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Abstract
Purpose—Liver iron quantification by MRI has become routine. Pixelwise (PW) fitting to the
iron-mediated signal decay has some advantages but is slower and more vulnerable to noise than
region-based techniques. We present a fast, pseudo-pixelwise mapping (PPWM) algorithm.

Materials and methods—The PPWM algorithm divides the entire liver into non-contiguous
groups of pixels sorted by rapid relative relaxivity estimates. Pixels within each group of like-
relaxivity were binned and fit using a Levenberg-Marquadt algorithm.

Results—The developed algorithm worked about 30 times faster than the traditional PW
approach and generated R2* maps qualitatively and quantitatively similar. No systematic
difference was observed in median R2* values with a coefficient of variability (CoV) of 2.4%.
Intra-observer and inter-observer errors were also under 2.5%. Small systematic differences were
observed in the right tail of the R2* distribution resulting in slightly lower mean R2* values (CoV
of 4.2%) and moderately lower SD of R2* values for the PPWM algorithm. Moreover, the PPWM
provided the best accuracy, giving a lower error of R2* estimates.

Conclusion—The PPWM yielded comparable reproducibility and higher accuracy than the
TPWM. The method is suitable for relaxivity maps in other organs and applications.
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INTRODUCTION
Iron overload is a major concern for patients with genetic disorders of iron metabolism as
well as with transfusion-dependent anemias [1]. Excess iron is stored in many organs,
particularly liver, endocrine glands and heart, where it causes increased morbidity and
mortality [2, 3].

The liver is the major site of iron storage and liver iron concentration (LIC) has been used as
a measure of total body iron stores [4]. Determination of LIC has become a vital parameter
in the management of iron overloaded patients, anchoring the interpretation of trends in
serum ferritin. In healthy livers, biopsy remains an accurate test for LIC, but it is invasive,
expensive, and subject to sampling errors due to the heterogeneity of iron distribution, with
coefficients of variation ranging from 15% to 40% [5–7].

Magnetic Resonance Imaging (MRI) has recently been recognized as a non-invasive
alternative to liver biopsy. Moreover, MRI can assess hepatic, cardiac [8, 9], pancreatic [10,
11], and pituitary [12] iron stores. MRI does not measure iron per se, but images water
protons as they diffuse near the paramagnetic iron stores that are distorting the magnetic
field. These interactions are rendered as a darkening of the images proportional to the iron
concentration as a consequence of the increase in relaxation rates R2 and R2* assessed by
spin echo and gradient approaches, respectively [13]. R2* techniques are more commonly
used in the clinical arena, because they enable faster data acquisition and analysis.

To calculate R2*, the MRI signal is monitored at several gradient echo times (TEs) and a
signal decay is mathematically modelled. The fitting can be applied in two different ways. In
a region-based fit all the pixels within the region of interest (ROI) are averaged together for
each TE and the fitting is performed for this averaged decay curve [8, 9]. This is typically
performed in small, peripheral ROIs to avoid contributions from vascular and biliary
structures, leaving this approach vulnerable to sampling error in unskilled operators. In the
traditional pixelwise mapping (TPWM) approach the fitting is performed for each pixel in
the region yielding a complete R2* map. The mean and the median for this distribution are
then calculated [14, 15]. The main advantage of the pixelwise approach is that the regions of
interest typically encompass all visible liver tissue, removing selection bias, yielding
exceedingly low inter-slice and inter-observer variability (<3%). Furthermore, TPWM can
expose areas of artifact or pathology that might be missed using a regionbased approach [14,
16].

The primary drawback of traditional R2* mapping is that it is computationally intensive and
the signal-to-noise for each individual fit is relatively poor. In this study an automated
multiple-ROI approach that simulates R2* mapping (pseudo-pixelwise mapping, or PPWM)
is presented. The reproducibility and the accuracy of the PPWM were tested using hepatic
MRI data of iron-overloaded patients and simulated hepatic data derived from these images.

