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Abstract
Objective—Local field potentials (LFPs) that carry information about the subject’s motor
intention have the potential to serve as a complement or alternative to spike signals for brain-
machine interfaces (BMIs). The goal of this study is to assess the utility of LFPs for BMIs by
characterizing the largely unknown information coding properties of multichannel LFPs.

Approach—Two monkeys were implanted, each with a 16-channel electrode array, in the
parietal reach region (PRR) where both LFPs and spikes are known to encode the subject’s
intended reach target. We examined how multichannel LFPs recorded during a reach task jointly
carry reach target information, and compared the LFP performance to simultaneously recorded
multichannel spikes.

Main Results—LFPs yielded a higher number of channels that were informative about reach
targets than spikes. Single channel LFPs provided more accurate target information than single
channel spikes. However, LFPs showed significantly larger signal and noise correlations across
channels than spikes. Reach target decoders performed worse when using multichannel LFPs than
multichannel spikes. The underperformance of multichannel LFPs was mostly due to their larger
noise correlation because noise de-correlated multichannel LFPs produced a decoding accuracy
comparable to multichannel spikes. Despite the high noise correlation, decoders using LFPs in
addition to spikes outperformed decoders using only spikes.

Significance—These results demonstrate that multichannel LFPs could effectively complement
spikes for BMI applications by yielding more informative channels. The utility of multichannel
LFPs may be further augmented if their high noise correlation can be taken into account by
decoders.
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INTRODUCTION
An electrical signal sensed by a microelectrode inserted in the extracellular matrix of the
cortex is typically decomposed into action potentials and local field potentials (LFPs). The
action potential signal, often referred to as spikes, is generated by a few neurons near the tip
of the electrode. The LFP is a low-pass filtered signal, cut off at 300 Hz or less, and largely
reflects the sum of slow local synaptic currents in thousands of neurons surrounding the
electrode tip (Mitzdorf, 1985; Poulet and Petersen, 2008). Both spikes and LFPs can carry
important information about movements such as reach target location, hand kinematics,
hand grasp type, reach onset time, and electromyograms (EMGs) of arm muscles (Mehring
et al., 2003; Rickert et al., 2005; Scherberger et al., 2005; Heldman et al., 2006; Asher et al.,
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2007; Spinks et al., 2008; Hwang and Andersen, 2009; Bansal et al., 2011; Flint et al.,
2012). Thus, both types of neural signals can potentially serve as command signals to
control motor effectors (e.g., computer cursors, robot arms, paralyzed arms, etc.) in brain-
machine interface (BMI) systems.

Most chronic BMIs implemented so far relied on spikes to decode the subject’s intended
movements (Carmena et al., 2003; Musallam et al., 2004; Collinger et al., 2012; Ethier et al.,
2012; Gilja et al., 2012; Hochberg et al., 2012). One serious challenge encountered by those
chronic BMIs is that spike signals disappeared in many electrodes within a few months
(Polikov et al., 2005; Simeral et al., 2011). Probable causes are neuro-degeneration
following post-surgical glial scar formation near the electrodes, changes of the electrode
location by uncontrolled physical perturbations including cardiac and respiratory pulsations,
mechanical movement of the subject, and migration of neural tissue (Santhanam et al., 2007;
Dickey et al., 2009; McConnell et al., 2009).

In this light, LFPs may be a reliable complement or alternative to spikes for chronic BMIs
because compared to spikes, they are less likely affected by glial scarring or electrode
location changes (Frien and Eckhorn, 2000; Leopold and Logothetis, 2003; O’Leary and
Hatsopoulos, 2006; Stark and Abeles, 2007; Berens et al., 2008; Jia et al., 2011). The low
electrode location sensitivity of LFPs, however, may pose a limitation on their utility for
BMIs if multichannel LFPs recorded from different physical sites encode highly redundant
information. The information redundancy in any neural population depends on the structure
of noise and signal correlations between individual channels (Johnson, 1980; Zohary et al.,
1994; Abbott and Dayan, 1999; Andersen et al., 2004; Averbeck et al., 2006; Quian Quiroga
and Panzeri, 2009). Here, the noise correlation refers to the similarity between the trial-to-
trial deviations from their respective average responses, whereas the signal correlation refers
to the similarity in the mean responses across different stimuli or outputs. In general,
information redundancy is larger when both signal and noise correlations are significant and
in the same direction than when they are in the opposite directions or insignificant
(Averbeck et al., 2006; Achtman et al., 2007; Quian Quiroga and Panzeri, 2009). For
multichannel LFPs, only overall correlations (i.e., a combined measure of both signal and
noise correlations) have been reported, and signal and noise correlations have not been
examined separately (Destexhe et al., 1999; Mehring et al., 2003; Bansal et al., 2011;
Eggermont et al., 2011).

