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Abstract It has been observed cannabinoid CB1 receptor signalling and the levels of endocannab-

inoid ligands significantly increased in the basal ganglia and cerebrospinal fluids of Parkinson’s dis-

ease (PD) patients. These evidences suggest that the blocking of cannabinoid CB1 receptors might

be beneficial to improve movement disorders as a sign of PD. In this study, a dose–response study

of the effects of intrastriatal injection of a cannabinoid CB1 receptor antagonist, AM251 and ago-

nist, ACPA, on movement activity was performed by measuring the catalepsy of reserpinized and
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AM251;

ACPA

non-PD (normal) rats with bar test. Also the effect of co-administration the most effective dose of

AM251 and several doses of ACPA were assessed. AM251 decreases the reserpine induced catalepsy

in dose dependent manner and ACPA causes catalepsy in normal rats in dose dependant manner as

well. AM251 significantly reverse the cataleptic effect in all three groups (1, 10, 100 ng/rat) that

received ACPA. These results support this theory that cannabinoid CB1 receptor antagonists might

be useful to alleviate movement disorder in PD. Also continuance of ACPA induced catalepsy in

rats after AM251 injection can indicate that other neurotransmitters or receptors interfere in ACPA

induced catalepsy. Based on the present finding there is an incomplete overlapping between cannab-

inoid CB1 receptor agonist and antagonist effects.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Parkinson’s disease (PD) is a degenerative disorder of the cen-
tral nervous system that often impairs the sufferer’s motor
skills, speech, and other functions. Parkinson’s disease belongs

to a group of conditions called movement disorders. It is char-
acterized by muscle rigidity, tremor, a slowing of physical
movement (bradykinesia) and a loss of physical movement
(akinesia) in extreme cases. The primary symptoms are the re-

sults of decreased stimulation of the motor cortex by the basal
ganglia, normally caused by the insufficient formation and ac-
tion of dopamine, which is produced in the dopaminergic neu-

rons of the brain. Secondary symptoms may include high level
cognitive dysfunction and subtle language problems. PD is
both chronic and progressive (Blandini et al., 2000).

In recent studies, several reports has been presented about
the role of cannabinoids in movement disorders such as PD.
Cannabinoids are a group of compounds which receive their

name after the identification of active constituent of the mari-
juana plant (Cannabis sativa). The effective principle in this
plant was identified as D9-tetrahydrocannabinol (D9-THC)
(Mechoulam et al., 1970; Fox, 2010). Two cannabinoid recep-

tors have been identified: CB1 (with it’s isoform CB1a resulting
from alternative splicing) and CB2. CB1 receptor is mainly
placed in the nervous system, although is also expressed in

other organs (Rinaldi-Carmona et al., 1994; Facci et al.,
1995; Shire et al., 1995; Pertwee and Fernando, 1996; Pertwee
et al., 1996a,b; Tsou et al., 1998; Fox, 2010). The CB2 receptor

is mainly expressed in the immune system and is not associated
with neurons (Facci et al., 1995; Galiegue et al., 1995; Schatz
et al., 1997). The brain has a distinct distribution of expression
of cannabinoid CB1 receptors that have high density in areas

which control motor behavior such as the basal ganglia and
cerebellum. But, cannabinoid CB1 receptors have low levels
in brainstem that may explain the cannabinoid receptor ago-

nists low toxicity, an attractive quality for putative therapeutic
uses (Herkenham et al., 1991a,b; Mailleux and Vanderhaeg-
hen, 1992; Tsou et al., 1998). Several recent reports suggest

that the basal ganglia is involved in the motor effects of can-
nabinoids (Pertwee and Wickens, 1991; Romero et al., 1995,
1996; Garcia et al., 1996; Miller et al., 1998; Sanũdo-Penã

and Walker, 1998a,b; Sanũdo-Penã et al., 1999; Sanũdo-Penã
et al., 1996, 1998a,b; Corchero et al., 1999; Ferrari et al.,
1999). Cannabinoids cause motor effects which seem to be
mediated by the cannabinoid CB1 receptor (Rinaldi-Carmona

et al., 1994). In general, activation of cannabinoid CB1 receptors
by cannabinoid CB1 receptor agonists inhibit neurotransmis-
sion (Mackie and Hille, 1992; Mackie et al., 1995; Deadwyler

et al., 1993; Howlett, 1995). Major effect of cannabinoids on
movement is hypoactivity and catalepsy (Dewey, 1986;
Hollister, 1986; Romero et al., 1996; Ferrari et al., 1999).

