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Abstract

ChIP-based genome-wide assays of transcription factor (TF) occupancy have emerged as a powerful, high-throughput
method to understand transcriptional regulation, especially on a global scale. This has led to great interest in the underlying
biochemical mechanisms that direct TF-DNA binding, with the ultimate goal of computationally predicting a TF’s occupancy
profile in any cellular condition. In this study, we examined the influence of various potential determinants of TF-DNA
binding on a much larger scale than previously undertaken. We used a thermodynamics-based model of TF-DNA binding,
called ‘‘STAP,’’ to analyze 45 TF-ChIP data sets from Drosophila embryonic development. We built a cross-validation
framework that compares a baseline model, based on the ChIP’ed (‘‘primary’’) TF’s motif, to more complex models where
binding by secondary TFs is hypothesized to influence the primary TF’s occupancy. Candidates interacting TFs were chosen
based on RNA-SEQ expression data from the time point of the ChIP experiment. We found widespread evidence of both
cooperative and antagonistic effects by secondary TFs, and explicitly quantified these effects. We were able to identify
multiple classes of interactions, including (1) long-range interactions between primary and secondary motifs (separated by
#150 bp), suggestive of indirect effects such as chromatin remodeling, (2) short-range interactions with specific inter-site
spacing biases, suggestive of direct physical interactions, and (3) overlapping binding sites suggesting competitive binding.
Furthermore, by factoring out the previously reported strong correlation between TF occupancy and DNA accessibility, we
were able to categorize the effects into those that are likely to be mediated by the secondary TF’s effect on local
accessibility and those that utilize accessibility-independent mechanisms. Finally, we conducted in vitro pull-down assays to
test model-based predictions of short-range cooperative interactions, and found that seven of the eight TF pairs tested
physically interact and that some of these interactions mediate cooperative binding to DNA.
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Introduction

A major challenge in the analysis of genomic sequences is the

annotation of cis-regulatory elements. Significant progress has

been made towards this goal through high throughput methods

such as ChIP-chip and ChIP-SEQ that describe the locations

where specific transcription factors (TFs) bind to the genome in vivo

[1–3]. ChIP-based characterization of TF binding profiles can

help elucidate specific regulatory interactions between TFs and

genes [4]. A number of genome-wide ChIP data sets, correspond-

ing to diverse TFs and cellular conditions, have been generated

through the efforts of various laboratories and consortia [1,3].

Such data sets also offer the opportunity to apply computational

and statistical methods to understand the determinants of TF-

DNA binding at a quantitative level [5–7]. Given the central role

of the TF-DNA binding process in the regulatory activity of a TF,

such an understanding can provide a holistic view of transcrip-

tional regulation and also set the stage for future computational

methods for predicting cell type-specific TF-binding profiles.

The most extensively studied determinant of TF occupancy is

the DNA binding specificity of the TF. Various experimental

approaches [8–11] have been successful in obtaining motifs

representing the diversity and relative affinities of DNA sequences

bound by an individual TF. An initial expectation is that a TF’s

motif will allow prediction of its binding levels genome-wide. On

the other hand, it is clear that interactions with other TFs can

significantly influence binding to regulatory sequences. For

example, interaction of Hox proteins with a cofactor results in

greater DNA binding specificity [12] and the tramtrack (TTK)

protein can regulate transcription independent of its own DNA

binding domain via its interaction with the Trithorax-like (TRL,

also known as GAGA binding factor) [13]. Furthermore, TF
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occupancy at a genomic location in a given cell type also depends

on the concentration of that TF, as well as the motifs and

concentrations of other TFs that might facilitate or inhibit DNA-

binding at the location [14].

A number of recent studies have used genome-wide datasets to

characterize parameters that correlate with TF occupancy. In

several studies, genome-wide measurements of in vivo DNA

accessibility were tested for the ability to help describe TF ChIP

data. These studies clearly demonstrate that TF occupancy has a

close relationship with in vivo DNA accessibility [6,7], with both

factors likely influencing each other [6,15–19]. While these studies

reveal that experimental analysis of accessibility can improve

modeling of ChIP data, they do not reveal the underlying genomic

sequence features that contribute to accessibility. In another study

[5], sequence motifs experimentally and computationally identi-

fied in Drosophila were shown to contribute to context-specific TF

occupancy. Application of discriminative motif analysis to a TF

assayed across multiple conditions can successfully identify

predictive motifs associated with context-specific binding. How-

ever, whether TFs bound to these discriminative motifs contribute

to occupancy by direct interaction with the primary TF,

accessibility or other mechanisms is not assessed.

In this work, we test the influence of various potential sequence

determinants of in vivo TF-DNA binding – the TF’s binding motif,

as well as the positive or negative influence of other TFs binding in

the vicinity – on each of 45 TF-ChIP data sets in Drosophila. For

this analysis, we took advantage of over 300 distinct DNA binding

specificity motifs determined for individual TFs [20], which

encompasses approximately 40% of all predicted Drosophila TFs,

and relied upon stage-specific whole-genome RNA-SEQ data [21]

to determine which secondary TFs are expressed at the time of the

ChIP experiment. We follow the general framework proposed by

Kaplan et al. [6], which involves: (1) building computational

models that predict TF binding at a location, and (2) assessing how

well a baseline model that only uses the ‘‘primary motif’’ (i.e.,

binding motif of the ‘‘ChIP’ed’’ TF) fits the ChIP data, as

compared with more complex models that incorporate additional

determinants such as motifs for additional secondary TFs (i.e., TFs

other than the ChIP’ed TF). We use the biophysical model STAP

[22] to perform these tests. Improvements in the goodness-of-fit

measure are evaluated statistically, and a cross-validation frame-

work is adopted to account for differing model complexity in the

comparisons. We evaluate each potential determinant separately

in order to limit the number of free parameters in the models. For

each identified secondary TF, we performed statistical tests to

categorize the mechanistic basis of its contribution. In particular,

we asked if a secondary motif’s influence is likely to be (a) through

long-range (#150 bp) versus short-range (#30 bp) interactions

with the primary motif, (b) through synergistic or antagonistic

interactions, and (c) through modulation of local DNA accessibility

or direct interactions between TFs.

We find widespread evidence of the effect of secondary TFs on

the primary (ChIP’ed) TF’s binding levels, including both

enhanced occupancy (‘‘cooperativity’’) and reduced occupancy

(‘‘antagonism’’). Cooperative and antagonistic influences of

secondary motifs can act through: 1) long-range interactions

between primary and secondary motifs, suggesting indirect effects

such as chromatin remodeling, 2) short-range interactions with

specific inter-site spacing biases, suggesting a direct association, or

3) through overlapping binding sites, suggesting competition for

site occupancy.

Two types of experimental evidence support our computational

assignments of secondary TFs that influence occupancy via local

chromatin architecture or cooperative DNA binding. Extending

previous observations [6,7], we find that DNA accessibility is the

primary genomic feature correlated with TF occupancy across the

majority of the 45 data sets examined here. We then use

accessibility data to re-examine secondary TF motifs that

improved prediction of ChIP data in our accessibility-agnostic

analysis. We identify several secondary motifs whose contribution

is reduced or lost when accessibility information is part of the

model, suggesting that the secondary TF influences binding mainly

by modulating accessibility patterns. The TFs vielfaltig (VFL, also

known as Zelda) and TRL (also known as GAGA factor) appear to

synergistically influence the binding of several primary TFs in

early and mid-stage embryonic development respectively. Inter-

estingly, the influence of VFL is sometimes imposed through

accessibility, while in other cases it is independent of accessibility.

In contrast, the influence of TRL is imposed exclusively through

accessibility. The TF motifs for extradenticle (EXD), retained

(RETN), jing interacting gene regulatory 1 (JIGR1) and homo-

thorax (HTH) commonly antagonize TF occupancy through

accessibility-mediated and accessibility-independent mechanisms.

We find many cases where the secondary motif’s influence remains

significant upon accounting for accessibility, thus suggesting

alternative mechanisms such as cooperative or antagonistic

DNA-binding by the primary and secondary TFs. We identify

eight examples where the arrangement of primary and secondary

motifs implies cooperative binding via physical interaction, and

demonstrate that for all but one of these cases the TFs do, in fact,

directly interact in vitro and that several bind cooperatively in vitro

to sequences that are occupied in vivo. Overall, our analysis

demonstrates that a biophysical model for the combinatorial

action of primary and secondary TFs used with an extensive

collection of binding motifs for known TFs can describe the

mechanistic basis for in vivo patterns of TF occupancy.

Author Summary

Chromatin Immunoprecipitation (ChIP)-based genome-
wide assays of transcription factor (TF) occupancy have
emerged as a powerful, high throughput method to
understand transcriptional regulation, especially on a
global scale. Here, we utilize 45 ChIP-chip and ChIP-SEQ
data sets from Drosophila to explore the underlying
mechanisms of TF-DNA binding. For this, we employ a
biophysically motivated computational model, in conjunc-
tion with over 300 TF motifs (binding specificities) as well
as gene expression and DNA accessibility data from
different developmental stages in Drosophila embryos.
Our findings provide robust statistical evidence of the role
played by TF-TF interactions in shaping genome-wide TF-
DNA binding profiles, and thus in directing gene regula-
tion. Our method allows us to go beyond simply
recognizing the existence of such interactions, to quanti-
fying their effects on TF occupancy. We are able to
categorize the probable mechanisms of these effects as
involving direct physical interactions versus accessibility-
mediated indirect interactions, long-range versus short-
range interactions, and cooperative versus antagonistic
interactions. Our analysis reveals widespread evidence of
combinatorial regulation present in recently generated
ChIP data sets, and sets the stage for rich integrative
models of the future that will predict cell type-specific TF
occupancy values from sequence and expression data.