Some studies directly assessed the utility of multichannel LFPs by decoding movement
related parameters from multichannel LFPs and spikes and comparing the two decoding
performances (Mehring et al., 2003; Bansal et al., 2011; Flint et al., 2012). The comparison
results are inconsistent among studies, which is difficult to reconcile without knowing the
underlying signal and noise correlations. Therefore, in this study, we measured signal and
noise correlations across multichannel LFPs recorded in the macaque parietal reach region
in which both LFPs and spikes were known to carry the subject’s intended reach target
information (Snyder et al., 1997; Scherberger et al., 2005; Hwang et al., 2012). In addition,
to assess the impact of these correlations on the utility of multichannel LFPs for BMIs, we
examined the amount of reach target information that can be decoded from multichannel
LFPs in comparison to spikes.

METHODS
Two male rhesus monkeys (Macaca Mulatta, Y and G) participated in this study. The
California Institute of Technology Institutional Animal Care and Use Committee approved
the animal procedures used in this study, which were performed in accordance with NIH
guidelines.
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Behavioral experiment setup
The monkeys sat in a primate chair and viewed visual stimuli presented on a vertical LCD
monitor placed in the fronto-parallel plane, ~40 cm away from the eyes. Eye position was
recorded with an infrared eye tracker (240 Hz; ISCAN, Burlington, MA) and hand position
was recorded with a 19 inch translucent touch-sensitive screen (IntelliTouch; ELO Systems,
Menlo Park, CA) placed in front of the LCD monitor. The visual stimulus presentation,
online monitoring of eye and hand positions, and reward control were handled by a real-time
LabView program running on a real-time operating system (National Instruments,
LabView7.1 & LabView Real-Time).

Delayed reach task
The monkeys began a trial by fixing their eyes on the eye-fixation target and touching the
hand-fixation target in the screen center (Fig. 1A). After a 0.5 s fixation period, a green
circle appeared in the periphery. After a delay period (1.5 ± 0.15 s), the hand-fixation target
disappeared (go-cue), signaling the monkeys to reach to the green circle without moving
their eyes. The monkeys were required to hold their hand within 3° from the green circle and
their eyes on the fixation target for 0.3 s to receive a juice reward. Six target locations,
evenly spaced around a virtual circle (10.3° eccentricity), were randomly interleaved. The
monkeys made at least 11 successful trials per target location in each recording session, and
completed 45 recording sessions (38 sessions by Y, 7 by G).

Neural signal recording
The monkeys were implanted with a head holder and a recording chamber housing a 16-
channel-movable-electrode array (Neuralynx, Bowsman, MT). We placed an array of 16
electrodes in PRR which covers the medial wall of the intraparietal sulcus (IPS) in monkey
Y, and both the medial wall of IPS and the anterior wall of the parieto-occipital sulcus
(POS) in monkey G (Fig. 1B). The electrode placement was guided by magnetic resonance
images. The electrodes were spread over a 2×6.5 mm2 area of the dura for monkey Y and
3×5 mm2 for monkey G. Because each individual electrode was attached to its own
dedicated screw-mechanism drive, the depth of each electrode was individually adjustable.
To maximize the number of channels showing single unit activity, we moved the electrodes
showing no discernible single units in the beginning of each session, up to 1 mm from the
depth of the previous session or until clear single unit activity emerged, whichever occurred
first. A commercial 16-channel neural signal recording system (Plexon MAP, Dallas, TX)
was used to record and store neural signals. LFPs and spikes were separated by hardware
bandpass filters in a preamplifier (LFP: 3.3–88 Hz and spike: 154 Hz – 8.8 kHz). To
minimize potential contamination by the power line noise, LFP signals were filtered using a
second-order notch filter with the center frequency at 60 Hz and the bandwidth of 0.6 Hz. In
this study, each of the 16 channels corresponds to each of the 16 different electrodes. In
some sessions, only 15 channels were functional because of faulty electrical connections.

Spike signal processing
For each channel, up to four spike units were isolated offline using a commercially available
software package (Plexon Offline Sorter; T distributed expectation-maximization methods).
The validity of the automatic isolation was checked by subsequent visual inspection. Each
spike waveform was recorded as a 32-time-point vector (0.8 ms long). For each time point,
we computed the mean and standard deviation of the amplitude. The signal-to-noise ratio
(SNR) of a spike unit was defined as the ratio of the trough-to-peak amplitude of the mean
waveform to twice the standard deviation averaged across the 32 points. Those with a SNR
greater than 1.5 were included for analysis. By this criterion, both single unit (the spike
signal of a single neuron) and multi-units (the compound spike signals of multiple
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indiscriminant neurons) were included. For each isolated spike unit, we counted its number
of occurrences during the last 1 s of the delay period in each trial. These spike counts were
used for all spike signal analyses in this study.