MATERIALS AND METHODS
Study population

Baseline data from a phase 2 clinical trial of FBS0701 was used as a test data set because it
represented MRI data collected according to local clinical practice from eight major
thalassemia centers. Fifty-four patients of mixed race (12 Asian, 2 Black, 4 Thai and 36
White) participated with sites contributing between four and thirteen examinations (median,
seven cases). Twenty-two patients were females and mean age was 28.4 ± 8.6 years. Fifty-
two patients were diagnosed with thalassemia major and 2 (5.3%) with sickle cell disease;
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all were regularly transfused and chelated. Mean serum ferritin levels were 3093 ± 2458 ng/
ml.

To compare the intrinsic accuracy of the two methods, images were retrieved from 39
patients referring at our Institution in whom complete complex (real and imaginary images)
data from their hepatic images had been retained All these patients suffered from
thalassemia major and 16 of them were females. Mean age was 18.6 ± 10.6 years.

Informed consent was obtained from prospective data on a protocol approved by their
corresponding local institutional review boards; permission for review of retrospective data
was also granted from the Committee on Clinical Investigation.

Image acquisition
MRIs were performed on 1.5T scanners at 8 different sites. Table 1 indicates, for each site,
the type of scanner and the gradient-echo sequence parameters. All sites collected images
according to their local clinical practice. Two centers acquired multiple hepatic slices, but
only one slice (midhepatic) was used to compare the two analysis methods. Images at our
site were performed on 1.5T GE Signa CVi scanner (GE Healthcare, Waukesha, WI).
Complex R2* data were acquired at eight different TEs (1.09–13.38 ms, ΔTE=1.76).

Generation of reference data
Noiseless, reference images are necessary to compare the absolute accuracy of post-
processing methods. We approximated noiseless images from our complex-valued clinical
data by filtering the real and imaginary images using a 5×5 median filtering, raising the
signal to noise ratio (SNR) by a factor of five. A reduced noise image relatively free of
Rician noise bias was formed by calculating the complex magnitude of the filtered images;
pixelwise R2* estimates from these images formed the reference standard. Test images were
created by adding Gaussian white noise to the filtered real and imaginary images to degrade
their SNR to the originally acquired level. Magnitude images from these data contained
similar R2* distribution, noise characteristics, and noise bias as the original source data but
were quantifiably comparable to reference images.

R2* mapping: pixelwise and pseudo-pixelwise algorithms
All R2* images were processed centrally using a custom-written software developed in
MATLAB (The Mathworks, Natick, MA). For both traditional and pseudo-pixelwise
methods, a ROI was drawn around the entire liver boundary, excluding obvious central hilar
vessels. Both techniques also used the same intrinsic fitting model consisting of a single
exponential with a constant offset model:

(1)

S represents the observed signal intensity, S0 is the signal intensity at TE=0, R2* is the
transverse relaxation rate, TE represents the echo times and C is a constant value that takes
into account the rectification of MRI noise and partial-volume mixing of liver parenchyma
with long T2* species such as blood and bile. The fitting was performed using the
Levenberg-Marquardt algorithm. Mean, median, and standard deviation (SD) of the multiple
R2* values were calculated.

The TPWM method calculates Eq. (1) for each pixel in the region of interest. Since signal-
to-noise ratio is relatively modest, spurious R2* values can result, particularly at the
boundaries of vascular/biliary structures. The PPWM method overcomes this limitation by
using a multistep-step estimation process, described below.
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1. Image smoothing with a 5×5 median filter; this improves point wise estimation in
step 2.

2. Generation of an approximate R2* map. It is assumed that the signal decay is
described by a single exponential model (Eq. (1) 1 without the constant C), and the
decay curve is then logarithmically (to base e) scaled, obtaining a straight line:

(2)

To eliminate excessive contribution of long T2* species at high iron
concentrations, echo times greater than 2 ms are truncated, leaving a 2–3 point R2*
estimate in most cases. A non-weighted linear least-squares fit is performed for
each pixel. Calculations are vectorized, greatly speeding up calculations in
MATLAB (256×256 calculation time around 1 second). While the absolute R2*
values are not accurate, relative R2* relationships are generally preserved.