Identifying Mechanisms Underlying ChIP Data
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Results

Model evaluation and baseline results using the ChIP’ed
transcription factor’s motif

We began our analysis with fifty-five TF-ChIP data sets

obtained from diverse sources (see Methods). Each TF-ChIP data

set was represented by 1000 peaks and 1000 random non-coding

sequence windows, all of length 500 bp. This representation was

selected with the goal of identifying TF motifs that improve the

ability to properly rank the occupancy within the peak group and/

or improve the ability to discriminate between peaks and random

sequences. The average ChIP score of each window was treated as

the TF occupancy level in that window (Methods), and is

henceforth called the ‘‘ChIP score’’. For each data set a Position

Weight Matrix (PWM or motif) representing the DNA binding

specificity of the ChIP’ed TF was identified (Methods) and

designated as the ‘‘primary motif’’. We used the STAP program

[22] (Figure 1A) to predict a binding level, henceforth called

‘‘STAP score’’, for each sequence window in a data set, using the

primary motif from that data set. We then computed the Pearson

Correlation Coefficient (CC) between ChIP scores and STAP

scores across the 2000 windows in each data set, and call this the

‘‘baseline CC’’ for the data set. This value captures the ability of

the primary TF’s binding motif to determine that TF’s relative

occupancy levels both within the most highly bound regions and in

peak versus non-peak regions. Since STAP has one free parameter

for which it requires training data (sequences and their binding

levels), we performed 4-fold cross-validation to obtain STAP scores

for all 2000 windows, with 500 test windows in each fold. Out of

the 55 data sets, seven did not show a sufficiently high correlation

(CC $0.15 and p-value,1E-11) here or in any other test that we

report in the following sections, and three data sets presented

technical problems in the training phase, e.g., inconsistent

parameter values learned over different folds of cross-validation.

These 10 data sets (Supplementary Table S1) are excluded from

the rest of our report. In all of these examples, the TF motif is

broadly confirmed by similarity to motifs for the same TF obtained

by other methods or to motifs for homologous TFs. Thus, the low

correlation may reflect a high degree of recruitment to DNA by

other proteins, technical problems with this group of ChIP

datasets, or with the model as applied to these datasets.

The results of this first exercise are shown in Table 1 and

Figure 2A. We noted the baseline CC in this test to be $0.15 (p-

value,1E-11) for 39 data sets, with the highest CC reported for

the data set ‘‘TRL_Cchip_s5_14’’, i.e., ChIP-chip data for the TF

TRL in stage 5–14 embryo, obtained from the (C)avalli laboratory

(see Table 1 legend for data set nomenclature scheme). We

repeated this exercise, for all 55 data sets, using a second program,

TRAP, also based on a biophysical model of DNA binding [23]

with default parameter settings, and noted that CC values from

STAP were generally better (Figure 2B), although there were

several data sets where the two methods gave almost identical CC

values. We also observed from Figure 2B that the ten data sets that

we exclude from most of the analyses in this work (red symbols)

received poor CC values from both STAP and TRAP. The

purpose of this exercise was not to identify a superior method for

occupancy prediction; such an attempt would have been biased

since we have more experience with STAP than TRAP, and our

TRAP analysis was run without training of free parameters. Our

goal was to provide evidence that STAP-based predictions provide

a reasonable baseline for more advanced models that will be

examined below.

Figure 2C provides a scatter-plot visualization of the STAP

results on the data set ‘‘TRL_Cchip_s5_14’’, which has the best

Figure 1. STAP model of TF-DNA binding. A. Baseline model: only
the ChIP’ed (‘‘primary’’) TF is considered, and its putative sites in the
given sequence are identified. Here, A is a strong site and B is a medium
strength site of the TF. Four possible configurations (s) of A and/or B
bound by the TF are enumerated, and for each s the relative weight
W(s) is calculated as the product of terms (qA, qB) specific to sites
occupied in that configuration. The occupancy is then estimated as a
weighted average of N(s), the number of occupied sites in s. The site-
specific terms qA, qB are proportional to TF concentration, so a doubling
of concentration will change (qA = 0.9, qB = 0.5) to (qA = 1.8, qB = 1.0),
and this will impact the predicted occupancy (OCC = 0.807 to
OCC = 1.143), but does not double the prediction, due to saturation
effects. B. Interaction between the primary TF (blue) and a secondary TF
(green) is modeled by re-defining the relative weight of a configuration
where both sites are bound. If the two sites are separated by more than
some distance threshold dT, nothing changes, and there is no
interaction. If the separation is less than dT, the relative weight of s
is multiplied by an interaction term v, which can be .1 (for cooperative
influence) or ,1 (for antagonistic influence). This increases or decreases
(respectively) the probability of the joint configuration, and therefore
the overall occupancy of the primary TF at site A. Competitive binding
at overlapping sites A, C is modeled automatically, since both sites may
not be occupied simultaneously in any configuration.
doi:10.1371/journal.pgen.1003571.g001

Identifying Mechanisms Underlying ChIP Data
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baseline CC value (CC = 0.765). Figure 2D provides an alternative

visualization of the same results, as an ROC curve showing how

the false positive rate of calling a ChIP peak based on STAP scores

varies as we vary the STAP score threshold. We see that 89.7% of

the 1000 ChIP peaks can be detected using STAP scores while

making 10.3% false positive predictions; the Area Under Curve

(AUC) is 0.96. Next to TRL, the TF with the highest CC is biniou

(BIN), with the data set ‘‘BIN_Fchip_s14’’ exhibiting a CC of

0.654 and an AUC of 0.895 (Supplementary Figure S1). We note

that this data set had been previously observed, in [24], to have a

high enrichment of the TF motif in ChIP peaks. The ROC for a

data set with a more typical value of CC is shown in

Supplementary Figure S2 (CC = 0.305, AUC = 0.679). Figure 2E

provides a different visualization of the accuracy of STAP

predictions, as genome browser tracks of ChIP and STAP scores

for the TF BCD on a single gene locus.

The CC values reported above can arise from differences in

STAP scores of peaks and non-peaks in a data set, and from

correctly modeling the ChIP scores within peaks and/or non-

peaks. To examine the contribution of these two types of

agreement between data and model, we separately calculated

CC values among the peaks and non-peaks (Supplementary Table

S10, Supplementary Figures S5A,B). We found several data sets

where a significant overall CC was accompanied by a lower but

significant CC within peaks, e.g., BCD_Bseq_s5, where the overall

CC is 0.560, and the CC within peaks is 0.466 (Supplementary

Figure S5A,C). These are examples where the goodness-of-fit

arises from discrimination of peaks and non-peaks as well as from

quantitative modeling of binding levels. In a few data sets, the

signal appears to arise mainly from separation of peaks and non-

peaks, e.g., BIN_Fchip_s14, where the overall CC is 0.654 but the

CC within peaks and non-peaks is 0.233 and 0.185 respectively.

By and large, the CC values within peaks were higher than those

within non-peaks, as expected (Supplementary Figure S5B).

Interestingly, for a few data sets the correlation within non-peaks

was much greater than within peaks. These include UBX_M-

chip_s5_14, EN_Mchip_s5_14, DISCO_Mseq_s5_11, EVE_M-

seq_s14, and MAD_Bchip_s5, with peaks of the latter two

Figure 2. Baseline model performance. A. Histogram of CC values from Table 1. B. Comparison of CC from STAP-based motif scores to those
from TRAP-based motif scores, on all 55 data sets that were examined. Red triangular symbols represent the ten data sets that showed poor CC in all
of our models and were thus excluded from reported results. C. ChIP scores and STAP scores for all 2000 segments in the data set that had the best
CC overall: ‘‘TRL_Cchip_s5_14’’. Blue and red points represent the 1000 top ChIP peaks and 1000 randomly selected non-coding segments
respectively. D. Receiver Operating Characteristic (ROC) curve for a classifier that uses a threshold on the STAP score to discriminate TF-bound
segments from non-bound segments, defined by the top 50% and bottom 50% ChIP scores in the data set ‘‘TRL_Cchip_s5_14’’. The area under this
curve (AUC) is 0.960. E. ChIP (red) and STAP (blue) predicted ChIP score profiles for the transcription factor BCD on a ,10 Kbp region near gene BTD,
at the developmental stage 5. The Pearson’s CC at this locus is 0.80.
doi:10.1371/journal.pgen.1003571.g002

Identifying Mechanisms Underlying ChIP Data
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exhibiting significant negative correlation between STAP predic-

tions and ChIP scores (Supplementary Figure S5D). For these TFs,

the motif score may be uniformly high in the top peaks, but help

discriminate between very low and intermediate occupancy levels

in the randomly selected regions, leading to stronger correlation

within non-peaks.

We also repeated the evaluation of the above ‘‘baseline’’ model

with a modified definition of data sets: now, the 1000 non-peaks of

each data set was replaced with 1000 non-peaks randomly chosen

from the ChIP peaks of other TFs. CC values analogous to those of

Table 1 (Column ‘‘CC(M1)’’) were computed and compared to

those from Table 1 (Supplementary Table S15 and Figure S9). We

observed that for a few data sets the new CC value is lower,

suggesting that the primary TF motif in these cases may represent

common features of TF bound regions. (We visit these cases in a

later section.) We also noted several cases where the CC values were

significantly higher when using other TFs’ peaks as the non-peaks of

a data set (e.g., Supplementary Figure S10). We believe such

examples better reveal the role of the primary TF motif in

determining the TF-DNA binding strength within accessible

regions, since all segments considered in the newly defined data

sets are ChIP peaks of some TF. Overall, our analysis of primary TF

motif scores in different sets of genomic regions supports the idea

that the 2000 regions selected for further study can provide insight

into diverse types of mechanisms contributing to in vivo TF binding.

