interest in aquaculture, but has taken
many initial hypotheses from the insect biochemistry field. In-
sects are and will remain as a very useful model for biochem-

ical research and precisely due to its evolutionary closeness,
crustacean biochemistry can take advantage of the available
insect knowledge (Law and Wells, 1989). The biochemical

changes occurring in crustaceans during molting, feeding and
starvation are indicators of their nutritional requirements
and are an important basis for determining suitable diets.

Crustaceans differ from insects in that they combine to
molt and grow even after the attainment of sexual maturity.
In large decapod crustaceans such as crabs and lobsters, the fe-
male reproductive cycle is completed within the protracted

intermolt period and molting is initiated only after reproduc-
tive arrest (quiescent period). Conversely, in many soft shelled
shrimps and prawns, molting is permitted to occur during the

course of oogenic cycle, thus revealing a close synchronization
between molting and the reproductive process (Subramoniam,
2000). The pattern of changes, an increase in blood glucose

and protein levels during premolt, a decrease following the
molt and more or less rapid return to the intermolt level, have
been reported (Telford, 1974). Renaud (1949) described the cy-

cling of carbohydrates and lipids through the molt cycle of
Cancer pagurus and an apparent increase in blood reducing
substances during premolt. In a study of spiny lobster, Panulirus
argus, Travis (1955, 1957) has shown a detailed pattern of the

use of glycogen during the molt cycle, from which the ele-
vated level of blood glucose in premolt and postmolt decreases
could be predicted. Telford (1968) has cited several sugars

including mannose, galactose, fructose, maltose and trehalose
in marine decapods. Presumably, they play a less prominent role
in the metabolism of freshwater crayfishes. McWhinnie and

Saller (1960) found glucose to makeup 25% of the total reduc-
ing substances in the blood ofOrconectes virilis, which is in close
agreement with the observation of Telford (1974). There have
also been studies which sought to determine relatedness among

crustacean and insect exoskeletal proteins. Dennell (1947)
showed similarities between the crustacean exoskeleton and
the insect exoskeleton with respect to composition, deposition

and hardening. Many insect and crustacean exoskeletal proteins
have also been shown to share characteristics such as acidic
isoelectric points and molecular weights of 31,000 daltons or

smaller (O’Brien et al., 1991). More recently, immunological
crossreactivity between crustacean exoskeletal proteins and
insect storage hexamerins has been demonstrated (Stringfellow

and Skinner, 1988; Kumari and Skinner, 1993).
Soluble glycoproteins from the organic matrix of the cuticle

of brachyurans have been studied at all stages of the molt cy-
cle. Electrophoretic patterns of extracts of lectin-binding pro-

teins from the calcified exoskeleton layers of the Bermuda
land crab Gecarcinus lateralis change dramatically during
and after apolysis (Kumari and Skinner, 1995). These pre-molt
changes in the existing cuticle relate to mineral dissolution and
resorption rather than mineral deposition. Various mild

aqueous solvents were used to extract glycoproteins from the
anecdysial (intermolt) cuticle of the Atlantic shore crab
Carcinus maenas, and the complex array of electrophoretic

bands described from these extracts contained both O-linked
and N-linked glycans (Compere et al., 2002).

Studies on the starvation of crustaceans in biochemical
composition are intended to yield information that remains

useful in understanding the ecophysiology of a population
(Lehtonen, 1996). Artificially induced fasting and starvation
may enlighten the metabolic routes used in hierarchical order

and may describe novel biochemical and physiological adapta-
tion mechanisms (Barclay et al., 1983). The ability of an organ-
ism to survive and recover from long periods of starvation is

vital. Starvation can lead to a severe deficiency of nutrients.
Therefore, starvation studies may be useful predictors to deter-
mine energetic and metabolic requirements (Guderley et al.,

2003). Furthermore, the knowledge derived from the under-
standing of their biochemical processes may be the basis to
optimize crustacean pond rearing efforts.

Proteins are critical for artificially reared crustaceans and

are an expensive component of feeds for decapod crustaceans
(Kureshy and Davis, 2000). Therefore, the dietary protein
quantity and composition should be optimized to grant maxi-

mal growth (Shiau, 1998). Feed protein contents between
30% and 57% (w/w) are recommended for suitable growth of
different species of the penaeid shrimp (Cordova-Murueta

and Garcia-Carreno, 2002; Kureshy and Davis, 2000; Shiau,
1998). During a 28-day starvation study, in the hepatopancreas
of the shrimp Penaeus japonicus, the glycogen stores were rap-

idly depleted, presumably being converted to glucose and are
used as an energy source (Cuzon et al., 1980). Tail muscle lipids
diminished progressively and proteins were next mobilized, but
more slowly, eventually accompanied by muscular atrophy.