Nevertheless, also cannabinoid receptor agonists induce bi-
phasic effects on movement that are time- and dose-dependent.
An increase in motor activity has been observed with relatively

low doses or immediately after administration of higher doses
of cannabinoid receptor agonists. Later after administration,
high doses of cannabinoid receptor agonists inhibit movement

and produce catalepsy (Carlini et al., 1970; Davis et al., 1972;
Dewey, 1986; Hollister, 1986). A biphasic effect on movement
has also been reported for the endogenous ligand of the cannab-

inoid receptor anandamide (Sulcova et al., 1998). Amore recent
study of knockout mice for the cannabinoid CB1 receptor pre-
sented a reduction in the activity of these animals that suggests
an activational role of CB1 receptors on movement (Zimmer

et al., 1999). However, another study with knockout animals
for theCB1 receptors failed to observe anybasal effects onmotor
behavior (Ledent et al., 1999).

Also it has been found that the level of endocannabinoids and
the activation of G proteins by cannabinoid agonists signifi-
cantly increases in the postmortem basal ganglia of humans af-

fected by PD (Lastres-Becker et al., 2001). The same
stimulatory effect has been reported by measuring the levels of
endocannabinoid ligands in cerebrospinal fluids of PD patients.

Interestingly, these patients were untreated (Pisani et al., 2005).
The increase in CB1 receptors was also seen in MPTP-treated
marmosets, a primate PD model, and this disappeared after
chronic levodopa administration to these animals (Lastres-Beck-

er et al., 2001; Zhao et al., 2010). The same pattern was observed
byMaccarrone et al. (2003) for the increase in endocannabinoid
levels reported by these authors in a rat model of PD (Gubellini

et al., 2002), which was also reversed by levodopa. This point
suggests anunbalancebetweendopamine and endocannabinoids
at the basal ganglia in PD (Fernández-Ruiz andGonzález, 2005).

In this context, the present study was designed to explore
the motor effects of a cannabinoid receptor antagonist,
AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichloro-
phenyl)-4-methyl-1H-pyrazole-3-carboxamide) and agonist,

ACPA (N-(2-cyclopropyl)-5Z,8Z,11Z,14Z-eicosatetraenamide),
intrastriatal injection in rats ± subjected to subcutaneous injec-
tion of reserpine.
2. Materials and methods

2.1. Animals

Adult male albino wistar rats (305 ± 35 g) from Ahvaz

Jondishapur University of Medical Science (AJUMS) animal
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facility were used. Procedures involving animals and their care
were conducted in compliance with Committee of Ethics in Re-
search of the AJUMS. Animals were housed in cages (five per

cage before stereotaxic surgery and after that one per cage) at
23 ± 2 �C and 12/12 light/dark cycle and were allowed free ac-
cess to food and water.

2.2. Stereotaxic surgery, reserpine treatment and intrastriatal

injection

2.2.1. Notice

Many reports indicate SNc damages are induced by several

agents such as free radicals, 6-hydroxydopamine (6-OHDA),
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), reser-
pine, phenithiazine and butyrophenones. SNc lesion in animals
like rat leads to rigidity due to decreasing the inhibitory dopa-

mine effects on the caudate nucleus and putamen, as the main
rigidity-inductor neurotransmitter-releasing areas, located in
the striatum. Because of these changes in the brain of the le-

sioned rat, rigidity was occurred on the limbs on both the
sides. Chemical neurotoxins such as 6-OHDA or MPTP are
the most commonly and the main used methods for creating

the PD animal models. The use of MPTP is highly dangerous.
The compound is able to be absorbed from the skin, gastroin-
testinal tract and blood brain barrier. Furthermore, MPTP as
well as 6-OHDA destroys any catecholaminergic parts in the

brain; which leads to complications (Fathi-Moghaddam and
Shafiee Ardestani, 2008).