ChIP data supports concentration-dependence of TF-
DNA binding

STAP uses a simple thermodynamic model to define TF-DNA

occupancy for a genomic region based on binding site affinities,

the equilibrium constant of the TF for its optimal site, and the TF’s

concentration level [22]. While the binding site affinity relative to

that of the optimal site can be quantified using the PWM [25], the

latter two quantities are formally unknown. The formula used by

STAP (see Methods) features these two quantities as a mutual

product, which is treated as a free parameter in the model. This

TF-specific free parameter, henceforth denoted by c, may lead to

less of a difference in the contributions of high and moderate

affinity sites. That is, at higher c values, as would result from a

high effective TF concentration, both high and moderate affinity

sites may be fully occupied (saturated occupancy) whereas a

stronger bias for high affinity sites will be observed at lower values

(Figure 1A). As noted above, we use a cross-validation setting

where the parameter is trained on three-quarters of the data and

used to predict STAP scores in the left-out quarter, and the

process is repeated four times. We examined the role of this

parameter in the accuracy of the STAP model by varying it in the

broad range 1021 to 105 and recording the CC at each value of c.

As shown in Figures 3A–C, the optimal parameter value varies

across data sets, between 100 to 104, with a roughly equal split into

low, medium and high regions of the allowed range. All

experiments reported in the rest of this paper were constrained

to use c in the range 100–104. We note that a value of c = 100

indicates that the optimal site has a fractional occupancy of 0.5 at

cellular levels of TF concentration, while a value of c = 104

indicates a fractional occupancy of ,1.

Figures 3A–C also reveal that for any given data set there is a

substantial variation in the accuracy of STAP scores as we vary the

TF-specific c parameter. For instance, the CC value in the data set

‘‘TWI_Fchip_s9’’ (TWI at stage 9, source: Furlong lab ChIP-chip

data) is about 0.25–0.30 at the two extreme values of c (1021 and

105 respectively), but reaches a much higher value of 0.42 at

c = 102. This dependence on the c parameter, along with the

variability of optimal c across data sets underscores the importance

Table 1. Evaluation of single motif STAP model on 45 TF-ChIP data sets.

Data set CC(M1) SPCC(M1) Data set CC(M1) SPCC(M1) Data set CC(M1) SPCC(M1)

TRL_Cchip_s5_14 0.765 0.593 TIN_Fchip_s10_11 0.392 0.445 DISCO_Mseq_s5_11 0.220 0.269

BIN_Fchip_s14 0.654 0.669 HB_Bseq_s5 0.374 0.379 PRD_Bchip_s5 0.214 0.187

MAD_Bchip_s5 0.635 0.677 SNA_Bchip_s5 0.330 0.295 SLP1_Bchip_s5 0.214 0.171

BIN_Fchip_s10_11 0.630 0.647 D_Mseq_s5_11 0.328 0.455 HB_Bchip_s9 0.204 0.177

KR_Mchip_s5_11 0.598 0.639 EN_Mchip_s5_14 0.321 0.359 MED_Bchip_s10 0.184 0.034

BCD_Bseq_s5 0.560 0.614 H_Bchip_s5 0.312 0.365 CAD_Bseq_s5 0.178 0.283

HKB_Mseq_s14 0.551 0.551 HKB_Bchip_s5 0.305 0.298 EVE_Mseq_s14 0.174 0.209

Z_Bchip_s5 0.467 0.432 BAB_Mchip_s5_14 0.299 0.285 SENS_Mchip_s9_11 0.163 0.135

UBX_Mchip_s5_14 0.442 0.419 D_Bchip_s5 0.291 0.238 TLL_Bchip_s5 0.159 0.187

KR_Bseq_s5 0.430 0.458 DA_Bchip_s5 0.286 0.317 DLL_Mchip_s5_14 0.145 0.171

TIN_Fchip_s9 0.428 0.507 UBX_Mchip_s9_11 0.279 0.262 SHN_Bchip_s5 0.125 0.122

VFL_Rchip_s5 0.423 0.244 RUN_Bchip_s5 0.258 0.279 KNI_Bchip_s5 0.102 0.136

TWI_Fchip_s9 0.420 0.367 MED_Bchip_s14 0.255 0.102 MED_Bchip_s5 0.102 20.046

TIN_Fchip_s5 0.412 0.467 TWI_Bchip_s5 0.251 0.214 D_Mchip_s5_14 0.065 0.046

TWI_Fchip_s10_11 0.405 0.378 GT_Bseq_s5 0.241 0.260 DL_Bchip_s5 0.062 0.063

Column CC(M1): Pearson’s correlation coefficient between ChIP scores and STAP scores on 45 data sets. A correlation coefficient of 0.15 has p-value,1E-11. Note that
for 39 of 45 data sets the CC is significant at this level. The TF-specific parameter c was constrained to be in the range [1, 104] (see text). Results shown are from 4-fold
cross-validation. Column SPCC(M1): correlation coefficient after ‘‘partialing out’’ the effect of accessibility scores. Bold and italic fonts indicate cases where SPCC is better
or worse respectively than CC.
Data set nomenclature: ‘‘TF_SRC_STAGE’’ represents ChIP data for transcription factor ‘‘TF’’. ‘‘SRC_STAGE’’ is of the form ‘‘[B/M/F/C/R][chip/seq]_sX’’ or ‘‘[B/M/F][chip/
seq]_sX_Y’’, where ‘‘B’’ represents BDTNP data, ‘‘M’’ represents modENCODE data, ‘‘F’’ represents data from the Furlong laboratory [24], ‘‘R’’ represents data from the
Rushlow laboratory [68], ‘‘C’’ represents data from the Cavalli laboratory [62], ‘‘chip’’ represents ChIP-chip, ‘‘seq’’ represents ChIP-seq, while ‘‘X’’ and optionally ‘‘Y’’
indicate developmental stage numbers for the Drosophila embryo.
doi:10.1371/journal.pgen.1003571.t001
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of this parameter in the model. The parameter is analogous to the

motif transition probability parameter in HMM-based models

used in motif scanning, and our observation highlights the need for

data set-specific training of this parameter in order to achieve the

most accurate predictions. More generally, we conclude that

simply adding the strengths of motif matches in a window is not

necessarily the best way to predict TF occupancy in that window.

For a given TF, the c parameter is proportional to the TF’s

concentration level in the experimental conditions. Therefore, if

we have ChIP data on the same TF from two different stages, the

optimal c values ought to reflect the relative concentration levels in

those stages. The examined collection of data sets included eight

such pairs of data sets comprising ChIP data for the same TF from

two different developmental stages. We therefore plotted the ratio

of the trained c values in the two stages versus the ratio of the TF’s

expression levels in those stages. We noted (Figure 3D) that the

ratios of c values were roughly consistent with ratios of expression

levels, in that if one ratio is .1, the other ratio is also greater than

or close to 1, and not ,1. Expression levels were obtained from

RNA-SEQ data from whole-embryos and may therefore be only a

crude approximation of cell type-specific protein concentrations.

This, and the fact that all ChIP experiments were performed on

whole-embryo extracts, are expected to affect the sensitivity of this

analysis, and may be the reason why we did not see a more

quantitative agreement between the two ratios (i.e., points always

close to the diagonal).

VFL and TRL binding sites frequently influence
occupancy through long-range interactions

Our tests so far examined how different aspects of the primary

TF, such as its binding specificity and concentration, affect its

DNA-binding profile. In the next set of tests, we sought to evaluate

the role of TFs other than the primary TF in determining the

latter’s occupancy. To this end, we used STAP with two motifs –

the primary motif and one secondary motif at a time – and allowed

cooperative interaction between TF molecules bound at sites

within a certain distance, called the ‘‘distance threshold’’, of each

other (Figure 1B). There are now three free parameters: the two c
parameters corresponding to the primary and secondary motif,

and a parameter representing the interaction energy between

bound molecules of the primary and secondary TF. Evaluations

performed under a cross-validation scheme ensured that CC

values here are comparable to those in the baseline results from

Table 1.

In the first set of tests of cooperative effects, we set the distance

threshold to be 150 bp, therefore allowing long-range interaction

that is similar to the length of DNA in one nucleosome. (We use

‘‘long-range’’ here to contrast with ‘‘short-range’’ interactions

inferred from site pairs with #30 bp spacing in the next

subsection, but note that ‘‘long-range’’ has different connotations

in other contexts, e.g., to refer to interactions beyond enhancer

boundaries [26,27].) For each data set, we tested a secondary motif

for every TF among the most highly expressed genes in the

Figure 3. Influence of TF concentration to TF-DNA occupancy. A–C: Dependence of correlation coefficient (CC) between ChIP scores and
STAP scores (y-axis) on the TF-specific parameter c that was varied in the range 1021 and 105 (x-axis). All 45 data sets are shown, split into three
panels corresponding to cases where the optimal c was in the range 1021 to 101 (A), 102 to 103 (B), or 104 to 105 (C). The parameter c in the STAP
model reflects the product of the equilibrium constant of the consensus site and the TF’s concentration. D. Changes in the trained value of the TF-
specific parameter c from one stage to another are consistent with changes in RNA-SEQ-based expression level of the TF. Given a TF for which we
have ChIP data from two different developmental stages, the ratio of the trained c values reflects the ratio of TF concentration in those two stages, as
per the model. This ratio is plotted against the ratio of RNA-SEQ levels of the TF’s gene from those two developmental stages. All points are in the first
or third quadrants suggesting that the trained c values are consistent with expression data. Each point is labeled by the profiled TF’s name and the
two corresponding developmental stages.
doi:10.1371/journal.pgen.1003571.g003
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appropriate developmental stage, based on RNA-SEQ data [21].