Similar results were obtained for the shrimp Penaeus duorarum
(Schafer, 1968) and for the Crangon crangon (Cuzon and
Ceccaldi, 1973). However, the purple shore crab Hemigrapsus

nudus during a 23-day starvation period used preferentially pro-
teins (Neiland and Scheer, 1953) as reported for other decapods
more recently (Anger, 2001). Moreover, crustacean responses

to starvation appear to be influenced by the developmental
stage. Spiny lobster Jasus edwardsii, phyllosoma larvae during
a 6–11-day starvation catabolized more lipids than carbohy-
drates and proteins in stages II, IV and VI. These larvae were

14–40% lighter than their fed counterparts (Ritar et al.,
2003). The main lipid storage organ in crustaceans is hepato-
pancreas. Lipids are mobilized to and from this organ through

lipoproteins that bind and carry these hydrophobic molecules
in the aqueous hemolymph environment. High density lipopro-
teins (HDL) and very high density lipoproteins (VHDL) are the

main lipoproteins found in crustacean species (Lee and
Puppione, 1978; Yepiz-Plascencia et al., 2000, 2002).

Reports about the metabolic requirements of protein and

lipids under starvation in crustaceans are very contrasting.
As mentioned before, several authors report protein as the
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main source of energy for starved crustaceans. During the star-
vation of crustaceans, there are three distinct phases of biomass
degradation (Anger, 2001). Initially, energy-rich lipid reserves

are preferentially mobilized, reflected in decreasing lipid:pro-
tein ratios, which is typical of short term food deprivation.
When much of the accessible lipid pool has been depleted, pro-

teins are increasingly utilized. A significant part of the lipid
pool is bound in crucial cell structures such as membranes
and hence is normally unavailable for energy metabolism. In

the final phase of starvation prior to death, structural lipids
may also be degraded so that the lipid:protein ratio decreases
again (Mikami et al., 1995; Abrunhosa and Kittaka, 1997).

P. pelagicus (Linnaeus, 1758), the blue swimmer crab found

in the intertidal estuaries of the Indian and Pacific Oceans,
forms the important source of commercial fishery in the Thon-
di Coast. They are exported to South East Asian countries un-

der live conditions. Because of their delicacy and larger size,
the live mud crabs are always in greater demand and fetch a
higher price in both national and international markets

(Kathirvel, 1993). Swimming crabs, both P. pelagicus and
P. sanguinolentus are being exported mostly in frozen and
canned forms. The males are bright blue in color with white

spots and long chelipeds. And the females are duller green or
brown in color. Male and female P. pelagicus generally reach
sexual maturity at a size of 70–90 mm in carapace width, when
they are approximately one year old.

Besides seasonal changes in food availability, a common
denominator in crustaceans and P. pelagicus in particular, is
their constant feeding activity. Furthermore, they alternate

episodes of feeding and fasting during development, which oc-
curs through Molting and results in growing by sequential
steps. Increase in body size at each ecdysis is non-linear; this

is a hormonally controlled process which might last days or
weeks, is continuous and accompanied by morphological,
physiological and behavioral alterations occurring almost dai-

ly (Dall et al., 1990). This process requires a high amount of
energy. Molting involves a series of stages with different feed-
ing behavior. During intermolt, they feed actively, prior to
molting, feeding declines until it stops completely during ecdy-

sis. Finally feeding begins again in postmolt (Phlippen et al.,
2000). Starvation can lead to a severe deficiency of nutrients.
Starvation induction of crustaceans in the intermolt stage

has been suggested to be a good model to try to understand
the molecular and enzymatic changes that occur naturally dur-
ing their growth process, although the effect of hormones must

not be forgotten (Sanchez-Paz et al., 2003 ). Therefore, starva-
tion studies may be useful predictors to determine energetic
and metabolic requirements (Guderley et al., 2003).