LFP processing
LFPs in PRR are known to carry reach target information via power modulation in various
frequency bands(Scherberger et al., 2005). Thus, we transformed the time-domain LFP
traces in the last 1 s delay period of each trial into frequency-domain power spectra using a
multi-taper method (bandwidth = 5 Hz) (Pesaran et al., 2002). In this transformation, the
single one second window was used for all frequencies. Since LFPs in different frequency
bands often carry different information (Hwang and Andersen, 2011), each spectrum was
converted to a 8×1 vector consisting of the average log-transformed powers in 8 frequency
bands, 0–10 Hz, 10–20 Hz, …, 70–80 Hz. The 8 LFP powers were used for the main LFP
signal analyses in this study.

Tuning analysis
Because the current study aimed to assess the extent to which LFP and spike signals in PRR
are informative about the intended reach target, we examined the modulation of the neural
signals as a function of the reach target, i.e., the reach target tuning (Fig. 1C). To determine
the significance of the target tuning of a spike unit, we applied an ANOVA test on the spike
count data, with the reach target as the single factor. If the significance level p<0.001 was
satisfied, we rejected the null hypothesis that the mean spike counts were statistically equal
across 6 targets. In other words, if the mean spike count for at least one target was
significantly different from the others, the spike unit was considered to be significantly
tuned to the reach target. Similarly, we applied the ANOVA test to the LFP power in each of
the 8 frequency bands. If any frequency band met the signifance level p<0.001, the LFP
channel was considered to be significantly tuned.

As noted above, the ANOVA test indicates whether or not the means of a neural signal
differed for at least one target. To estimate how many reach targets each tuned LFP or spike
unit could discriminate, we performed a 6-target decoding analysis described in the later
section of the Methods. If a majority of the reach trials associated with a specific target was
correctly decoded, we considered that the neural signal could discriminate that specific
target. The number of targets that satisfied this condition was counted for each tuned neural
signal as a measure to the number of targets that affected the neural signal.

Signal and noise correlations
For any two neural signals, the signal correlation was measured as the Pearson’s correlation
coefficient between their tuning curves (Rickert et al., 2005). The tuning curve was a six-
element vector with each element being the mean response for each of the six targets. To
measure the noise correlation, we computed the response deviation of each trial from the
mean response for the corresponding target. Then, we computed the Pearson’s correlation
coefficient between the trial-by-trial deviations of the two signals (Zohary et al., 1994;
Rickert et al., 2005).

All statistical test involving the correlation coefficients were applied to the z values after
transforming the correlation coefficients through the Fisher transformation.

Offline reach target decoding algorithm
We used maximum likelihood decoders (Salinas and Abbott, 1994; Scherberger et al.,
2005). The decoder input was a vector comprising the spike counts and/or the LFP powers.
Thus, for N spike units and M LFP channels, the size of the input vector was N, 8 · M, or N
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+ 8 · M depending on the input signal. The dimensionality of the input vector was reduced
by selecting only those vector elements with significant reach target tuning based on the
ANOVA test described earlier. If no element was significantly tuned, the element with the
smallest p-value from the ANOVA test was selected. The decoder output was one of the six
targets. In the maximum likelihood decoders, we used the following assumptions due to
insufficient knowledge of the statistical properties of input vectors (Hwang and Andersen,
2012): 1) the prior probability across the six targets is uniform, 2) the conditional probability
distribution of each input signal (i.e., spike count or LFP power) on any given target is
normal, 3) the covariance of the normal distributions are the same across the six targets and
only the means differ, and 4) the input signals are independent (i.e., the covariance matrix is
diagonal). The last assumption was made because the sample size (the number of trials) in
our study was too small in relation to the large dimensionality of the input signal to estimate
a robust inverse of the covariance matrix although this assumption is invalid for
multichannel LFPs as will be shown and described in the Results and Discussion. For the
input signal of a given test trial, the log-likelihood that the signal was associated with each
target was computed using the conditional probability function on each target that was
estimated from the training data. Then the target associated with the maximum log-
likelihood was selected as the decoder output. A decoder output was computed for every
trial using all the other trials as training data. The decoding accuracy was computed as the
proportion of the trials for which the decoder output was the actual reach target.