We compared the CC of a (primary motif, secondary motif) pair to

that from the primary motif (Table 1), and examined all cases

where the improvement in CC was $0.04 (see Methods). The

improvement, henceforth called DCC, was subjected to two

different assessments of statistical significance. First, we recom-

puted the DCC with one hundred random variants of the

secondary motif (see Methods), and asked what fraction of these

random DCC values were better than the original DCC, thus

obtaining a ‘‘DCC p-value’’. Second, we utilized the DCC values

from every tested secondary motif to compute a Z-score (see

Methods). This mimics standard outlier detection procedures and

designates a DCC value as significant if it appears to be an outlier

compared to other observed DCC values for this data set. This is

analogous to a multiple hypothesis correction, since we test over 50

candidate secondary motifs per data set. Additionally, we required

that the cooperative interaction model has a greater CC than a

model where the secondary motif alone is used by STAP.

Thereby, we identified data sets where the combination of the

primary and secondary motifs, through cooperative interactions,

can describe the primary TF’s occupancy better than either motif

in isolation.

This analysis revealed 25 cases of significant improvements

(DCC $0.04, p-value#0.05 and Z-score $3), spread over 18 data

sets (Supplementary Table S2). Table 2 tabulates the secondary

motif with the most pronounced effect for each of these data sets.

We noted that these effects arise mainly from an improved ability

to discriminate peaks from non-peaks, and in only 4 (respectively

2) of these 18 cases the cooperativity model improves the CC even

within peaks (respectively non-peaks) (Supplementary Table S11,

Supplementary Figure S6). Remarkably, for 15 of these 18 data

sets, the most influential secondary motif was either VFL (8 cases)

or TRL (7 cases). Figure 4A shows an example where the use of

VFL as a secondary motif significantly improves the ability to

discriminate ChIP peaks from non-peaks. Overall, the VFL motif

significantly improves primary TF occupancy predictions for 10

data sets (Supplementary Table S3, Figure S4A), of which 9 were

from an early developmental stage (stage 5), and the tenth was

from a broader span of developmental stages including stage 5. We

noted that VFL is highly expressed in later stages as well and its

motif was tested as a secondary motif in the corresponding data

sets, but significant influences were not detected in those data sets.

VFL has been proposed to play a ‘‘pioneer factor’’ role [28] in

early development [29,30], and its motif has been found to be

highly over-represented in so-called ‘‘HOT’’ regions that represent

the most accessible regions of the genome [31,32]. Yanez-Cuna

et al. [5] recently showed the VFL motif to be required for DNA-

binding by the TF TWI, as well as for regulatory activity of TWI-

bound enhancers, and to be enriched in early binding sites of other

TFs such as MEF2. Our findings support these strong lines of

evidence for an important facilitative role of VFL in determining

TF-binding, and explicitly quantify this role for 10 different TF-

ChIP data sets.

We found the TRL motif to influence the binding levels of

primary TFs in eight data sets overall, of which six are from the

later developmental stages 9–14 (Supplementary Table S4). As

discussed in [33–35], TRL plays an important role in regulating

the chromatin structure and packaging large segments of the

chromosome into active (euchromatic) or inactive (heterochro-

matic) domains. The TRL motif was also prominent among

sequence signatures of context-specific TF-DNA binding reported

in [5], although this previous study did not explicitly quantify its

facilitative effect on various primary TFs. It is interesting to note

that TRL is the TF with the highest baseline CC (Table 1),

reflecting the possibility that TRL-DNA binding is largely

dependent on the TF itself and does not require facilitative effects

of secondary TFs. This is consistent with speculation that TRL is a

‘‘pioneer factor’’ [28,36].

In these initial tests, STAP was configured to allow interaction

between primary and secondary motif as long as their bound sites

were within 150 bps. We next asked if the promiscuous effects of

VFL and TRL could be observed when reducing this distance

threshold to 30 bps, which would suggest that short-range

mechanisms of interaction might be involved. We found that in

most cases the effects of these two motifs were not significant at the

shorter distance range (Supplementary Tables S17, S18), and in

the four cases where significant effects were detected at this range,

the magnitude of the effect was lower than that at 150 bp range. A

possible interpretation of this finding, especially in light of

available knowledge about these two proteins, is that they act as

chromatin remodelers over relatively long scales (150 bp or

greater) and facilitate TF binding by making binding sites of the

primary TF more accessible. (We revisit this point in a later

section, by directly examining accessibility data.) Notably, the data

sets for VFL and TRL themselves did not reveal any secondary

motifs with significant effects, once again supporting a possible

pioneer factor role for these two TFs.

Short-range interactions with secondary TF sites
influence primary TF occupancy and can predict physical
interactions between TFs

While VFL and TRL clearly show the most frequent effects on

TF binding, a number of other influential secondary TF motifs

were also revealed by our analysis; these are shown in Table 3. For

each of these cases we report the DCC values at both distance

thresholds (30 bp and 150 bp). Of particular interest were the

(primary motif, secondary motif) pairs where the DCC was

significant only at the 30 bp threshold, since this may reflect direct

interactions. (These significant short-range interactions were

reflected in a better ability to discriminate peaks from non-peaks

rather than an improved ranking of the peaks; see Supplementary

Table S12 and Supplementary Figure S7.) A case in point is the

data set HB_Bchip_s9, for the TF hunchback (HB), where the

secondary motif Adh transcription factor 1 (ADF1) improves the

baseline CC of 0.204 to 0.303 when modeling heterotypic

cooperativity at distance threshold 30 bp. The DCC of 0.099 is

highly significant (empirical P-value = 0, i.e., no shuffled motif

yielded better DCC), while that at the 150 bp threshold does not

meet our significance criteria. A similar effect was observed for the

ADF1 motif on HB ChIP data in stage 5 embryos. We

hypothesized that this is evidence for direct physical interaction

between HB and ADF1 resulting in modulation of HB binding

levels. We searched for sequence signatures of such a hypothesized

interaction in the relative spacing of HB and ADF1 binding sites.

Examination of the 250 highest ChIP peaks in the data set showed

a statistically significant bias (P-value 3E-4, see Methods) for

spacing in the range 18–23 bps (Figure 4B). A similar test on 250

non-peaks from the data set showed no bias for this range or any

other. This analysis suggests that proximally located binding sites

of HB and ADF1 result in increased HB occupancy in ChIP peaks.

We examined other data sets where the DCC was significant, and

found similar evidence of biased inter-site spacing in ChIP peaks

(Figure 4B), supporting the hypothesis that direct cooperative

interactions may be a key factor in determining TF binding

profiles in these cases. In some cases, e.g., the pair (D, TTK) and

(GT, TTK), we noticed more than one preferred spacing range,

separated by 11 bp, as might be expected due to proper phasing

requirements between physically interacting TFs [37]. We also
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Figure 4. Influence of TF-TF cooperative interactions on TF-DNA occupancy. A. ROC curve and Genome Surveyor tracks of the single motif
model and best TF-TF interaction model for the data set ‘‘KR_Bseq_s5’’, where CC(KR) = 0.487, CC(KR+VFL) = 0.774, AUC(KR) = 0.701, and
AUC(KR+VFL) = 0.801. B. Inter-site spacing bias for a selection of putative TF-TF cooperative interactions. The statistical significance of inter-site
spacing bias in the top 250 ChIP peaks (blue) or 250 non-peaks (red) of a data set is measured by the Fisher’s Exact Test, for different spacing ranges
(x-axis). TF pairs are named in legend (inset) with primary TF appearing first. C. Experimental validation of predicted direct TF-TF interactions. (Left)
Candidate interacting TF pairs were produced by in vitro transcription/translation of renilla luciferase (Luc) and maltose binding protein (MBP) tagged
proteins; luciferase activity co-isolated with the MBP-tagged protein was determined. (Right) For each heteromeric pair, interaction was tested in two
configurations, with either TF1 or TF2 tagged with MBP. Results for each configuration alone and the average of both experiments are shown. A
Luminescence Intensity Ratio (LIR) cutoff of 7 was used for positive interactions. Error bars indicate the Standard Deviation.
doi:10.1371/journal.pgen.1003571.g004
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tested for biased inter-site spacing between the TFs Distal-less

(DLL) and Zif Zinc-finger protein (ZIF, also called CG10267)

(Figure 4B), because the DCC was found to be significant for this

pair (empirical p-value 0), although the z-score of this DCC was

2.435, slightly below our chosen threshold of 3.0.

For each of the predicted heterotypic interactions shown in

Figure 4B, we assayed for direct physical interactions between the

TFs using a modification of the LUMIER method [38,39]. In

these experiments, one partner is expressed as a fusion to Maltose

Binding Protein (MBP) and the other partner as a fusion to

luciferase (luc). To avoid possible bridging interaction by other

eukaryotic proteins, the proteins were expressed using a purified

prokaryotic in vitro expression system and then combined for

analysis. MBP-tagged proteins were isolated using amylose beads

and the luciferase activity retained on the beads (via primary TF-

secondary TF interaction), relative to a negative control with

unfused luc, was used to calculate a luminescence intensity ratio

(LIR, see Methods). A value of seven or greater was selected as a

cutoff for positive interactions. This threshold is based on a set of

positive and negative control interactions among bHLH protein

dimers examined using this assay (HNP and MHB, unpublished)

as well as additional negative controls using luc fused to the TF

CLK or MBP without a fusion partner (Supplementary Figure

S12). This threshold is more than twice as stringent than those

used in previous studies examining protein interactions in cell

culture [38,39] and consequently may exclude some weaker

interactions, including some that may only be significant in the

context of cooperative binding to DNA. Each predicted interac-

tion pair was examined in both configurations (e.g., the primary

TF was fused to MBP in one experiment and to luc in the second).

In addition, since Mothers against dpp (MAD) and Medea (MED)

are known to bind DNA as a heteromeric complex [40–43], it is

possible that any interaction computationally identified for one of

these proteins is the result of an interaction with the other one. In

our in vitro experiments, only direct physical interactions between

two proteins are tested. Therefore, each of the predicted

interactions for either MAD or MED was also tested with the

other.