The effects of starvation on the blue swimmer crab, P. pelag-

icus have not been examined in terms of accumulation and loss
of the major body components viz., protein, lipid and carbohy-
drate. The findings of starvation studies can be used to deter-

mine the nutrients most critical as energy reserves and those
catabolized or conserved in the face of increasing food depriva-
tion. In view of the afore mentioned information, the present

study was aimed primarily toward the examination of carbohy-
drate metabolism and cuticular proteins inP. pelagicuswith ref-
erence to the molting cycle and secondly to study the effect of

short-term starvation on biochemical constituents in adult
males of P. pelagicus in the intermolt stage to gain insights on
the connection between episodes of food shortage, metabolic
preferences and sequence of the use of energy reserves.
2. Materials and methods

2.1. Collection & maintenance

Adult blue swimmer crabs, Portunus pelagicus, were caught
from the Thondi Coast, Thondi (9o45’N 79o04’E). The crabs

were transported to the laboratory in aerated plastic troughs.
They were weighed and acclimatized for a week in tanks con-
taining 10–15 cm of sand at the bottom at about 34 ± 2 ppt

salinity and at room temperature (30 ± 2 �C). During the per-
iod, the crabs were fed with oyster (Crassostrea madrasensus)
meat twice a day. The unconsumed meat and other debris par-
ticles were removed by siphoning. The water was removed and

fresh sea water was introduced daily.

2.2. Analysis of Molt stages

Setal development of P. pelagicus was observed on the basis of
the epidermal retraction observed at the posterior median
part of the swimmeret. Molt stages were determined using

morphological changes of the seta as described by Drach
and Tchernigovtzeff (1967) using a light microscope (Optika
B-350, Italy).

2.3. Extraction of cuticular proteins

Cuticular proteins were extracted from the exoskeleton follow-
ing the method of Otoshi (1994). Briefly, the dorsal carapace

portion of the exoskeleton of P. pelagicus was always used
so that contaminants such as hair bristles could be excluded.
The exoskeleton was brushed clean and rinsed of any visible

cellular material with deionized water. It was then dried at
approximately 60 �C until constant weight was achieved. The
dried exoskeleton was then ground with mortar and pestle at

room temperature until it was a fine powder. The proteins
from the ground exoskeleton were then extracted with a 1%
KCl solution, pH 7.5, using 12 ml solution per gram of ground
exoskeleton. The extraction mixture was incubated overnight

at 4 �C. The mixture was then centrifuged, for 5 min at
13,000 rpm (Remi C-24 BL Cooling Centrifuge, India). The
supernatant was stored at 4 �C until further protein analysis.

2.4. Starvation experiments

Only intermolt crabs were chosen for starvation experiments.

After acclimation, the crabs were measured (carapace length,
carapace width) and weighed (wet weight). Subgroups of 6
crabs each, were maintained for 0 (control group), 1, 2, 3, 4,

5 and 6 starvation days. The samples for biochemical analysis
were obtained on every starvation day from the member of the
subgroup.

2.5. Hemolymph sampling

Hemolymph samples were drawn from the crabs of various
molting stages as well as from control and starved crabs

through the arthrodial membrane of the pereiopods by using
disposable syringes. Approximately 10 ml was obtained from
each crab. The collected hemolymph was stored in separate

vials under �20�C until further use.
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2.6. Quantification of biochemical constituents

The biochemical composition of cuticular proteins, total free
sugars in the hemolymph and hepatopancreas glycogen during
the molt cycle and the level of total proteins, total free sugars

and total lipids in the hemolymph of control and starved crabs
was estimated following standard procedures. Estimation of
total proteins and cuticular proteins was done as per the meth-
odology of Bradford (1976). Estimation of total free sugars

was done according to the methodology of Roe (1955). Esti-
mation of glycogen in the hepatopancreas was done according
to the methodology of Carroll et al. (1956). Estimation of total

lipids was done according to the methodology of Barnes and
Blockstock (1973). Extraction of lipids from sample was done
following the procedure of Folch et al. (1957).

2.7. Data analysis

The results of the study were subjected to Two-way ANOVA

to test whether the variations in the biochemical constituents
among the various stages of molting and between the starva-
tion periods are significant.

3. Results

3.1. Variations in the biochemical composition during the
different molting stages

Results of the biochemical analysis when subjected to Two-way

ANOVA clearly enumerated variations among the biochemical
parameters during the different stages of molting (F< 0.05).

3.1.1. Total free sugars in hemolymph

Variations were observed in the levels of total free sugars in the
hemolymph of P. pelagicus during the different stages of
Figure 1 Variations in the total free sug
molting. Greater level of 3.108 ± 0.03 g/ml was observed dur-
ing premolt D0 stage, following which a steady decline was no-
ticed thereafter till postmolt B stage (0.552 ± 0.12 g/ml).