3. All pixels in the traced ROI are sorted according to their approximate R2* values.

4. Divide the sorted R2* values into N bins, where N is the square root of total
number of pixels. Each bin comprises N pixels, not necessarily spatially close, but
close in terms of approximated R2* value. From the original, unprocessed images,
signal intensity values corresponding to pixels in each bin are averaged together
separately for each echo time, creating one signal decay curve for each bin.

5. The signal decay curve for each bin is fit to equation 1, using Levenberg-Marquadt
algorithm, generating N estimates of R2*. A pseudo-R2* map is generated by
projecting the R2* value for each bin to each pixel in the bin. Mean, median and
standard-deviation R2* values are calculated from the distribution of R2* values.

Reproducibility analysis
Reproducibility analysis was performed for both algorithms. Images were reanalysed by the
same observer after at least a 24 - hour delay to evaluate the intra-observer variability. To
evaluate the inter-observer variability, the images were presented in random order to another
operator, blinded to the results obtained by the first observer.

Accuracy evaluation
The bias, variance, and mean-squared error between R2* maps calculated from the noiseless
and noisy magnitude data were used to compare true pixelwise and pseudo-pixelwise
accuracy.

Statistical analysis
All data were analyzed using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA) and
MedCalc for Windows version 7.2.1.0 (MedCalc Software, Mariakerke, Belgium) statistical
packages.

Data were expressed as mean ± SD. Summary data were displayed using scatter plots with
regression lines. A coefficient of variation (CoV) was calculated as the ratio of the SD of the
half mean square of the differences between the repeated values, to the general mean. The
agreement between the algorithms was determined by the Bland-Altman technique, plotting
the difference versus the average of the variables. Bias was the mean of the difference
between the two methods and agreement was the mean ± 1.96 SDs.

Reproducibility was evaluated using CoV, interclass correlation coefficient (ICC) and
Bland-Altman statistics. The ICC was obtained from a two-way random effects model with
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measures of absolute agreement. An ICC ≥ 0.75 was considered excellent, between 0.40 and
0.75 good, and < 0.40 unsatisfactory.

The accuracy of the individual and median R2* values calculated by the two techniques was
assessed in the test images by means of the Bland-Altman analysis and the mean standard
error (MSE) with respect to R2* values estimated from the reference images. That is, in each
patient a Bland Altman statistics was performed for all the pixels in the ROI and the
absolute values of the bias, the lower and the higher limits, and the ranges were compared
for the whole population using a paired sample t-test.

RESULTS
Performance of the fast algorithm

All image analyses were performed on a 2.8 GHz Macintosh computer (version 10.6.8). The
developed algorithm worked about 30 times faster than the strict approach, proportional to
the reduction in subroutine calls to the Levenburg-Marquadt algorithm. To give an example,
for a ROI of 6355 pixels, the mean running time after the ROI definition was less than 4 s
for the PPWM and 136 s for the TPWM.

The R2* maps obtained using PPWM were qualitatively and quantitatively similar to those
obtained with TPWM assessment. The fast algorithm was able to detect local R2*
fluctuations, reflecting changes in iron load or due to the presence of vessels. Figure 1 shows
R2* maps calculated for the same patient using TPWM algorithm, PPWM algorithm, and
their difference. There were four distinct areas of loading. The vascular and biliary
structures had the lowest R2* values, followed by the left lobe, right middle lobe, and right
posterior lobe, respectively. The PPWM representation was somewhat smoother, but more
clearly distinguished the systematic R2* gradations. The difference image demonstrates the
largest deviations in pixels that had partial volumes between biliary structures and hepatic
tissue. For the traditional algorithm the median and the mean R2* values were, respectively,
320.6 Hz and 322.0 Hz. For the fast algorithm the median and the mean R2* values were,
respectively, 303.4 Hz and 308.5 Hz.