For five of the eight tested pairs (i.e., those not involving MAD

or MED), a clear in vitro interaction was observed in both

configurations (Figure 4C, Supplementary Table S9). For the two

predicted interactions involving MAD, one of the two configura-

tions gave a signal while the other was just below our selected

cutoff. In one additional case, no physical interaction was observed

between ribbon (RIB) and MED, but RIB was observed to interact

with the MED binding partner, MAD. None of our tested negative

controls was near the threshold and the interaction signal for most

of the tested pairs was similar to two, well-established positive

control interactions for this set of proteins, a MAD-MED

heterodimer and a homodimer of giant (GT), which is a member

of the bZIP family of TFs that bind DNA as homodimers [44].

Thus, all of the tested predictions are supported by a moderate to

strong in vitro interaction, demonstrating that at least some of

the short range cooperative interactions identified by our

Table 2. Effect of cooperative interactions between pairs of TFs on the accuracy of modeling ChIP data.

Data set M2 CC(M1) CC(M2) CC(M1+M2) ImprOverM1 ImprOverM2 P-value Z-score

BCD_Bseq_s5 VFL 0.560 0.392 0.603 0.043 0.211 0.00 9.03

BIN_Fchip_s10_11 TRL 0.630 0.206 0.682 0.052 0.475 0.02 3.91

BIN_Fchip_s14 TRL 0.654 0.216 0.697 0.043 0.481 0.01 7.64

CAD_Bseq_s5 VFL 0.178 0.472 0.519 0.341 0.048 0.00 9.99

D_Bchip_s5 VFL 0.291 0.310 0.393 0.102 0.083 0.00 19.97

D_Mseq_s5_11 HLHM5 0.328 0.373 0.416 0.088 0.043 0.04 4.00

DA_Bchip_s5 VFL 0.286 0.266 0.334 0.048 0.068 0.00 11.84

EN_Mchip_s5_14 TTK 0.321 20.159 0.391 0.070 0.232 0.01 23.81

HB_Bseq_s5 VFL 0.374 0.326 0.459 0.085 0.133 0.00 6.09

KR_Bseq_s5 VFL 0.430 0.388 0.531 0.101 0.143 0.00 21.21

MED_Bchip_s14 ZIF 0.255 0.105 0.337 0.082 0.232 0.01 3.33

RUN_Bchip_s5 TRL 0.258 0.147 0.328 0.070 0.181 0.00 12.72

SLP1_Bchip_s5 VFL 0.214 0.154 0.281 0.067 0.128 0.00 3.47

TIN_Fchip_s10_11 TRL 0.392 0.269 0.472 0.080 0.203 0.00 29.57

TIN_Fchip_s9 TRL 0.428 0.257 0.480 0.052 0.223 0.02 15.11

TWI_Bchip_s5 VFL 0.251 0.280 0.345 0.094 0.065 0.00 15.84

TWI_Fchip_s10_11 TRL 0.405 0.305 0.465 0.060 0.160 0.02 10.41

TWI_Fchip_s9 TRL 0.420 0.197 0.469 0.049 0.272 0.00 10.55

STAP was used with two motifs – the primary motif (representing the ChIP’ed TF) and a secondary motif (‘‘M2’’), and with cooperative DNA-binding included in the
model. Cooperative interaction between two TF sites was included in the model only if the two sites are within a pre-defined ‘‘Distance Threshold’’ set to 150 bp in this
set of experiments. The correlation coefficient between STAP scores from this model (CC(M1+M2)) was compared to the CC when using only the primary motif (CC(M1))
or when using only the secondary motif (CC(M2)) in STAP. The respective improvements are noted as ‘‘ImprOverM1’’ and ‘‘ImprOverM2’’ respectively. The column ‘‘P-
value’’ shows an empirically calculated p-value for the improvement, comparing the observed improvements to that expected from 100 shuffled versions of the
secondary motif. The column ‘‘ImprOverM2’’ is the difference of CC(M1+M2) and the absolute value of CC(M2). The last column (‘‘Z-score’’) compares the observed
improvement (ImprOverM1) to that obtained using other real motifs, corresponding to TFs expressed highly in that developmental stage, as the secondary motif.
Shown here is only the single strongest secondary motif influence on each data set, if its P-value is #0.05 and Z-score is $3. The complete list of significant effects is in
Supplementary Materials (Table S2). Note that all results are from cross-validation and thus account for the additional parameters in the two motifs model compared to
the one motif model.
doi:10.1371/journal.pgen.1003571.t002
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computational model reflect actual physical interactions that were

previously unrecognized in large scale protein-protein interaction

screens.

The physical interaction of TFs suggests that they may use

cooperativity to increase binding of the primary TF to DNA sites

with properly spaced binding sites for both TFs [45]. We tested

this prediction for three of the above TF pairs using a variation of

a previously described microwell assay [46] (Figure 5). The

primary TF fused to luciferase and a secondary TF fused to MBP

are used in an in vitro pull down assay with biotinylated dsDNA

oligos containing a sequence from the ChIP peaks that contains

binding sites for both TFs. The TFs are mixed with the

biotinylated target site and an excess of unlabeled wild type or

mutant competitor DNA. The competitor sequences used to

examine cooperative DNA binding of ZIF and DLL are shown in

Figure 5A and all sequences are shown in Supplemental Table

Table 3. Effects of cooperative DNA binding by the primary TF and a secondary TF (‘‘M2’’), that were significant at distance
threshold either 30 bp or 150 bp.

Data set M2 CC(M1)
CC(M1+M2);
30 bp

ImprOverM1;
30 bp

CC(M1+M2);
150 bp

ImprOverM1;
150 bp Tag

BIN_Fchip_s10_11 ADF1 0.630 - - 0.676 0.047 *

BIN_Fchip_s10_11 BRK 0.630 - - 0.682 0.052

BIN_Fchip_s10_11 MAD 0.630 - - 0.686 0.056

CAD_Bseq_s5 ADF1 0.178 - - 0.391 0.212

CAD_Bseq_s5 CG7928 0.178 0.254 0.076 0.257 0.079

CAD_Bseq_s5 DL 0.178 0.268 0.089 0.268 0.090

CAD_Bseq_s5 TTK 0.178 0.286 0.107 0.328 0.150

D_Mseq_s5_11 ADF1 0.328 0.380 0.052 - - *

D_Mseq_s5_11 HLHM5 0.328 - - 0.416 0.088 *

D_Mseq_s5_11 MAD 0.328 0.380 0.052 - - *

D_Mseq_s5_11 TTK 0.328 - - 0.400 0.072 *

D_Mseq_s5_11 ESPL 0.328 0.373 0.045 0.415 0.087

D_Mseq_s5_11 HLHMBETA 0.328 0.378 0.050 0.394 0.066

EN_Mchip_s5_14 TTK 0.321 0.388 0.067 0.391 0.070 *

EVE_Mseq_s14 ARA 0.174 0.291 0.116 0.268 0.094

EVE_Mseq_s14 CAUP 0.174 0.291 0.116 0.275 0.100

GT_Bseq_s5 TTK 0.241 - - 0.288 0.047

HB_Bchip_s9 ADF1 0.204 0.303 0.099 - - *

HB_Bchip_s9 WOR 0.204 0.312 0.107 0.308 0.103

HB_Bseq_s5 ADF1 0.374 0.427 0.053 - -

MED_Bchip_s10 PNR 0.184 - - 0.226 0.042

MED_Bchip_s10 SIX4 0.184 0.224 0.040 0.227 0.043

MED_Bchip_s14 ZIF 0.255 - - 0.337 0.082 *

MED_Bchip_s14 RIB 0.255 0.341 0.086 - - *

MED_Bchip_s14 TTK 0.255 - - 0.331 0.075 *

MED_Bchip_s5 DEAF1 0.102 0.153 0.051 - - *

MED_Bchip_s5 HB 0.102 0.165 0.063 - - *

RUN_Bchip_s5 TTK 0.258 - - 0.304 0.046

SLP1_Bchip_s5 ADF1 0.214 0.263 0.049 0.290 0.076

SLP1_Bchip_s5 TTK-PF 0.214 - - 0.275 0.061

TIN_Fchip_s10_11 Z 0.392 - - 0.438 0.046

TLL_Bchip_s5 DL 0.159 - - 0.206 0.047

TWI_Bchip_s5 DL 0.251 - - 0.319 0.068

TWI_Fchip_s10_11 Z 0.405 - - 0.445 0.040

TWI_Fchip_s9 TIN 0.420 - - 0.465 0.045

Only cases involving secondary motifs other than ‘‘VFL’’ and ‘‘TRL’’, and where P-value#0.05 and Z-score $3 are shown here. Cases where the improvement at distance
threshold 30 bp was similar to or better than that at 150 bp are highlighted in bold. Dashes indicate that the secondary motif was not observed to show significant
improvement at the specific distance threshold. This table presents results from testing all secondary motifs whose TFs were in the top 25% most highly expressed TF
genes (out of the ,300 TF genes with motifs) in the appropriate developmental stage. This is contrast to other tables (2, 3, 4, 6), where the tested secondary motifs
correspond to TFs that are in the top 10–15% most highly expressed TF genes for the stage. In this table, the rows marked with asterisks correspond to secondary TFs in
the top 10–15% most highly expressed TF genes.
doi:10.1371/journal.pgen.1003571.t003
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S16. Streptavidin-mediated recovery of luc-TF/biotin-DNA com-

plexes in the presence of excess wild type competitor (wt) indicates

the background signal. In experiments with both TFs present

(Figure 5B), the recovery of the luciferase-tagged primary TF in

the presence of a competitor with mutations in both TF binding

sites (e.g. DZIFDDLL) increased 8–18 fold over the background in

the presence of wt competitor (Figure 5B, upper panels). In

contrast, little increase was observed when this experiment was

repeated without the secondary TF (Figure 5B, lower panels),

indicating that the secondary TF facilitates binding of the primary

TF to these sites. The specificity of this interaction was confirmed

by testing mutant competitor DNAs that disrupt the individual TF

binding sites (e.g., DZIF or DDLL) or that increase the intersite

distance by five base pairs (e.g., ‘‘+5’’). Each of these alterations in

the DNA sequence results in reduced competition by the mutant

DNA competitor relative to wild type and increased recovery of

the primary TF (Figure 5B). Furthermore, reduced competition is

observed even when adding two competitors with mutations in one

or the other individual TF binding site and each present at the

same concentration as the wild type control; thus, high affinity

binding requires the two TF binding sites to be present on the

same DNA molecule with the proper spacing. These results

indicate that the physical interactions detected for each of these

pairs mediate cooperative DNA binding to an endogenous

sequence from one of the top ChIP peaks.