Reserpine was used in the present study because this is a

safe to use rat model of PD that has been obviously demon-
strated reserpine causes an increase in basal ganglia endocan-
nabinoid level and shows symptoms that are similar to those

seen in Parkinson’s disease (Di Marzo et al., 2000).
Anesthetized rats were placed in Narshige stereotaxic appa-

ratus. A hole was drilled over the injection site, and a 22 gauge

stainless steel guide cannula (NRK, IRIran) was aimed 2 mm
above the corresponding infusion site: left dorsal striatum,
AP = +0.5, L = �3, and V = �5.5 vs. bregma (Paxinos
andWatson, 1998). The guide cannula was fastened to the skull

with stainless steel screws and dental cement. Seven to ten days
after stereotaxic surgery animals were treated with reserpine
subcutaneously 3 mg kg�1 (dissolved in 1% glacial acetic acid

in distilled water) or vehicle 1 ml kg�1. Eighteen hour later
intrastriatal injections were performed in the home cage by
putting a 30-gauge stainless steel internal cannula (SUPA, IRI-

ran) connected to a Hamilton syringe and a delivery pump
(Stoelting, Germany). Solutions were slowly injected over
5 min, and 1 min after the conclusion of injection, the internal
cannula was carefully removed and catalepsy was measured.

After completion of all the experiments, half of the experi-
mental rats, were injected intrastriatal 1 ll of methylene blue.
Then were anesthetized with diethyl ether and humanly killed,

brains were removed, and stored on 10% paraformaldehyde
solution. Brains were sectioned. Cannula placements were
mapped onto a stereotaxic atlas (Paxinos and Watson, 1998)

and confirmed to be in the left dorsal striatum.

2.3. Chemicals and doses

AM251 and ACPA were bought from Tocris (England) and
were dissolved in 30% DMSO/70% water for injection.
Reserpine powder was bought from Fluka (Swiss) and was
dissolved in 1% glacial acetic acid (Merck, Germany) in dis-
tilled water. For systemic injections, reserpine was injected at

3 mg kg�1 SC. For intracerebral infusions, AM251 was in-
jected at 1, 10, 100 and 200 ng/ll and ACPA was injected
at 1, 10 and 100 ng/ll. The most efficient AM251 dose

was selected for cotreatment with CB1 receptor agonist.
The corresponding vehicle was used for the control group
(dose 0) in every treatment. All drugs were injected at a vol-

ume of 1 ml kg�1 body weight or at volumes of 1 ll
(intrastriatal).

2.4. Measurement of catalepsy

Reserpine induced catalepsy and the effect of CB1 receptor
agonist or antagonist was measured with the standard bar test
(Sanberg et al., 1996), in a wooden chamber (length, 23 cm;

width, 10.5 cm; height, 9 cm) with a horizontal metal bar
(diameter, 0.4 cm; length, 10.5 cm) fixed at 9 cm above the
floor, and at 4 cm from the back of the box. All experiments

were carried out between 8:00 and 14:00. Animals were used
only once. After a 30–60 min habituation period to the testing
room, reserpinized and normal rats received one of the follow-

ing intrastriatal treatments: (1) vehicle, (2) AM251 at four
doses (1, 10, 100 and 200 ng/rat), (3) ACPA at three doses
(1, 10 and 100 ng/rat), or (4) ACPA (1, 10 and 100 ng/rat) plus
most efficient dose of AM251 (100 ng/rat). From that moment

on, catalepsy was measured every 15 min during the whole ses-
sion that lasted 2 h.

To measure catalepsy, the rat was gently lifted until its fore-

paws firmly grasped the metal bar. Then, the rat body was re-
leased and simultaneously a stopwatch was started. The time
elapsed until the animal released both forepaws from the

bar, up to a maximum of 300 s, was defined as the catalepsy
time.

2.5. Statistical analysis

One Way Variance Analysis (ANOVA) with Tukey’s post hoc
made comparison between groups and differences with
p-values <0.05 were considered significant.
3. Results

3.1. Effect of ACPA on normal rats

ACPA caused cataleptic phenomenon in normal rats dose

dependently. ACPA (1, 10 and 100 ng/rat) receiving groups
were shown significant difference from the control group with
p< 0.001 except at 120 in 1 ng/rat dose which was found

p< 0.01. Also between 1 and 10 ng/rat doses always there
was significant difference with at least p< 0.01 but there is
no difference between 10 and 100 ng/rat doses except 105

(p< 0.05) and 120 (p < 0.01) (Figs. 1 and 2).