Figure 2 shows frequency histograms associated with the R2* maps presented in Figure 1.
The R2* distribution was evaluated using 30, 65, and 100 different bins (since there were
1251 pixels in the region of interest, the default value was 35). Larger bin number yielded
finer resolution of map texture but at the price of less noise suppression and greater
computation time. Histogram texture was preserved, although the PPWM demonstrated
greater contrast of the right posterior lobe. There was less area in the right tail of the PPWM
method (even with finer resolution), suggesting that modest averaging suppresses spuriously
high R2* estimates generated with true PW methods. In general, there was excellent
agreement between the two algorithms, regardless of bin size.

Agreement between algorithms: median R2* values
Good agreement was observed across the entire study population. Median R2* values
obtained with TPWM and PPWM were 496.9 ± 321.9 Hz (range: 63.5 – 1370.5 Hz) and
492.5 ± 322.9 Hz (range: 68.1 – 1350.9 Hz), respectively. Figure 3a shows median R2*
obtained with the PPWM algorithm as a function of values obtained with the TPWM
algorithm. The line of best fit had a slope of 1.002 ± 0.007 and an intercept of −5.339 ±
4.053 Hz. The R-squared value for the fit was 0.998. Figure 3b shows the Bland-Altman
plot. The mean difference was −4.4 ± 15.9 Hz. The error was proportional to the average
value, with a CoV of 2.3%.
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Agreement between algorithms: mean R2* values
Mean R2* values were systematically slightly (2.7%) higher using the TPWM than the
PPWM method, measuring 486.5 ± 314.1 Hz (range: 62.4 – 1346.7 Hz) and 474.9 ± 304.5
Hz (range: 64.2 – 1237.6 Hz), respectively. Figure 4a shows mean R2* obtained with the
PPWM algorithm as a function of values obtained with the traditional algorithm. The line of
best fit had a slope of 0.967 ± 0.011 and an intercept of 4.641± 6.099 Hz. The R-squared
value for the fit was 0.994. Figure 4b shows the Bland-Altman plot. The mean difference
was 11.6 ± 26.1 Hz. Differences also scaled with average R2* value, having a CoV of 4.2%.

Comparison of Standard Deviation
Figure 5a shows SD obtained with the fast algorithm as a function of SD obtained with the
traditional algorithm. The relationship was not linear with the PPWM generating
systematically lower SD estimates for R2* values > 400 Hz (Figure 5b). For both
algorithms, SD rises with median R2*; this relationship is concave-up for the traditional
method and more linear with the PPWM method. Bland Altman analysis demonstrates that
PPWM methods were 22% lower than using TPWM analysis.

Intra- and inter-observer Variability
The results of the intra- and inter-observer variability analysis for mean and median R2*
values obtained with both the algorithms are indicated in Table 2. Variability was not
statistically different for the two methods. The ICC was excellent.

Accuracy of the algorithms
Reference median R2* values were 633.2 ± 466.7 (range: 25.3 – 1700.6 Hz). For noisy
magnitude images, median R2* values were 631.9 ± 464.8 Hz (range: 24.9 – 1702.7 Hz)
when using the TPWM and 632.1 ± 467.5 Hz (range: 24.3 – 1701.2 Hz) when using the
PPWM. Table 3 shows the accuracy of both algorithms for quantifying median R2* values
(compared with the reference standard). The PPWM had twofold lower coefficient of
variation and Bland-Altman bias/range as well as fourfold lower mean squared error.

On a pixel-by-pixel basis, the absolute values of the bias averaged were not significantly
different (12.1 ± 17.2 Hz for TPWM vs 11.5 ± 13.5 Hz, PPWM P=0.775). However, the
TPWM showed significantly increased lower limits of agreement (−284.9 ± 287.1 Hz vs
−270.9 ± 271.0 Hz, P=0.008), higher limits of agreement (268.9 ± 297.8 Hz vs 259.1 ±
270.5 Hz, P=0.028) and ranges (553.7 ± 553.9 Hz vs 530.0 ± 510.4 Hz, P<0.0001).