In light of the possibility that the influence of short range

cooperative interactions may be more pronounced when the

interacting TFs are at relatively modest concentration levels, we

extended the tests reported in Table 3 to include all candidate

secondary TFs with expression in the top 50%. The results, shown

in Supplementary Table S14, reveal that for several data sets

stronger influences are detectable when allowing lower expression

Figure 5. Experimental validation of predicted cooperative DNA binding by three TF pairs, ZIF with DLL, GT with TTK and D with
MAD. Relative recovery of luciferase-tagged TF with a biotinylated target DNA sequence is measured in the presence of one or both TFs and various
unlabeled competitor sequences. (A) Examples of wild type and mutant competitor sequences are shown for the analysis of ZIF with DLL. The
sequences for all competitor sequences are shown in Table S16. The wild type sequence has a strong predicted TF binding sites, shown in bold type,
for the luc-tagged TF (ZIF, GT, D) and for the hypothesized interacting TF (DLL, TTK, MAD respectively). As controls, competitor sequences are used
where either one (DZIF or DDLL) or both (DZIFDDLL) TF binding sites are disrupted or the spacing between sites has been increased by 5 bp (+5). An
additional competition experiment uses two competitor DNAs (DZIF + DDLL), each of which is at the same concentration as the single competitor
DNAs in the other samples. Altered or inserted nucleotides are shown in red. Genomic sequences flanking the binding sites are in grey. (B) The
luciferase activity recovered bound to the biotinylated wild type probe was measured in the presence of different competitors listed on the X-axis. A
dash is used to indicate no added competitor DNA. Luciferase measurements are reported relative to a sample using the wild type sequence as a
competitor (Y-axis). In the upper panels, recovery of the luciferase-tagged protein is measured in the presence of the hypothesized interacting TF
present as an MBP tagged protein. In the presence of the secondary TF, wild type sequences compete better for binding than sequences in which the
sequence of or spacing between predicted binding sites is disrupted. In the lower panels, recovery is shown in the absence of the second protein. For
all three primary TFs, little activity is recovered in the absence of the secondary TF, regardless of the competitor DNA.
doi:10.1371/journal.pgen.1003571.g005
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levels of the secondary TF. On the one hand, this means that the

list of interactions identified in Table 3 is likely incomplete. On the

other hand, the list shown in Table S14 must be interpreted with

caution since testing more candidate secondary TFs may lead to

spurious interactions being reported due to similarity of motifs

between two candidates.

Competitive binding by secondary TFs frequently
influences occupancy

Cooperative interactions are not the only manner in which one

TF’s binding may influence another’s. Two TFs competing for

overlapping binding sites can modulate each other’s binding levels

at the location [47]. Our next set of tests searched for evidence of

this phenomenon in ChIP data sets. We used a two motif STAP

model with no interaction terms, and compared the cross-

validation CC from this model to the baseline CC of Table 1.

The only way in which a secondary TF site can influence the

binding prediction for the primary TF in the two-motif model is if

their sites overlap (Figure 1B). The results, shown in Table 4,

comprise 17 cases of significant DCC over the baseline model

(DCC $0.04, P-value#0.05, Z-score $3). In at least 10 of these

cases, the secondary motif’s presence is strongly anti-correlated

with the primary TF’s ChIP score, i.e., the competing motif is

more frequent in non-peaks or in lower ranking peaks than in

strong peaks. This may imply that the strong peaks exhibit

selection against sites of the secondary TF competing with the

primary motif. Figure 6A shows three examples of the pattern of

overlap between sites of a primary TF and a secondary TF,

observed in sequences with high STAP scores and low ChIP

scores. We noted that in all of these cases, the overlapping sites

tended to be suboptimal matches to either motif.

Two different data sets involving HB, one from stage 5 and the

other from stage 9, were influenced by overlapping sites of the

RETN motif (Table 4). RETN is a well-known repressor that acts

through competitive binding when inhibiting activation by the TF

engrailed (EN) [48]. Two other secondary motifs that seem to

influence multiple data sets are EXD and HTH. Both of these

homeodomain proteins play prominent roles during development

as cofactors in repressor complexes with both Hox and other

homeodomain proteins. Interestingly, in all three cases where

EXD influences binding, there is no correlation between EXD

sites and the primary TF occupancy, while in all three cases where

HTH exerts an influence, there is a strong negative correlation

(,20.18) between HTH motif presence and primary TF binding

(see Discussion).

Antagonistic influence of a secondary motif can manifest
even with non-overlapping sites

The next set of tests was directed at detecting evidence of

antagonistic binding at non-overlapping sites. A possible mecha-

nism for such a phenomenon is that of the secondary TF upon

binding rendering the local DNA inaccessible, e.g., through

recruitment of HDACs [49], as is speculated to be the case with

some short-range repressors in Drosophila [50]. We used a two-

motif STAP model with a TF-TF interaction term that is fit on

training data, and compared the resulting CC to that from the

primary motif alone (Table 1). This interaction term was

constrained to be ,1, corresponding to an unfavorable energy

of interaction in the underlying thermodynamics model

(Figure 1B). Note that this model incorporates both competitive

binding and antagonistic influence from non-overlapping sites.

Comparing the CC achieved by this model at either the 30 bp or

the 150 bp distance threshold to the baseline (Table 5, Supple-

mentary Figure S4B), we found 35 cases of significant improve-

ments (DCC $0.04, P-value,0.05, Z-score $3). These included 6

data sets influenced by the EXD motif, 4 data sets by the HTH

and RETN motifs, and 3 data sets by the JIGR1 motif. We noted

that these four motifs were also observed to influence binding

Table 4. Effect of competitive interactions between pairs of TFs on the accuracy of modeling ChIP data.

Data set M2 CC(M1) CC(M2) CC(M1+M2) ImprOverM1 ImprOverM2 P-value Z-score

D_Mseq_s5_11 JIGR1 0.328 20.277 0.368 0.040 0.091 0.02 25.90

DL_Bchip_s5 BCD 0.062 20.116 0.193 0.131 0.077 0.01 47.80

EN_Mchip_s5_14 HTH 0.321 20.187 0.397 0.076 0.210 0.00 17.09

EN_Mchip_s5_14 SNA 0.321 20.129 0.362 0.041 0.233 0.03 9.23

EVE_Mseq_s14 HTH 0.174 20.195 0.245 0.071 0.050 0.03 10.45

HB_Bchip_s9 RETN 0.204 20.137 0.282 0.078 0.145 0.03 66.15

HB_Bchip_s9 EXD 0.204 20.019 0.276 0.072 0.258 0.03 61.15

HB_Bseq_s5 EXD 0.374 20.007 0.436 0.062 0.429 0.00 47.53

HB_Bseq_s5 RETN 0.374 0.023 0.420 0.046 0.398 0.02 35.84

MED_Bchip_s14 HTH 0.255 20.178 0.360 0.105 0.182 0.00 16.81

MED_Bchip_s14 TTK-PF 0.255 20.277 0.329 0.074 0.052 0.05 11.75

MED_Bchip_s14 SNA 0.255 20.067 0.313 0.058 0.246 0.02 9.16

MED_Bchip_s14 HR78 0.255 20.092 0.304 0.049 0.212 0.04 7.79

MED_Bchip_s14 HR4 0.255 20.130 0.300 0.045 0.170 0.00 7.14

MED_Bchip_s14 HR46 0.255 20.143 0.300 0.045 0.157 0.02 7.14

SLP1_Bchip_s5 CAD 0.214 20.036 0.262 0.048 0.226 0.01 27.85

SLP1_Bchip_s5 EXD 0.214 0.001 0.254 0.040 0.253 0.02 23.11

STAP was used with two motifs – the primary motif and a secondary motif (‘‘Motif 2’’), but with no interaction between binding sites considered. Thus the only influence
of Motif 2 on predicted occupancy of the primary TF is due to overlapping sites. Shown are all cases in which both improvements were more than 0.04, P-value#0.05
and Z-score $3. The column ‘‘ImprOverM2’’ is the difference between CC(M1+M2) and the absolute value of CC(M2).
doi:10.1371/journal.pgen.1003571.t004
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Figure 6. Competitive bindings and antagonistic bindings: another mechanisms deciding TF-DNA occupancy. A. Overlapping sites for
(primary motif, secondary motif) pairs where modeling competitive binding leads to significantly better prediction of ChIP scores. Shown here is the
pattern of overlap between sites of SLP1 and EXD, D and JIGR1 and between HB and RETN. In each case, the sequences examined were those with
high STAP score for the primary motif but low ChIP score. In each panel, the top two motif logos correspond to the primary and secondary TF
respectively and the bottom logo represents the overlapping sites. B. Inter-site spacing bias analysis for six TF pairs that show significant evidence of
antagonistic binding. TF pairs are named in legend (inset) with primary TF appearing first.
doi:10.1371/journal.pgen.1003571.g006
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through competitive binding to overlapping sites (Table 4) above.