Neuron/LFP-channel dropping curves
In order to estimate how each additional signal source contributes to improving the reach
target decoding accuracy, we computed neuron dropping curves and LFP-channel dropping
curves (Wessberg et al., 2000). The neuron dropping curve represents the average six-target
decoding accuracy as a function of the number of spike units or spike channels that were
availble for decoding. Likewise, the LFP-channel dropping curve represents the average six-
target decoding accuracy as a function of the number of LFP channels that were available
for decoding. To estimate the average decoding performance for any number of channels N,
the decoding accuracy was computed using 100 randomly selected combinations of N
simultaneously recorded channels.

Trial shuffled multichannel LFPs
To examine the effect of noise correlations in LFPs on the decoding accuracy, we applied
the same LFP-channel dropping curve analysis described above, using trial-shuffled signals
in which LFPs from each channel were randomly shuffled among the same target trials.

Sequential multichannel LFPs
To compare the decoding accuracy between simultaneously recorded multichannel LFPs and
sequentially recorded multichannel LFPs, we constructed sequential multichannel LFPs by
combining LFP channels, each randomly selected from different recording sessions. To
compute the decoding accuracy for sequential N-channel LFPs, we took the average
decoding accuracy across 100 randomly selected combinations of N LFP channels, each
from different recording sessions. Suppose we recorded 3 separate sessions, each with 3 LFP
channels (Fig. 4A). An example of sequentially recorded 3-channel LFPs can be constructed
using a combination of LFP channel 3 in session 1, channel 2 in session 2, and channel 1 in
session 3. Then, trials in each selected LFP channel were reordered in such a way that the
selected channels were combined with the same reach target sequence.

Data from the two monkeys are qualitatively similar, and thus we combined data from the
two monkeys in the current paper unless specified otherwise.
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RESULTS
Single channel LFPs provide more robust target information than single channel spikes

We first examined how LFPs and spikes encoded the reach target information at the single
channel level. Figure 1C shows the tuning curves (i.e., the mean signal modulation as a
function of the reach target) of a LFP and two spike signals recorded from the same
electrode. The tuning curves of the LFP were computed separately for each of 8 frequency
bands because different frequency bands could encode information in different ways
(Rickert et al., 2005; Belitski et al., 2008; Hwang and Andersen, 2011; Hwang and
Andersen, 2012). Consistent with our previous report (Hwang and Andersen, 2011), in the
example channel, the delay period LFP in gamma bands (>40 Hz) was significantly tuned to
the visible reach target (ANOVA, p<0.001). The delay period spike count of one spike unit
was also significantly tuned to the reach target (ANOVA, p<0.001). Sixty-eight percent of
all LFP channels recorded in this experiment showed significant target tuning in at least one
frequency band. The most prevalently tuned frequency band was the 50–60 Hz band in
which 57% of all channels showed significant target tuning. In contrast, only 34% of all
recorded channels contained at least one spike unit with significant target tuning. More
specifically, 58% of all recorded channels contained distinguishable single or multi spike
units and among those channels, 58% contained at least one unit that was significantly
tuned.

Next, to compare the quality of target tuning between single channel LFPs and single
channel spikes, we performed reach target decoding analyses using each signal separately
(Methods). When decoding six reach targets from any single channel LFP that was
significantly tuned to the reach target, the mean decoding accuracy was 39±11.1%. The
mean accuracy using any single significantly tuned spike unit was 34±10.4%. The difference
was significant (Wilcoxon rank-sum test, p<0.001).

The two neural signals also differed in terms of the number of targets that they could
discriminate (Methods). The single channel LFP shown in Figure 2A discriminated 4
targets. Notice the 4 bright diagonal elements, which indicates that a majority of the trials
associated each of the 4 discriminable targets was decoded correctly. Of all tuned single
channel LFPs, 43% could discriminate 4 or more targets, whereas only 20% of all tuned
single spike units could discriminate 4 or more targets (Fig. 2B).

Both signal and noise correlations are larger between LFP channels than between spike
units

The single channel analysis results above appear to support the view that LFPs can serve as
an alternative to spikes for BMI applications. However, to extract quality information for
BMI control, it is necessary to pool signals from multiple channels (sites), and the amount of
information in multichannel neural signals is not a simple sum of information carried by
individual channels but depends on signal and noise correlations between channels (Johnson
1983; Zohary 1998; Bialek 2003). Thus, despite more target information at the single
channel level, multichannel LFPs could be less efficient than multichannel spikes depending
on their signal and noise correlations. We therefore characterized correlations between LFP
channels in comparison to those between spike units.