3.2. Effect of AM251 on the catalepsy of parkinsonian rats

AM251 decreased the reserpine induced catalepsy dose

dependently. One hundred ng/rat injections showed a maxi-
mum of anti-cataleptic effect comparing to test groups



Figure 1 Dose–response and time dependent effect of intrastriatal injection of several doses of cannabinoid CB1 receptor antagonist,

AM251, on catalepsy time in rats which received reserpine (n= 7, *p< 0.05, **p< 0.01, ***p< 0.001). Data are shown as the

mean ± SEM followed by Tukey–Kramer as post-ANOVA test.

Figure 2 Dose–response and dose-dependent effect of intrastriatal injection of several doses of cannabinoid CB1 receptor agonist,

ACPA, on catalepsy time in non-PD rats (n= 7, *p< 0.05, **p< 0.01, ***p < 0.001). Data are shown as the mean ± SEM followed by

Tukey–Kramer as post-ANOVA test.
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(1, 10, 100 and 200 ng/rat). One hundred ng/rat significantly
differed with control group at 15, 30 (p< 0.001) and 45

(p < 0.01). Ten ng/rat had significant difference with control
group at 15, 30 (p < 0.001) and 200 ng/rat had significant
difference with control group at 15 (p< 0.05) and 30

(p < 0.01). However, 1 ng/rat never showed a significant dif-
ference with control group. In all groups maximum anti-cat-
aleptic effect was observed at 15 min after intrastriatal

AM251 injection and about 1 h after injection it reversed.
An interesting point was observed when the increase in
AM251 doses up to 100 ng/rat caused to anti-cataleptic ef-
fects and the increase in the doses moreover 100 up to

200 ng/rat anti-cataleptic effects significantly decreased that
may indicate a biphasic effect for AM251 (Figs. 2–4).
3.3. Effect of ACPA and AM251 contemporary injection on
normal rats

Those groups whose received ACPA (1, 10 and 100 ng/rat) and
AM251 most effective dose, in all times showed significant dif-

ference p< 0.05 in comparison with control group but there
was not found any significant difference between test groups
and the above at all (Figs. 4–6).
4. Discussion

Reserpine, an alkaloid extracted from the roots of an Indian

plant, Rauwolfia serpentina, blocks the ability of aminergic



Figure 3 Comparison of effect of contemporary intrastriatal injection of cannabinoid receptor agonist, ACPA (1 ng/rat) and antagonist

most effective dose (100 ng/rat) on catalepsy time with control group (n= 7, *p< 0.05, **p < 0.01, ***p< 0.001). Data are shown as

the mean ± SEM followed by Tukey–Kramer as post-ANOVA test.

Figure 4 Comparison of effect of contemporary intrastriatal injection of cannabinoid receptor agonist, ACPA (10 ng/rat) and

antagonist most effective dose (100 ng/rat) on catalepsy time with control group (n= 7, *p< 0.05, **p< 0.01, ***p< 0.001). Data are

shown as the mean ± SEM followed by Tukey–Kramer as post-ANOVA test.
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transmitter vesicles to take up and store biogenic amines, prob-

ably by interfering with an uptake mechanism that depends on
Mg2+ and ATP (Benowits, 2004).

In reserpine induced model of PD, catecholamine stores are

depleted and a motor syndrome characterized by decreased ini-
tiation and speed of voluntary movements, rigidity, and a
hunched posture is observed (Colpaert, 1987). These symp-

toms bear many similarities to those seen in Parkinson’s dis-
ease and are ameliorated by dopaminergic anti-parkinsonian
drugs (Carlsson et al., 1957). Thus, the reserpine-treated ro-

dent provides a useful model of Parkinson’s disease (Di Marzo
et al., 2000).
Within the basal ganglia, cannabinoid receptors are as-

sumed to be predominantly localized on presynaptic terminals
of the GABAergic striatonigral and striatopallidal terminals
(Ameri, 1999). This finding indicates that CB1 receptors are lo-

cated presynaptically on the degenerating terminal of the stri-
atal projection neuron. Cannabinoid receptors have been
shown to coexist with both dopamine D1 and D2 receptors

on striatonigral and striatopallidal terminals (Herkenham
et al., 1991a; Mansour et al., 1992) and apparently produce
opposite effects on second messengers and neurotransmitter

release, that is, CB1 receptor activation is able to inhibit a
D1-mediated increase in cAMP accumulation (Bidaut-Russell



Figure 6 Comparison of effect of contemporary intrastriatal injection of several doses of cannabinoid receptor agonist, ACPA and

antagonist most effective dose (100 ng/rat) on catalepsy time with control group (n= 7). Data are shown as the mean ± SEM followed by

Tukey–Kramer as post-ANOVA test.