DISCUSSION
LIC assessment is critical for the diagnosis and management of iron overload patients. MRI
R2* has been proven to accurately quantify hepatic iron across a clinically relevant range of
LIC [14]. R2* estimates are obtained by fitting an appropriate decay model to the MRI
signal at various echo times. The monoexponential function plus a constant has been
demonstrated to be an optimal model for large regions of interest [15]. The constant corrects
for the signal offset due to the noise and the presence of iron-poor regions (i.e. blood) [14,
16]. The use of this conventional model, however, is computationally-intensive, requiring
iterative nonlinear fitting, an excessively timeconsuming process if pixel-wise mapping is
desired. To reduce processing time some laboratories compromise by examining small
regions of interest in vessel poor areas [17]. While this can be clinically acceptable, this
practice can generate misleading data as illustrated in Figure 1.

The PPWM presented in this report represents a hybrid between these two approaches. The
entire liver in the single slice acquired is used, reducing inter-observer error, but the liver
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slice is then subdivided into multiple ROIs containing tissue of similar relaxivity based upon
a rapid linear least squares estimate. The rapid linear least squares fit is not sufficient alone
for accurate R2* quantization because the natural logarithm overemphasizes fitting
contribution from the weaker signal even for a constant variance noise [18]. Moreover, it has
been shown that the single exponential model introduces a large error for T2* values lower
than 5 ms [15]. In fact, at high liver iron concentrations, the “tail” of the decay curve reflects
long T2 species such as blood volume and bile as well as rectified noise bias. One accepted
method for dealing with this effect is to truncate the fit. The value of 2 ms was chosen
because it provided at least a 2-point estimator of R2* across the multicenter cohort.
Although a crude approximation to R2*, but this rapid estimate worked sufficiently well to
rank order pixels with respect to iron load.

In our “hybrid” approach, the choice of bin-size creates a trade-off between
noisesuppression and smoothness of the resulting map and its histogram. Note that each bin
contains a constant number of points but a range of R2* values that varies according to the
underlying distribution, i.e. the bin width adapts to the histogram shape. Many “optimal”
binning algorithms have been proposed for histograms of known density functions.
However, liver R2 and R2* histograms are often at least biphasic, so we chose to set the bin
size equal to the square-root of the number of pixels. This empiric algorithm scales signal to
noise ratio (SNR) improvements (#pixels/bin) and resolution (#bins) in a balanced manner
and was robust across region of interest sizes that we tested (50 to 50,000 pixels). Our
choice of histogram bin size cannot be claimed to be optimal in any mathematical sense, but
it is a common initial choice for spreadsheets and statistical programs. Our algorithm
produce histograms that were more “peaky” than the pixel-wise representation; this reflects
the reduction in data dimensionality, similar to parametric power spectral analysis. Higher
order iteration could be used to better refine histogram estimation, but this would require
considerably more computation. Our goal was more modest, since we simply wanted to gain
speed and robustness through signal averaging without overly blurring the spatial
distribution of iron overload. Our approach preserves anatomic boundaries unlike low pass
filtering and generates tissue relaxivity maps that correspond well with traditional pixelwise
maps.

Concordance between the PPWM and TPWM methods was excellent. No systematic
difference was observed in median R2* value, the value we use for LIC estimation, and CoV
of only 2.4%. Intra-observer and inter-observer errors were nearly identical and exceeding
low, comparable to prior work [15]. Small systematic differences were observed in the right
tail of the R2* distribution (see Figure 2) resulting in slightly lower mean R2* values and
moderately lower SD of R2* values for the PPWM. We believe that these differences
represent fitting errors by the traditional pixelwise method resulting from either poor SNR at
high iron concentrations and partial volume-effects near vessels. This hypothesis is
supported by the concave-upward relationship between SD and median R2* value for
traditional pixelwise estimation observed in Figure 5b. The PPWM maintains a linear
scaling of SD with median R2* because binning improves SNR more than five-fold,
suppressing spuriously high R2* estimates.