Intermolt C stage had a significant increase in the free sugar
titer of 1.318 ± 0.15 g/ml) (Fig. 1).

3.1.2. Hepatopancreas glycogen

Depletion of glycogen in the hepatopancreas was observed
after the late premolt stages D2–3 (1700 ± 0.30 lg/mg). Post-
molt B stage had a minimal level of 425 ± 0.02 lg/mg fol-

lowed by postmolt A (837 ± 0.23 lg/mg). An increase in the
glycogen level was observed thereafter in intermolt C
(1012 ± 0.43 lg/mg) till late premolt stage (Fig. 2).

3.1.3. Cuticular proteins

A steady decline in the level of cuticular proteins was observed
right from the early premolt stage D0 (1.469 ± 0.32 mg/ml) in

correlation with the onset of setogenesis. The protein level
dropped to 0.688 ± 0.476 mg/ml during late premolt stage D

2–3 and a significant increase in glycogen was noticed in post-

molt A (0.854 ± 0.08 mg/ml) and postmolt B (2.702 ±
0.09 mg/ml). Cuticular proteins were found to be highly con-
centrated in the exoskeleton in the intermolt stage C

(3.065 ± 0.02 mg/ml) (Fig. 3).

3.2. Variation in the survival, weight and body measurements of
P. pelagicus on starvation

During the experiment no mortalities were recorded. Rela-
tively significant reduction in body weight on day 6 (53.04 ±
2.34 g) when compared to the control (77.05 ± 3.03 g).

Insignificant variations were observed in carapace length and
carapace width of the starved crabs when compared to the con-
trol (Fig. 4).
ars in the hemolymph during molting.



Figure 2 Variations in the hepatopancreas glycogen during molting.

Figure 3 Variations in the cuticular proteins during molting.
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3.3. Biochemical composition of hemolymph on starvation

Along the starving periods, significant differences were ob-

served in the relative biochemical composition of the hemo-
lymph of the experimental crabs. A drastic decrease was
observed in the levels of the constituents from day 2 of
the starvation period except the total protein level. Two
way–Analysis of Variance showed significant variations within

the days of starvation and between all the biochemical constit-
uents studied (F< 0.01).

3.3.1. Total proteins

Significant decrease in the level of total protein was observed
on day 1 (2.670 ± 1.11 g/ml) when compared to the control



Figure 4 Weight and body measurements of P. pelagicus during starvation.

Figure 5 Variations in the hemolymph total protein on starvation.
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(6.259 ± 0.01 g/ml). Thereafter, protein concentration peaked
more than the control on day 5 (6.597 ± 2.35 g/ml), about
0.5% increase. An abrupt decline in the level of total proteins
was observed (2.636 ± 1.52 g/ml) on day 6 which was approx-

imately 30% of the control group (Fig. 5).
3.3.2. Total free sugars

A gradual but a sharp decline was observed in the level of free
sugars on starvation from control to day 6. The level of free

sugars decreased to almost 50% that of the control group
(8.646 ± 0.08 g/ml) on the very first day of starvation



Figure 6 Variations in the hemolymph total free sugars on starvation.
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(4.409 ± 0.00 g/ml). Reduction in the level of free sugars from

4.123 ± 0.02 g/ml on day 2–0.099 ± 0.00 g/ml on day 6 was
recorded (Fig. 6).

3.3.3. Total lipids

The total lipid concentration of the hemolymph of the experi-
mental crabs steadily decreased from day 1 till the termination
of the experiment on day 2. Experimental crabs of day 3

showed a significant decrease in the level of total lipids
(1.794 ± 0.088 g/ml) which was approximately 75% less than
the control group (8.450 ± 0.49 g/ml). The final concentration
Figure 7 Variations in the hemoly
on day 6 of starvation was 0.401 ± 0.20 g/ml, a 95% reduction

in the total lipid level when compared to the control (Fig. 7).

4. Discussion

Arthropod growth patterns characterized by molt cycles pres-
ent some trade-offs such as the need for variable muscle atro-
phy and restoration to accommodate the body inside the new

slightly bigger exoskeleton. Various environmental conditions
such as temperature, light (Bermudes and Ritar, 2008;
Bermudes et al., 2008), salinity (Romano and Zeng, 2006), or
mph total lipids on starvation.
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feeding treatments (Minagawa and Murano, 1993) can modify
the molting cycle, which implies changes in numerous physio-
logical, biochemical, and behavioral parameters (Chang, 1995;

Anger, 2001).
Alvarez-Fernadez et al. (2005) have studied the role of lipid,

protein, carbohydrate and nucleic acid in the molt cycle of

Norway lobster, Nephrops norvegicus. In their study, the lipid
content in hepatopancreas has been found to increase along
the premolt period (stages D0 and D3) to cover the increase

in energetic requirements in later stages. This increase in
requirements results from starvation from stage D3 until the
end of the postmolt period, altogether with the formation of
the new exoskeleton (Mayrand et al., 2000).