To systematically characterize correlations in multichannel LFPs, we computed their signal
and noise correlations, separately as described in the Methods. The signal correlation
coefficient measured the similarity between the tuning curves of two neural signals, whereas
the noise correlation coefficient measured the similarity between the trial-to-trial deviations
from their respective average responses. The correlation analysis was performed between all
pairs of LFP channels that were simultaneously recorded and significantly tuned to the reach
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target (N=2025 pairs, 1539 for Y & 486 for G). We found that both the signal and noise
correlation coefficients have significantly positive mean values in all frequency bands (t-test
on Fisher’s z values, p<0.001; Fig. 3A–B). For instance, in the 40–50 Hz band, the mean
signal and noise correlation coefficients between different LFP channels were 0.74 and 0.36,
respectively. The mean noise correlation showed a small but significant decrease as the
frequency increased (slope=−0.008, p<0.001). Furthermore, in all frequency bands, channel
pairs with a strongly positive signal correlation coefficient tended to have a strongly positive
noise correlation coefficient as well. The correlation coefficients between the noise and
signal correlations range 0.29~0.49 and are significant (Spearman’s rank correlation, the
significance levels were too small to measure; Fig. 4C), suggesting that multichannel LFPs
in PRR carry the reach target information in a highly redundant manner (Averbeck et al.,
2006; Achtman et al., 2007; Quian Quiroga and Panzeri, 2009).

For comparison, we performed the same correlation analysis on all pairs of spike units that
were simultaneously recorded and significantly tuned (N=2243 pairs, 2040 for Y & 203 for
G). The mean signal and noise correlation coefficients between tuned spike units were 0.11
and 0.07, respectively, significantly smaller than those between tuned LFP pairs in all
frequency bands (two-sample t-test, p<0.001; Fig. 2D–F). The higher signal and noise
correlations between LFP channels than between spike units suggest that multichannel LFPs
would encode target information in a more redundant manner than multichannel spikes.

Information gain by additional signal source is smaller for LFPs than spikes—
Although we could decode the target information more accurately from single channel LFPs
than single channel spike signals, the higher redundancy across multichannel LFPs than
spike signals predicts that information gain by additional channels would be smaller for
LFPs than spikes. To test this prediction, we decoded the reach target information from
multichannel LFPs and multichannel spikes, and compared the decoding accuracy between
the two types of neural signals. The LFP-channel and neuron dropping curves in Figure 4B
represent the average target decoding accuracy as a function of the number of tuned LFP
channels and tuned spike units, respectively. Because the purpose of the analysis was to
compare information gain by additional signal sources that were informative on the reach
target, we used only tuned neural signals in this analysis (see following sections for analysis
regardless of tuning significance). Consistent with our prediction, the LFP-channel dropping
curve fell below the neuron dropping curve for all numbers of channels/units greater than 3
although the LFP curve started off higher initially (Fig. 4B). In other words, the decoding
accuracy from single LFP channels was higher than that from single spike units as described
earlier, but decoding accuracy by incorporating additional channels increased more slowly
for LFPs than spikes. For instance, the number of LFP channels required to achieve 70%
accuracy was 9, whereas the number of spike units was 6. Therefore, the pool of LFPs is less
efficient in providing the reach target information than the pool of spikes.

One may be interested in seeing the best possible, instead of the average, decoding
performance. Figure 4B shows the best performance that can be achieved by each number of
tuned neural signals. Multichannel spikes outperformed multichannel LFPs also in the best
performance comparison. For spikes, the perfect decoding performance could be achieved
using only 11 best units. For LFPs, the decoding performance reached 94% correct with 7
best channels.

The high noise correlation of multichannel LFPs contributes to information
redundancy—In order to determine how much the noise correlation was responsible for
the decreased efficiency of multichannel LFPs versus multichannel spike signals, we
removed noise correlations in multichannel LFPs and computed an LFP-channel dropping
curve. We constructed noise de-correlated multichannel LFPs by combining different LFP
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channels, each recorded in different sessions (Fig. 4A). These sequentially recorded
multichannel LFPs produced decoding performance that was not significantly different from
multiple spikes at any number of channels/units (Wilcoxon rank-sum test, p>0.1; Fig. 4B),
suggesting that the high noise correlation between LFP channels rather than the high signal
correlation is primarily responsible for the lower efficiency of multichannel LFPs compared
to spikes. If indeed noise de-correlation effectively boosted decoding accuracy for the
sequential LFPs, noise de-correlation of data within each session through a random shuffling
among the same target trials would also result in a decoding accuracy boost. Consistent with
this prediction, the trial-shuffled LFPs produced a decoding accuracy as good as the
sequential LFPs (Fig. 4B).