Figure 5 Comparison of effect of contemporary intrastriatal injection of cannabinoid receptor agonist, ACPA (100 ng/rat) and

antagonist most effective dose (100 ng/rat) on catalepsy time with control group (n= 7, *p< 0.05, **p< 0.01, ***p< 0.001). Data are

shown as the mean ± SEM followed by Tukey–Kramer as post-ANOVA test.
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and Howlett, 1991; Zhao et al., 2010; Fox, 2010) and also able

to inhibit the D2-mediated inhibition of cAMP accumulation
(Glass and Felder, 1996).

In this study with intrastriatal injection of ACPA normal

rats involved in catalepsy that increased dose dependently. It
is interesting that there is a significant difference between 1
and 10 ng/rat test groups however in comparison of 10 and

100 ng/rat test groups catalepsy time has increased but there
is not significant difference between them unless at 105 and
120 min after drug administration. Beside the present study

have been reported that catalepsy is symmetrical to cannabi-
noid receptor agonist dose (Brotchie, 2003; Meschler et al.,
2000; Järbe et al., 2002; Walton et al., 1938; Dewey, 1986)
however Sulcova et al. (1998) has demonstrated that ananda-
mide, an endogenous cannabinoid receptor agonist, has bipha-

sic effect on catalepsy, first anandamide reduces catalepsy and
in higher doses it causes catalepsy increasment. Also Souilhac
et al. (1995) has reported that unilateral injection of a cannab-

inoid CB1 agonist in mice leads to contralateral turning behav-
ior. Because CB1 cannabinoid receptors exist in dopaminergic
terminals of nigrostriatal direct (Ameri, 1999), it is possible

that intrastriatal injection of CB1 cannabinoid receptor ago-
nist, ACPA, causes to dopamine release reduction and
strengthening of GABAergic neurons in striatonigral and stri-

atopallidal directs. These conditions approximately is similar
to PD patients that inhibitory effect of indirect route in basal
ganglia has increased and extraordinary inhibitory effect of
internal globus pallidus (GPi) and reticular substantia nigra
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(SNr) on thalamus leads to reduction of thalamus excitatory
effect on brain cortex by glutamatergic neurons. These events
probably cause to catalepsy which is induced by cannabinoid

CB1 receptor agonist. Although this theory is not certainly
and presence of excitatory D1 receptors and inhibitory D2

receptors in the vicinity of another, and glutamate release in

striatum are not ignorable. Therefore events which have been
observed after cannabinoid CB1 receptor agonist injection
probably are resultant of all of inhibitory and excitatory

neurotransmitters.
Intrastriatal injection of cannabinoid CB1 receptor antago-

nist reversed reserpine induced catalepsy in dose and time depen-
dent manner. Also in the time of drug injection and some

minutes after that all of animals in all test groups involved in
contralateral turning behavior and after that increasment of
movement activity were clear. From 1 to 100 ng/rat induced

anti-cataleptic effect, but in 200 ng/rat anti-cataleptic effect
have reduced. This event can be explained by propounding a bi-
phasic effect for AM251, cannabinoid CB1 receptor antagonist.

All of animals which treated with agonist and antagonist
co-administration involved in catalepsy. Although in these
groups catalepsy intensity was less than groups which received

agonist, all of three groups (1, 10 and 100 ng/rat) had signifi-
cant difference comparing to control group. However in this
section of study, test groups received 100 ng/rat of AM251
and several doses of ACPA (1, 10 and 100 ng/rat) no signifi-

cant difference was observed between them. Järbe et al.
(2002) have shown that systemic administration of rimonabant
(a synthetic cannabinoid CB1 receptor) has reversed the effect

of systemic administration of D9-THC completely (Järbe et al.,
2002). As we know reserpine blocks the ability of aminergic
transmitter vesicles to be reuptaked and restore dopamine,

norepinephrine and serotonine, incomplete reverse of ACPA
effects can be related to interfering of other neurotransmitters
such as dopamine (Banoua et al., 2004) or serotonine (Pires