However, in such cases where a secondary motif had significant

effect on binding levels both in the competitive binding mode as

well as the antagonistic binding mode, the magnitude of the effect

was always stronger in the latter mode. The strongest case of

antagonistic influence at the 30 bp distance threshold was

estimated for the data set CAD_Bseq_s5, for the TF caudal

(CAD), where the RETN motif improves the CC from 0.178 to

0.401. On the other hand, the strongest influence at the 150 bp

threshold was by the EXD motif, also on the CAD_Bseq_s5 data

set, where the baseline CC of 0.178 improved to 0.412, and this

effect was exclusive to the 150 bp range. In fact, a large majority of

the antagonistic binding influences were significant exclusively at

either the short (30 bp) or the long (150 bp) range (Table 5). This

may suggest that the underlying mechanisms of short and long-

range antagonistic influences are different, although we did not

observe any motif-specific preferences for one range versus the

other.

We searched for inter-site spacing biases that might provide

additional insights into the significant antagonistic influences

identified above. It was commonly the case that ChIP peaks had a

significant bias towards specific spacing values while non-peaks

tended to avoid that range (Figure 6B, e.g., D-EXD). Interestingly,

though less commonly, such spacing biases were also observed in

Table 5. Effect of antagonistic interactions between pairs of TFs on the accuracy of modeling ChIP data.

Data set M2 CC(M1)
CC(M1+M2);
30 bp

ImprOverM1;
30 bp

CC(M1+M2);
150 bp

ImprOverM1;
150 bp

BCD_Bseq_s5 EXD 0.56 - - 0.606 0.046

CAD_Bseq_s5 EXD 0.178 - - 0.412 0.234

CAD_Bseq_s5 RETN 0.178 0.401 0.223 - -

DISCO_Mseq_s5_11 BAP 0.22 0.273 0.053 - -

DISCO_Mseq_s5_11 HB 0.22 - - 0.378 0.158

DISCO_Mseq_s5_11 MES2 0.22 0.263 0.043 - -

DLL_Mchip_s5_14 HTH 0.145 0.286 0.141 - -

DLL_Mchip_s5_14 TTK-PF 0.145 0.281 0.136 - -

DL_Bchip_s5 BCD 0.062 0.254 0.192 0.234 0.172

DL_Bchip_s5 EXD 0.062 0.217 0.155 - -

D_Mchip_s5_14 TTK 0.065 - - 0.173 0.108

D_Mseq_s5_11 CAD 0.328 0.421 0.093 - -

D_Mseq_s5_11 EXD 0.328 - - 0.438 0.11

D_Mseq_s5_11 HB 0.328 - - 0.423 0.095

D_Mseq_s5_11 JIGR1 0.328 0.405 0.077 0.485 0.157

D_Mseq_s5_11 RETN 0.328 - - 0.445 0.117

EN_Mchip_s5_14 HTH 0.321 0.38 0.059 0.401 0.08

EVE_Mseq_s14 HR78 0.174 0.261 0.087 - -

EVE_Mseq_s14 HTH 0.174 0.275 0.101 0.321 0.147

EVE_Mseq_s14 TTK 0.174 0.251 0.077 0.223 0.049

HB_Bchip_s9 RETN 0.204 0.315 0.111 - -

HB_Bseq_s5 EXD 0.374 0.463 0.089 0.416 0.042

HB_Bseq_s5 RETN 0.374 0.444 0.07 - -

HKB_Mseq_s14 JIGR1 0.551 0.6 0.049 - -

KNI_Bchip_s5 BAP 0.102 - - 0.162 0.06

MED_Bchip_s14 HR4 0.255 0.308 0.053 - -

MED_Bchip_s14 HR46 0.255 - - 0.342 0.087

MED_Bchip_s14 HR78 0.255 - - 0.348 0.093

MED_Bchip_s14 HTH 0.255 0.381 0.126 0.373 0.118

SENS_Mchip_s9_11 EXD 0.163 - - 0.235 0.072

SENS_Mchip_s9_11 PDM2 0.163 - - 0.209 0.046

SLP1_Bchip_s5 CAD 0.214 0.271 0.057 - -

SLP1_Bchip_s5 JIGR1 0.214 0.275 0.061 - -

UBX_Mchip_s9_11 KR 0.279 - - 0.324 0.045

UBX_Mchip_s9_11 TTK-PF 0.279 - - 0.345 0.066

STAP was used with two motifs – the primary motif and a secondary motif (‘‘Motif 2’’), and with antagonistic DNA-binding included in the model. Interaction between
two TF sites was included in the model only if the two sites are within a pre-defined ‘‘Distance Threshold’’ (set to 150 bp and 30 bp in two sets of experiments). Shown
are all cases in which both improvements were more than 0.04, P-value#0.05 and Z-score $3.
doi:10.1371/journal.pgen.1003571.t005
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non-peaks (Figure 6B, Supplementary Tables S5, S19). Even when

examining antagonistic influences of the same secondary TF, e.g.,

HTH, we found some data sets where the spacing bias was

exclusive to ChIP peaks and others where the bias was present in

non-peaks.

Separate examination of peaks and non-peaks for effects of

antagonistic influence revealed that such effects are manifested in a

better discrimination of peaks versus non-peaks as well as a better

modeling of ChIP scores with peaks alone or, more commonly,

within non-peaks (Supplementary Table S13 and Supplementary

Figure S8).

DNA accessibility data provides clues about mechanisms
of secondary TF action

Recent work [6,7] has shown that DNA accessibility data,

which reflects nucleosome positioning and other chromatin-related

effects, has a very strong correlation with TF occupancy, and when

used in conjunction with the primary TF’s motif can lead to highly

accurate predictions of occupancy. This has been demonstrated in

the context of five TFs in Drosophila (data from whole embryo) and

six TFs in human (data from two cell lines). These prior results

motivated us to examine the same hypothesis for the much larger

collection of TF-ChIP data sets studied here. In all of our tests in

this section we used DNaseI hypersensitivity data from [19]. In the

first tests, we used a high threshold (90th percentile) on

developmental stage-specific accessibility to designate ‘‘accessible

regions’’, predicted zero occupancy in inaccessible regions, and

used STAP and the primary motif to predict occupancy in

accessible regions. Accessibility-filtered STAP scores computed in

this manner correlated very highly with ChIP data (Supplemen-

tary Table S6), and led to substantial improvements upon the

baseline results of Table 1, for 38 of the 45 data sets. This confirms

that the observations made by Kaplan et al. and Pique-Regi et al.

are manifest over a larger dataset.

The test above showed that motif and accessibility information

together provide highly accurate predictions of ChIP scores. A

natural question that arises then is: how strong is the influence of

the primary TF’s motif in determining its occupancy, beyond the

influence of accessibility? To answer this question we computed

the ‘‘semi-partial correlation coefficient’’ (SPCC) between ChIP

and STAP scores, which subtracts or ‘‘partials out’’ the

contribution of accessibility information. Technically, this amounts

to first predicting ChIP scores using accessibility alone, and then

correlating the residual ChIP scores with STAP scores (see

Methods). We found that for the majority of data sets the SPCC

values (Table 1, column SPCC(m1)) were comparable to the

baseline CC values, demonstrating that, as expected, the primary

motif plays a major role in shaping TF binding profiles. For ten

data sets, SPCC was better than baseline CC, most notably for the

data set TIN_Fchip_s9 where the primary motif’s correlation

improves from 0.428 to 0.507 upon partialing out accessibility. In

these cases, factoring out the accessibility effects better reveals the

expected relationship between primary motif presence in the

sequence and occupancy. In contrast, five data sets showed a

dramatically lower SPCC than CC (Table 1); these were related to

the TFs VFL, TRL and MED. This is consistent with hypothesis

emerging in this work (also see next paragraph) and in recent

literature that VFL and TRL have direct influence on accessibility

patterns, and partialing out the correlation with accessibility results

in much reduced correlation between primary motif and TF

occupancy. The third of the trio of TFs identified here, MED, is

also believed to direct the co-factor CBP to the genome [51] and

thus influence accessibility profiles. The SPCC was lower than CC

also for TWI, D and SLP1, though not as dramatically. Sandmann

et al. [52] have previously found TWI to bind to a large number of

mesodermal enhancers and speculated that its role may be to

facilitate chromatin remodeling. D is a SOX domain protein and

there has been suggestion that this family of TFs may function as

chromatin remodelers [53]. Interestingly, independent evidence in

support of the accessibility-mediated effect of VFL, TRL, TWI,

SLP1 and MED emerged when we repeated the evaluation of the

single motif STAP model (baseline, Table 1) on data sets

composed of the top 1000 ChIP peaks and 1000 random non-

peaks selected from ChIP peaks of other TFs (Supplementary

Table S15 and Supplementary Figure S9). We found the CC on

these data sets to be conspicuously below that on the default data

sets where the non-peaks were random genomic segments. This

implies that the primary motif in these cases is better able to

discriminate peaks of the primary TF from random non-peaks

than from other accessible regions (peaks of different TFs). This in

turn suggests that the motifs of VFL, TRL, TWI, SLP1 and MED

may be common features of many ChIP peaks that discriminate

them from random non-coding sequences irrespective of the

bound TFs.

Our next tests examined the effect of cooperative binding with

secondary TFs in the light of accessibility information. Recall that

the VFL and TRL motifs had emerged as the most promiscuous

influences in our tests above (Table 2), and that their influence was

noted as being predominantly long-range (Supplementary Tables

S3, S4), leading us to speculate that they may be mediated through

modulation of local accessibility. We therefore asked if the

improvements in CC due to either of these motifs are observed

after removing the effects of accessibility information. We

computed SPCC values of the cooperative interaction model after

partialing out accessibility (Figure 7A), similar to that described in

the previous paragraph. We found that the effects of TRL

disappear in all 8 data sets where it had been significant before

considering accessibility, adding evidence in favor of our

hypothesis that TRL’s influence is mediated by accessibility. In

contrast, VFL was found to exhibit a more diverse behavior: in 7

of 10 data sets its effects vanished after considering accessibility,

while in 2 data sets (CAD_Bseq_s5 and HB_Bseq_s5), a

pronounced influence (DSPCC $0.04) remained even after

partialing out accessibility (Supplementary Table S7). These two

data sets also showed evidence of an inter-site spacing bias

between VFL and the primary motif (Supplementary Figure S3).