The qualitative impression presented in Figure 2 was born out in our test images where an
absolute standard existed. We showed that the deviation of median R2* estimates from the
reference values was lower when using the PPWM algorithm (Table 3). Moreover, the
agreement is better also on a pixelwise basis. These differences are unlikely to be important
if the clinical target is solely an LIC estimate, given that both methods produced statistically
identical LIC results and superb reproducibility. However, if spatial variation in iron
distribution proves to contain information regarding disease progression, the PPWM is
visually and quantitatively superior.
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In conclusion, a fast algorithm for approximate liver R2* maps was presented and validated:
its reproducibility was comparable to that of the traditional pixelwise mapping and its
accuracy was superior. The algorithm combines the statistical advantages of pixel binning
but the use of noncontiguous pixels minimizes blurring. Although the fast algorithm for R2*
mapping was originally developed to quantify hepatic iron, it is now used to estimate iron
concentrations in other organs, notably the heart where R2* values are generally < 50 Hz).
When mean R2* is low, R2* histograms are generally monotonic and signal to noise is high,
so both TPWM and PPWM methods work indistinguishably well; the only difference is
computational speed. Moreover, this two-stage approach to generating relaxivity maps may
be useful for other applications in which R2* mapping provides visualization of the R2*
properties in a quantitative fashion. These include functional imaging dependent on blood
oxygenation [19], quantitative assessment of brain iron in patients with Friedreich ataxia or
relapsing–remitting multiple sclerosis [20] and detection and tracking of super paramagnetic
iron oxides [21].

REFERENCES
1. Gordeuk VR, Bacon BR, Brittenham GM. Iron overload: causes and consequences. Annu Rev Nutr.

1987; 7:485–508. [PubMed: 3300744]

2. Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with
thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004; 89(10):1187–
1193. [PubMed: 15477202]

3. Shander A, Cappellini MD, Goodnough LT. Iron overload and toxicity: the hidden risk of multiple
blood transfusions. Vox Sang. 2009; 97(3):185–197. [PubMed: 19663936]

4. Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron
stores in thalassemia major. N Engl J Med. 2000; 343(5):327–331. [PubMed: 10922422]

5. Ambu R, Crisponi G, Sciot R, et al. Uneven hepatic iron and phosphorus distribution in beta-
thalassemia. J Hepatol. 1995; 23(5):544–549. [PubMed: 8583142]

6. Emond MJ, Bronner MP, Carlson TH, Lin M, Labbe RF, Kowdley KV. Quantitative study of the
variability of hepatic iron concentrations. Clin Chem. 1999; 45(3):340–346. [PubMed: 10053034]

7. Villeneuve JP, Bilodeau M, Lepage R, Cote J, Lefebvre M. Variability in hepatic iron concentration
measurement from needle-biopsy specimens. J Hepatol. 1996; 25(2):172–177. [PubMed: 8878778]

8. Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the
early diagnosis of myocardial iron overload. Eur Heart J. 2001; 22(23):2171–2179. [PubMed:
11913479]

9. Pepe A, Lombardi M, Positano V, et al. Evaluation of the efficacy of oral deferiprone in beta-
thalassemia major by multislice multiecho T2*. Eur J Haematol. 2006; 76(3):183–192. [PubMed:
16451393]

10. Au WY, Lam WW, Chu W, et al. A T2* magnetic resonance imaging study of pancreatic iron
overload in thalassemia major. Haematologica. 2008; 93(1):116–119. [PubMed: 18166794]

11. Noetzli LJ, Coates TD, Wood JC. Pancreatic iron loading in chronically transfused sickle cell
disease is lower than in thalassaemia major. Br J Haematol. 2011; 152(2):229–233. [PubMed:
21118197]

12. Noetzli LJ, Panigrahy A, Mittelman SD, et al. Pituitary iron and volume predict hypogonadism in
transfusional iron overload. Am J Hematol. 2012; 87(2):167–171. [PubMed: 22213195]

13. Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: probing underlying
biophysical mechanisms using a Monte Carlo model. Magn Reson Med. 2011; 65(3):837–847.
[PubMed: 21337413]

14. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic
iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood.
2005; 106(4):1460–1465. [PubMed: 15860670]

15. Positano V, Salani B, Pepe A, et al. Improved T2* assessment in liver iron overload by magnetic
resonance imaging. Magn Reson Imaging. 2009; 27(2):188–197. [PubMed: 18667287]