Multichannel LFPs effectively complement spikes for reach target decoding—
Although the simultaneous multichannel LFPs carried highly redundant information about
the reach target, the target decoding accuracy monotonically increased with the number of
tuned LFP channels, reaching up to approximately 75% for a six-target discrimination when
using 14 tuned channels (Fig. 4B). The performance enhancement by adding each additional
channel continued to be significant up to 6 channels (Wilcoxon rank-sum test on adjacent
numbers of channels, p<0.001). After that, more than one additional channel was required to
gain a significant improvement in the decoding accuracy. Thus, different LFP channels
provide, though limited, non-redundant information regarding the intended reach target.
Furthermore, multichannel LFPs are more efficient in the yield of tuned channels than
spikes as shown earlier. Across all 45 recording sessions, the number of channels with tuned
LFPs in each session was 10.8±3.23 (mean±s.d.) whereas the number of channels with tuned
spike units was 5.3±2.07. These correspond to 69±21.5 and 34±13.6% of all channels. It was
not necessary to record a tuned spike signal at the same electrode in order to record a tuned
LFP. Nor was it necessary to record distinct action potentials. LFPs were tuned in 71% of
the channels with untuned spike units, and in 47% of the channels without action potentials.
These observations predict that multichannel LFPs, despite their high information
redundancy, could play an effective complementary role to spikes for BMIs (Hwang and
Andersen, 2010).

To test this prediction, we computed decoding performance from LFPs alone, spikes alone,
and both LFPs and spikes. Unlike the LFP-channel and neuron dropping curves in the
previous analysis, this analysis included all N channels, regardless of their significance of
target tuning, in order to estimate the average decoding performance expected when N
electrodes were implanted at random locations in PRR. Thus, this analysis took into account
both the redundancy and the yield of tuned signals. The decoding accuracy using LFPs was
better than or as good as the accuracy from spike signals up to 8 channels (Fig. 4D). Even
after 8, the performance difference between the two signals was not as large as the previous
analysis because the higher yield of tuned signals for LFPs compensates for the less efficient
information decoding from multichannel LFPs than spikes. More importantly, decoding
performance using both signals was higher than that using either signal alone. For instance,
decoding accuracy using 8 channels was 77±0.2 (mean±s.e.m.), 62±0.3, and 61±0.2%
respectively for both signals, spikes only, and LFPs only. All combinatorial comparisons
showed significant differences (Wilcoxon rank-sum test, p<0.001). These results clearly
demonstrate that multichannel LFPs can efficiently complement spikes when decoding the
subject’s intended reach target.

Signal and noise correlations between LFP channels decrease with the physical distance
So far, we dealt with only the mean signal and noise correlations of LFPs and spike signals
across all possible pairs. However, the physical distance between a pair was not constant and
varied between 0.5 and 10 mm. Thus we examined the effect of distance on the correlations.
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Figure 5 shows the signal and noise correlation coefficients as a function of the distance
between recording channels. For LFPs, we found that the slope of the linear regression was
significantly negative for frequency bands below 40 Hz (p<0.001) but not in the more
informative frequency bands (i.e., 40–60 Hz) (Fig. 5A). On the other hand, the noise
correlation decreased with the distance between recording channels in all frequency bands
(Fig. 5B).

Compared to LFPs, the spike signal and noise correlations decreased at a much faster rate
(Fig. 5C–D). The correlation coefficient for the distance of 0 was computed between pairs of
spike units recorded at the same electrode. Notably, when the spike units recorded at the
same electrode were excluded from the analysis, the mean signal and noise correlation
coefficients were 0.03 and 0.03, respectively and neither was significantly different from 0
(t-test on Fisher’s z values; P>0.05; Fig. 5C). In addition, the regression slope became
insignificant for both signal and noise correlations (p>0.05). Thus, pairs of spike units
recorded from different sites in PRR are not significantly correlated, at least for the distance
beyond the distance of 0.5 mm.

DISCUSSION
The current study, for the first time to our knowledge, measured noise and signal
correlations between LFP channels. Both noise and signal correlations between LFP
channels in PRR were significantly larger than those between spikes. To examine how these
correlations impact their utility for BMI applications, decoding analyses were performed.
We found that the target information decoded from multichannel signals was less accurate
for LFPs than spikes. The underperformance of multichannel LFPs was mostly due to their
larger noise correlation because noise de-correlated multichannel LFPs (sequentially
recorded and shuffled LFPs) produced a decoding accuracy comparable to multichannel
spikes. In other words, noise correlation between LFP channels significantly influences the
amount of information that one can decode from multichannel LFPs. The result also
confirms the previous warning that decoding performance estimated from sequentially
recorded data should be used with caution (Quian Quiroga and Panzeri, 2009).