et al., 2005). Piers et al. in 2005 has demonstrated a role for
serotonine and it’s receptors in cannabinoids induced cata-
lepsy. He has reported that serotonine selective reuptake inhib-
itors such as paroxetine and sertralin improve haloperidol

induced catalepsy in mice.
Hyperactivity of the endocannabinoid transmission

(recording CB1 receptors or endocannabinoid levels) has been

also reported in the basal ganglia in different rat models of PD
(Mailleux and Vanderhaeghen, 1993; Romero et al., 2000; Di
Marzo et al., 2000; Gubellini et al., 2002). Most of data point

that endocannabinoid transmission becomes overactive in the
basal ganglia in PD. This occurred in the case of administra-
tion of reserpine (Di Marzo et al., 2000; Zhao et al., 2010)
or dopaminergic antagonists (Mailleux and Vanderhaeghen,

1993) or during the degeneration of these neurons with local
application of 6-hydroxydopamine (Mailleux and Vanderhaeg-
hen, 1993; Romero et al., 2000; Gubellini et al., 2002) or

MPTP (Lastres-Becker et al., 2001), and it is compatible with
the hypokinesia that is a symptom of this disease. This would
also support the suggestion that CB1 receptor antagonists

might be useful to alleviate bradykinesia in PD, as well as to
decrease the development of dyskinesia caused by prolonged
replacement therapy with levodopa (Brotchie, 2000, 2003;

Romero et al., 2000; Di Marzo et al., 2000; Lastres-Becker
et al., 2001; Fox et al., 2002; Fernández-Ruiz and González,
2005; Zhao et al., 2010). In this theory, CB1 receptor blockade
would inhibit the excessive inhibition of GABA uptake
produced by the increased activation of CB1 receptors in
striatal projection neurons (Maneuf et al., 1996; Romero
et al., 1998), thus allowing a faster removal of this inhibitory

neurotransmitter from the synaptic cleft, which would reduce
hypokinesia. Recently several studies have presented the capa-
bility of rimonabant, a selective antagonist of CB1 receptors,

to improve hypokinesia in animal models of PD, but other lab-
oratories have shown opposite results (Di Marzo et al., 2000;
Meschler and Howlett, 2001; El-Banoua et al., 2004; Casteels

et al., 2010). In addition, no effects were found in the only clin-
ical trial developed so far (Mesnage et al., 2004). It is possible
that the blocking of CB1 receptors might be useful only at spe-
cial phases of the disease. In this sense, Fernández-Espejo et al.

(2005) have demonstrated that rimonabant alleviate motor
inhibition in 6-hydroxydopamine-lesioned rats with extremely
high degeneration of dopaminergic neurons (95% of neuronal

loss) but not in rats with high dopaminergic degeneration (85–
95%), which presents an additional advantage since it would
allow for an anti-parkinsonism compound in a stage of the dis-

ease when the classic dopaminergic therapy is generally failed.
On the other hand, rimonabant might provide improvement of
symptoms through mechanisms without depending of recover-

ing dopamine transmission, which might be particularly inter-
esting for those patients that do not respond to classic therapy
of dopaminergic replacement.

Also there are some other documents for the level increas-

ment of COX-2 enzyme in PD basal ganglia especially in SNc.
This increasment has reported in the brain of dead patients too
and is independent to the kind of SNc lesion (McGeer and

McGeer, 2002; Mladenovic et al., 2004; Fathi Moghaddam
et al., 2008). Some other biochemicals such as 2-arachidonyl
glycerol, endogenous cannabinoid CB1 receptor agonist, and

prostaglandins which have common biochemical origin
(Mladenovic et al., 2004), seems evaluating of prostaglandins
role in cannabinoid effects in PD is essential.

These results support this theory that cannabinoid CB1

receptor antagonists might be useful to alleviate movement dis-
order in PD. Also continuance of ACPA induced catalepsy in
rats after AM251 injection can indicate that other neurotrans-

mitters or receptors interfere in ACPA induced catalepsy. Based
on the present findings there is an incomplete overlapping be-
tween cannabinoid CB1 receptor agonist, ACPA, and antago-

nist, AM251, effects that consideration of the effects of ACPA
and AM251 in other animal models of PD and contemporary
study of cannabinoid CB1 receptor with other receptors which

are presented in basal ganglia such as D1, D2 and glutamate
can light up way for new treatments in PD.
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