Meloni et al. Page 8

Magn Reson Imaging. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



16. St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver
iron concentrations using proton magnetic resonance. Blood. 2005; 105(2):855–861. [PubMed:
15256427]

17. Gianesin B, Zefiro D, Musso M, et al. Measurement of liver iron overload: Noninvasive calibration
of MRI-R2) * by magnetic iron detector susceptometer. Magn Reson Med. 2012; 67(6):1782–
1786. [PubMed: 22135193]

18. Bonny JM, Zanca M, Boire JY, Veyre A. T2 maximum likelihood estimation from multiple spin-
echo magnitude images. Magn Reson Med. 1996; 36(2):287–293. [PubMed: 8843383]

19. Ziyeh S, Rick J, Reinhard M, Hetzel A, Mader I, Speck O. Blood oxygen level-dependent MRI of
cerebral CO2 reactivity in severe carotid stenosis and occlusion. Stroke. 2005; 36(4):751–756.
[PubMed: 15705935]

20. Khalil M, Enzinger C, Langkammer C, et al. Quantitative assessment of brain iron by R2)*
relaxometry in patients with clinically isolated syndrome and relapsing-remitting multiple
sclerosis. Mult Scler. 2009; 15(9):1048–1054. [PubMed: 19556316]

21. Lee N, Kim H, Choi SH, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly
sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci U S A. 2011;
108(7):2662–2667. [PubMed: 21282616]

Meloni et al. Page 9

Magn Reson Imaging. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
R2* maps for a patient with thalassemia major calculated using a) traditional and b) fast
algorithm and c) ΔR2* map.
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Figure 2.
Frequency histograms associated with the R2* maps presented in Figure 1. The R2*
distribution was evaluated for bin lengths of 30, 65, and 100 pixels.
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Figure 3.
Comparison between the median R2* values obtained with the PPWM algorithm and the
correspondent median R2* values obtained with the TPWM algorithm. a) Scatter plot with
regression line. The dotted line represents the unity line. b) Bland–Altman plot of absolute
differences. Dotted lines indicate limits of agreement
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Figure 4.
Comparison between the mean R2* values obtained with the PPWM algorithm and the
correspondent mean R2* values obtained with the TPWM algorithm. a) Scatter plot with
regression line. The dotted line represents the unity line. b) Bland–Altman plot of absolute
differences. Dotted lines indicate limits of agreement.
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Figure 5.
a) Scatter plot of SD obtained with the PPWM algorithm as a function of SD obtained with
the PPWM algorithm. The dotted line represents the unity line. b) Scatter plot of SD as a
function of median R2* values for both PPWM and TPWM algorithms.
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Table 2

Intra- and inter-observer variability data.

Traditional pixelwise mapping

Intra-observer Inter-observer

Median R2* Mean R2* Median R2* Mean R2*

ICC 1.000 1.000 0.999 0.998

CoV (%) 0.70 1.96 2.28 4.15

Bland-Altman limits (Hz) −9.3 to 10.2 −24.5 to 28.5 −31.4 to 32.2 −50.6 to 61.3

Bland-Altman bias (Hz) 0.4 2.0 0.4 5.3

Pseudo pixelwise mapping

Intra-observer Inter-observer

Median R2* Mean R2* Median R2* Mean R2*

ICC 1.000 0.999 0.999 0.997

CoV (%) 1.10 2.48 2.26 4.74

Bland-Altman limits (Hz) −16.7 to 12.6 −35.9 to 28 −32.6 to 29.6 −67.4 to 55.9

Bland-Altman bias (Hz) −2.0 −3.9 −1.5 −5.8
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Table 3

Accuracy of the two algorithms for calculating median R2* values, considering as reference values the median
R2* values obtained from noiseless magnitude images.

TPWM PPWM

CoV (%) 16.13 7.86

MSE (Hz) 208.28 49.49

Bland-Altman limits (Hz) −29.8 to 27.3 −14.9 to 12.6

Bland-Altman bias (Hz) −1.3 −1.2
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