In the present study, the level of total free sugars in the
hemolymph was assayed during the molt stages, revealing in-
crease in its level during the premolt stages. A gradual decline

was observed thereafter on the onset of postmolt A and B, and
a sharp increase in intermolt C was seen and a higher level dur-
ing early premolt D0. The results of the present study resemble

those of Telford (1968), who has studied the changes in blood
sugar composition during the molt cycle of the lobster Homa-
rus americanus. Glucose levels were 35 percent higher in pre-

molt than in intermolt and were 30 percent lower in
postmolt. Besides its role in digestion, the digestive gland or
hepatopancreas actively participates in the molt cycle, being
the major site for storage glycogen, fats, and calcium during

premolt and thus, in the mobilization of these reserves when
needed in subsequent molt stages. When under stress (e.g.,
molting), the metabolic activities of the crabs increase rapidly,

causing the hepatopancreas to release higher levels of metabo-
lites into the hemolymph. Depletion of hepatopancreas glyco-
gen in P. pelagicus was observed in the present study during

postmolt A and B which arose to greater levels during inter-
molt C and early premolt D0. This runs in line with the ob-
served levels of total free sugars in the hemolymph observed

in the present study, thus envisaging the mobilization of glyco-
gen reserves from the hepatopancreas during the molt cycle to
provide energy in the form of sugars.

Cuticle proteins are suggested to be involved in the calcifi-

cation process (Andersen, 1999; Kragh et al., 1997) and in chi-
tin binding. In the present study, the concentration of cuticular
proteins was studied during the molting stages of P. pelagicus

revealing its increase from postmolt B to intermolt C stage.
This provides a positive correlation between the thickening
of the epidermis and cuticle during postmolt B and intermolt

C and the increase in the cuticular protein level. Hemolymph
proteins have been found to increase during intermolt C be-
cause the internal tissue growth takes place during this stage
(Passano, 1960a,b), and is considerably low in postmolt, pre-

molt and molt. Because the growth starts to occur during the
stages A–B (postmolt), and in the premolt stage D the rate
of growth decreases and the rate of feeding also decreases

(Freeman and Perry, 1985).
Starvation studies give indications of the energy resources

utilized by crustaceans and provide clues to the biochemical

pathways. The 100% survival ofP. pelagicus in the present study
showed the capacity of tolerance at starving conditions for
6 days which lies in coincidence with the observations of Com-

oglio et al. (2004, 2005, 2008) for Litopenaeus vannamei and the
southern king crab Lithodes santolla, exposed to starvation for
12 days. P. pelagicus in the present study has suffered consider-
able weight loss during the period of starvation. Steffens (1989)
has suggested that starvation affects metabolic activities and
during this period essential processes are maintained at the ex-
pense of accumulated endogenous energy reserves, which some-

times result in the loss of weight. However, some authors have
detected that some crustaceans such as shrimps and lobsters
compensate the weight of organic matter that they use in starv-

ing conditions with water uptake so that no loss of weight is de-
tected (Dall, 1974; Wilcox and Jeffries, 1976).

P. pelagicus presents a significant variation in its biochemical

composition under starvation. In the present study, total pro-
tein in the hemolymph remained constant during the experi-
ment with only a slight decrease in its content on day 1 and
day 6 of the fasting period. These results disagree with many re-

ports that maintain that protein is the main energy source for
most crustaceans but may explain previous findings. Mayzaud
and Conover (1988) have also reported an increase of ammonia

excretion and low values of O:N during the starvation period.
Muhlia-Almazan and Garcia-Carreno (2002) showed that in
L. vannamei, hepatopancreatic trypsin activity was significantly

affected by food shortage (differences of 35% between 2 and
120 h of starvation), while chymotrypsin activity decreased
40% at the same starvation level. Protein changes may occur

in which the crustacean switches to the use of one energy reserve
to another, depending on the developmental stage. In the cope-
podCalanus finmarchicus, the use of energy changed: during the
first 10 days of starvation and the protein content showed a

moderate decline, suggesting that this organism copes with star-
vation utilizing endogenous reserves different than protein;
however, during the next 21 days, total protein content was

drastically reduced (Helland et al., 2003). In subterranean aqua-
tic crustaceans changes have also been found. After 28 days of
starvation, the isopod Asellus aquaticus responded with an

immediate, linear and large decrease of all the energy reserves,
most of which were fully recovered after a 7-day refeeding per-
iod. In contrast, prolonged fasting (180 days) in the isopod