Correlations in LFPs in other areas of the brain
How can we generalize this finding from PRR to other brain areas? In the frontal eye field
(FEF), trial-shuffled (i.e., noise de-correlated) versus original multichannel LFPs did not
yield different accuracy when decoding eye movement targets (Markowitz et al., 2011). This
suggests that the multichannel LFPs in FEF may not show significant noise correlations
between channels. In M1, reach target decoding performance was similar between
simultaneous and sequential multichannel LFPs (Mehring et al., 2003). This result also
suggests that the noise correlation of LFPs in the frontal cortex may not be as significant as
in PRR. By comparison, signal correlations across multichannel LFPs seem to be significant
in M1 because the overall correlations across multichannel LFPs in M1 are as large as in
PRR (Basal et al., 2011; Mehring et al., 2003).

Several studies in M1 also compared the decoding accuracy acquired from multichannel
LFPs versus spikes. The results are mixed. Reach target was more accurately decoded from
multichannel LFPs than spikes (Mehring et al., 2003). Decoding performance for the EMG
patterns of arm muscles during reach and grasp was comparable between LFPs and spikes
(Flint et al., 2012). When decoding hand kinematics during reach and grasp, multichannel
spikes outperformed multichannel LFPs (Bansal et al., 2011). Such mixed results could
occur if signal and noise correlations across multichannel neural signals differ depending on
the parameter defined as the signal, which remains to be shown.
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LFP noise correlations and frequency
We found that noise correlation between channels decreased with LFP frequency. In other
words, for a given distance between two channels, LFP noise correlation is smaller for
higher than lower frequency. This trend is similar to previous observations regarding the
overall correlation between LFP channels in cat cerebral cortices (Destexhe et al., 1999;
Eggermont et al., 2011). The smaller spatial extent of higher frequency LFPs are not
attributable to biophysical filtering properties of the extracellular space because the
electrical conductance of the extracellular space is relatively constant across frequencies
(Logothetis et al., 2007). Instead the spatial extent might be determined by the size of the
oscillation generators and the nature of neural events underlying them. For instance, Jia et al.
(2011) found that the spatial extent can vary even for the same frequency LFPs depending
on the task condition. Regardless of the exact mechanisms, the smaller noise correlation in
higher frequency bands is suggestive of less redundancy in higher frequency LFPs, calling
for future investigations of LFPs in even higher frequency than the frequency bands
currently examined.

Noise correlation in spikes
The mean noise correlation between spike units in PRR was 0.07±0.165, and significantly
different from 0. However, this significant correlation was mainly driven by the noise
correlations between spike units recorded at the same electrode because the mean noise
correlation became statistically insignificant after excluding pairs of units recorded from the
same electrode. The mean noise correlation in PRR is substantially smaller than that
reported for area MT, but comparable to those reported for the dorsal medial superior
temporal area (MSTd) and primary visual cortex (V1) (Zohary et al., 1994; Ecker et al.,
2010; Gu et al., 2011). The low noise correlation in PRR after factoring out the reach target-
dependent signal correlation is consistent with the idea that the reach target is the major
common variable that drives the activity of neurons in this region (Hwang et al., 2013).

Higher signal and noise correlations across LFPs than spikes
The finding that LFPs show higher signal correlation than spikes is consistent with the
previous observation that LFPs show less sensitivity to changes in recording location than
spikes in the same region (Frien and Eckhorn, 2000; Leopold and Logothetis, 2003; O’Leary
and Hatsopoulos, 2006; Berens et al., 2008). The different sensitivity may be explained by
their distinct signal origins. LFPs resemble sub-threshold membrane potentials of nearby
neurons which are highly correlated with one another even if their spikes are not correlated
(Penttonen et al., 1998; Lampl et al., 1999; Poulet and Petersen, 2008). The high correlation
of the membrane potentials is likely due to shared synaptic inputs (Shadlen and Newsome,
1998), while the uncorrelated spikes may be explained by non-linear transformations (e.g.,
threshold and saturation) that are sensitive to small specific differences in the excitatory
synaptic inputs between neurons (Poo and Isaacson, 2009; Yu et al., 2009; Renart et al.,
2010). Moreover, summing the membrane potentials of thousands of neurons will further
reduce the LFP sensitivity to recording locations (Mitzdorf, 1985; Poulet and Petersen,
2008).