Stenasellus virei was characterized by three successive phases:
(1) an immediate, but low, depletion of both glycogen and argi-
nine phosphate, followed by (2) the utilization of triacylglyce-
rides associated with glycogen resynthesis and finally (3) a

slow depletion of both proteins (demonstrated by a slight in-
crease in ammonia excretion rate) and lipids, always associated
with a glycogen resynthesis. As in A. aquaticus, S. virei energy

reserves were fully recovered after a 15-day refeeding period
(Hervant and Renault, 2002). Strategies of fuel reserves usage
may change depending on the species and the larval stage (Le

Vay et al., 2001).
Carbohydrates and lipids showed significant variations in

the present study indicating both rapid accumulation and
depletion. Azeiteiro et al. (2003) have reported that the carbo-

hydrates and lipids were the most affected during the refeeding
period, when the accumulation of these constituents did not
reach the starting levels inMesopodopsis slabberi. From the en-

tire set of metabolites, studied, total free sugars was the most
drastically affected by starvation, dropping constantly from
the beginning of the study and stabilizing to approximately

5% of its initial value after 6 days of food deprivation. The re-
sults of the present study indicate that glucose is the first
source used by the crab for dealing with the lack of food.

While total free sugars were rapidly consumed, protein concen-
tration decreased slightly. Although it cannot be ruled out that
proteins are used as an energy source, the rapid decrease of
glucose indicates that it is the first fuel utilized. This response
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may be an adaptative strategy to avoid usage of high cost en-
ergy macromolecules, at the beginning of a food shortage epi-
sode. Prudent utilization of protein in very short starvation

periods could represent energy protection in the case of pro-
longed food scarcity intervals.

One of the most important roles of lipids in crustaceans is

related to reproduction, since they are associated with the mat-
uration of oocytes and the survival of the initial larval stages.
Total lipids decreased sensibly (90%) reaching the lowest val-

ues after 6 days of starvation. Both, sterols and acylglycerides
may be the main cause. It has been proposed that in crusta-
ceans, neutral lipids are preferentially catabolized during star-
vation, while polar lipids (phospholipids and cholesterol) are

conserved due to their role as structural components of cell
membranes (Heath and Barnes, 1970; Bourdier and Amblard,
1989; Stuck et al., 1996). A large reduction in total lipids

(particularly a total depletion of triacylglycerides stores) as a
response to starvation for the lake dwelling copepod Acantho-
diaptomus denticorni was reported (Bourdier and Amblard,

1989). Similar results were found for larvae, adult and sub-
adult lobsters (Stuck et al., 1996). Ritar et al. (2003) reported
that lipid dry weight in lobster larval stages II, IV and VI, de-

clined during starvation to 81%, 41%, and 73%, respectively,
compared to fed larvae. Additionally, polar lipids were the
only lipid class significantly reduced during starvation (45%,
38%, and 70%) in stages II, IV and VI, respectively. The next

most abundant lipid class in phyllosoma was sterol, and was
the only lipid class conserved during starvation at all stages.

Studies about the metabolism of crustaceans and their abil-

ity to adapt to environmental variations contribute to the
understanding and elucidation of perhaps new mechanisms.
More research is necessary to understand the biochemical

and physiological aspects of crustacean nutritional require-
ments, especially considering the high degree of flexibility in
the digestive physiology of crustaceans, as an essential part

of their ability to grow, survive, and reproduce when the food
supply changes or depletes.

5. Conclusion

The results of the present study emphasizes the role of bio-
chemical constituents in the molting process and thereby
throwing light on the molting stages that could be accounted

for commercial procurement. Furthermore, the quantification
of cuticular proteins of P. pelagicus through the molt stages
in the present study is an initial step toward discovering

answers for the following questions in the near future. In
P. pelagicus, feeding takes place throughout the year, except
during a few weeks of the Molting–mating period, when feed-

ing ceases or is at a minimum. In this context, the results of the
present study give new and relevant biological information
about the physiological and biochemical responses during
starving conditions about an important commercial species

inhabiting the Palk bay.
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