Until the current study, noise correlations in LFPs have not been studied. The higher noise
correlation in LFPs than spikes may reflect common synaptic inputs or global
neuromodulatory signals to the region that are not specific to reach targets, such as arousal
and motivation. The influence of such global signals would persist in the sum of local
currents.
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Decoders incorporating noise correlations
The decoding performance from multichannel LFPs in our study should not be viewed as the
best possible performance that one can achieve. We used one of the most simplistic
decoders, which was a maximum likelihood decoder based on a multivariate Gaussian
model with multiple assumptions (e.g., noise independence between different channels, the
same variance between conditional distributions on different targets, etc.; see Methods).
Given that our independence assumption was inconsistent with the true statistical property
of LFP data, the maximum likelihood decoder would not produce the best decoding
performance. Therefore, it is possible that decoders taking advantage of noise correlations
might improve the decoding accuracy for simultaneous multichannel data with significant
noise correlations (Abbott and Dayan, 1999; Averbeck et al., 2006). For instance, it was
previously shown that support vector machine (SVM) decoders which implicitly captured
the characteristics of noise correlations among spike units in the primary visual cortex
produced a decoding accuracy that was significantly enhanced in comparison to decoders
with independent noise models (Graf et al., 2011). However, we cannot test SVM decoders
on the data in the current study because of the small number of trials. An intriguing future
research direction is to test the possibility that decoding algorithms incorporating the noise
structure can improve decoding performance from multichannel LFPs with significant noise
correlations.
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Figure 1.
A. Task sequence of the delayed reach task. The square and the triangle in the center
represent the eye- and hand-fixation targets, respectively, and the circle in the periphery
represents the reach target. B. The locations of 16 electrodes (purple dots) overlaid on the
magnetic resonance image of each monkey’s brain. The yellow dashed lines indicate the
intra-hemispheric fissure (if) and major sulci including the intra-parietal sulcus (ips),
parieto-occipital sulcus (pos), lunate sulcus (lus), superior temporal sulcus (sts), and
cingulate sulcus(cis). The anterior, posterior, left, and right directions are indicated. C.
Tuning curves, the mean delay response for each of six target locations, of LFP and spike
units recorded from the same electrode. The LFP power and spike firing rate (FR) in each
tuning curve were normalized so that that the maximum is 1 and the minimum is 0. The
error bars are the standard deviations.
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Figure 2.
A. An example LFP channel which discriminated 4 reach targets. The matrix represents the
6-target decoding result from the example LFP channel. The color of each square represents
the proportion of the trials for which the actual target corresponds to the row number and the
decoded target corresponds to the column number. Each row is normalized such that the sum
across the columns of each row is 1. The four squares with thick black borders indicate that
a majority of trials in their corresponding row is decoded correctly, i.e., the actual target in
each of those rows is discriminable. B. The distribution of the number of discriminable
reach targets by single tuned LFPs or spike units.
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Figure 3.
A. The histogram of signal correlations between all pairs of LFP channels (N=2025) were
simultaneously recorded. LFP correlations were computed separately for each of the 8
frequency bands (only 4 bands are shown). The red line and the abutting number indicate the
mean of the distribution. B. The histogram of LFP noise correlations. C. Signal correlation
versus noise correlation. Each dot represents an individual LFP pair. The correlation
coefficients are z-transformed. The green lines represent the linear regression. Spearman’s
correlation between the two correlations is marked on the top of each plot. The significance
level was virtually zero. D–F. The same as A–C but for all pairs of spike units (N=2243).
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Figure 4.
A. The construction procedure for sequential multichannel LFPs. Each column represents a
single channel. Each row represents a single trial. Different filling colors indicate different
reach targets. A set of channels is selected from different sessions, and the trial sequences
are reordered such that the selected channels have the same target sequence. B. The average
decoding performance for each number of tuned LFP channels or tuned spike units, for the
simultaneously recoded data, trial-shuffled data, and sequentially recorded data. C. The best
decoding performance for each number of simultaneously tuned LFP channels or spike
units. D. The average decoding performance for each number of simultaneously recorded
electrodes, when using spike units, LFPs, and both signals. The error bars indicate the
standard errors of means.
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Figure 5.
A. The signal correlation as a function of the distance between LFP channels. Each dot
represents a single LFP site. The black line indicates the mean correlation coefficient for a
given distance and the gray band indicates the standard deviation. The green line shows the
linear regression on the distance and correlation coefficient. The slope of the linear
regression and the significance level of the slope are indicated on the top of each plot. B.
The same as A but for the noise correlation. C–D. The same as A–B but for spikes.
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