These findings suggest that VFL’s influence on TF binding may

involve distinct mechanisms, including not only a general effect on

local accessibility, but also more TF-specific mechanisms poten-

tially involving direct interactions with the primary TF.

We repeated the above analysis on data sets where secondary

motifs other than VFL and TRL had led to significant

improvements in CC through a cooperative binding model

(Table 3). The results, shown in Table 6 and Figure 7B, reveal

that in most cases the influence of the secondary motif is

pronounced even after partialing out accessibility information.

This suggests that most of these secondary TFs operate through

primary TF-specific interactions rather than by only influencing

accessibility. Similar results were obtained when examining the

cases of antagonistic influence by secondary motifs (Figure 7C).

Discussion

We studied mechanistic determinants of TF-DNA binding by

computationally modeling genomic occupancy from over 40 ChIP

data sets obtained from four different stages of embryonic

development, in conjunction with over 300 TF motifs and stage-

specific DNA accessibility and RNA-SEQ data. Our ultimate goal
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is to use the insights revealed here, both general and data set-

specific, to develop improved computational tools that can

quantify functional TF-DNA interactions genome-wide. Such

tools can potentially inform models of TF regulatory networks in

the same way that ChIP data is beginning to be used today [1,4].

We note that characterizing hundreds of TFs by the whole-

genome ChIP-SEQ in the vast number of different cellular

conditions is not currently feasible. Computational tools therefore

offer an attractive alternative, especially if they can be shown to

predict cell type-specific occupancy. TF motifs are already being

characterized through high throughput technologies such as

Bacterial 1-Hybrid [9], SELEX [11,54], and Protein-Binding

Microarrays [55]. Cell type-specific DNA accessibility profiles and

TF expression levels only need to be characterized once for a given

cell state, and can then be used to predict binding profiles for all

TFs. Our work provides initial evidence for the feasibility of this

vision. At the same time, we note that the CC values reported here

should not be interpreted as correlation coefficients between

genome-wide predictions and observed levels of TF binding. The

manner in which we chose to evaluate various models, i.e., by

examining agreement with ChIP scores on 1000 bound regions

and 1000 randomly selected non-peaks, was dictated primarily by

the goal of detecting significant influences on primary TF

occupancy. We also note that the CC values varied substantially

across data sets, from 0.765 for TRL to 0.062 for Dorsal (DL)

(Table 1). This variation in model performance may reflect

weaknesses of certain data sets or PWMs, or a variable reliance of

ChIP scores on the primary TF’s binding.

Despite a general appreciation of the potential role of various

determinants of TF binding, there have been very few systematic

Figure 7. DNA accessibility data provides clues about mechanisms of secondary TF action. A. Correlation coefficient between ChIP scores
and STAP predictions, before and after ‘‘partialing out’’ the effect of accessibility scores (DCC and DSPCC respectively). Shown here are the effects of
VFL and TRL motifs, in cooperative binding mode. Only cases where DCC was significant are shown. Dotted lines mark a DCC (or DSPCC) value of 0.04.
B. All cases of significant cooperative influence of secondary motifs other than VFL, TRL, examined before (DCC) and after (DSPCC) ‘‘partialing out’’
the effect of accessibility scores. Only cases where DCC was significant and the secondary TF gene was in the top 10–15% of expressed genes are
shown. C. All cases of antagonistic influence by secondary motifs, examined before and after ‘‘partialing out’’ the effect of accessibility scores.
doi:10.1371/journal.pgen.1003571.g007

Table 6. Cases of significant cooperative influence of secondary motifs other than VFL, TRL, re-examined after ‘‘partialing out’’ the
effect of accessibility scores.

Data set M2 Distance Threshold SPCC(M1) SPCC(M1+M2) DSPCC

BIN_Fchip_s10_11 ADF1 150 0.646 0.675 0.028

D_Mseq_s5_11 ADF1 30 0.364 0.375 0.011

D_Mseq_s5_11 HLHM5 150 0.364 0.423 0.059

D_Mseq_s5_11 MAD 30 0.364 0.382 0.017

D_Mseq_s5_11 TTK 150 0.364 0.453 0.088

EN_Mchip_s5_14 TTK 30 0.359 0.401 0.043

EN_Mchip_s5_14 TTK 150 0.359 0.403 0.044

HB_Bchip_s9 ADF1 30 0.284 0.328 0.045

MED_Bchip_s14 CG10267 150 0.102 0.217 0.115

MED_Bchip_s14 RIB 30 0.102 0.267 0.165

MED_Bchip_s14 TTK 150 0.102 0.162 0.060

MED_Bchip_s5 DEAF1 30 20.046 0.000 0.047

MED_Bchip_s5 HB 30 20.046 0.029 0.075

This list only shows secondary motifs corresponding to top 10–15% most highly expressed TF genes (marked with asterisks in Table 3). SPCC(M1) and SPCC(M1+M2)
denote CC of a single-motif STAP model and a two-motif STAP model with cooperativity, both after partialing out accessibility. Bold font in the last column refers to
cases where DSPCC is $0.04.
doi:10.1371/journal.pgen.1003571.t006
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studies of the extent of their influence across a large number of

TFs. We review three such studies that set the stage for our own

work and explain the main goals and contributions of our work in

the backdrop of these important prior studies.

Kaplan et al. [6] studied ChIP-SEQ data on five TFs in early

Drosophila development, and concluded that the TF motif and

DNA accessibility are the most informative correlates of TF-DNA

binding, as determined by the agreement between measured and

predicted occupancy profiles. They also used TF sequence

signatures to examine the role of competitive and cooperative

interactions with other TFs with similar developmental roles and

concluded that these interactions do not play a significant role

overall. Their negative finding regarding secondary motifs may be

limited to the small number of data sets examined, or be a

limitation of the specific methodology adopted in the study

(including the use of a more limited set of motifs that were

available then). Here, we perform much more extensive tests of the

role of the above-mentioned binding determinants of TF binding,

by analyzing 45 TF-ChIP data sets spanning multiple stages of

embryonic development in D. melanogaster. We primarily consider

the influence of a large number of secondary TFs that are highly

expressed in that developmental stage. In contrast to the earlier

findings, we find many cases where the primary TF’s binding

levels are significantly influenced by the presence or absence of

binding sites for other TFs.

In a related study, Pique-Regi et al. [7] considered the problem

of classifying primary motif matches within ChIP peaks versus

those outside of ChIP peaks, in the context of six ChIP-SEQ data

sets from two human cell lines. They found accessibility and

specific histone modifications to be the most useful features in this

classification task, but did not consider the influence of secondary

TFs. However, there are fundamental differences in the goals of

our study from that of Pique-Regi et al. Their objective was to

build a computational tool for annotating TF-bound sites genome-

wide, and therefore their algorithm integrates several variables

that correlate with binding, including evolutionary conservation,

transcription start site proximity, DNA accessibility and histone

marks. On the other hand, our focus is on the influence of

variables that are expected to be mechanistic determinants of

binding, and whose influence can be reasonably understood within

an intuitive biophysical framework. We therefore focus specifically

on testing whether and how binding sites of secondary TFs shape

the primary TF’s binding profile. In this pursuit, we rely upon

motif, sequence and TF expression data, treating these as the

‘‘predictor variables’’ with which to model ChIP data. We do not

include other variables such as evolutionary conservation (which is

not a mechanistic determinant) or start site proximity (whose

influence cannot be easily modeled biophysically) as predictors in

this statistical exercise. DNA accessibility data is used in our

analysis, not to improve occupancy prediction per se, but to

answer a specific mechanistic question about how secondary TFs

influence binding. Also, there is a fundamental technical difference

between the data types modeled in the two studies: the variable we

propose to model is not tied to TF-DNA interaction at an

individual binding site as in [7], but to the aggregate effect of all

binding events within a 500 bp window. For the simplicity, we ask

whether a model can predict the actual ChIP score at a genomic

position, rather than ask whether a model can predict whether a

putative motif match falls within a significant ChIP peak or not.

A recent study by Yanez-Cuna et al. [5] searched for motif

signatures of context specific binding of TFs. In particular, they

analyzed ChIP data sets for the same TF from two different

cellular conditions and asked if peaks exclusive to either condition

could be discriminated on the basis of motif presence. They

showed that such motif signatures do exist for the seven TFs

examined and that general-purpose machine learning methods

such as support vector machines can accurately classify context-

specific binding sites using tens of motifs. In the same vein, they

showed that bound and non-bound regions of a TF can be

discriminated using a combination of tens of motifs, for most of the

21 TF-ChIP data sets examined. Additionally, they performed a

closer examination of the binding determinants of one particular

TF, twist (TWI), and demonstrated that binding sites for the

secondary TFs VFL and TTK significantly affect the correct

prediction of many context-specific TWI binding sites. While

Yanez-Cuna et al. mostly focused on demonstrating that accessory

motif signatures can distinguish TF-DNA binding regions in different

developmental stages, our primary goal was to precisely identify the

most influential secondary motifs for each of 45 different TF-ChIP

data sets. To this end, we focused largely on quantifying the

influence of secondary motifs and assessing their statistical

significance rigorously. By performing our analysis over many

data sets, we were able to gain more general insights about the

widespread or TF-specific roles of particular secondary TFs. In

particular, our statistical tests are geared towards explaining the

mechanistic basis of such roles: short- versus long-range effects,

synergistic versus antagonistic effects, chromatin mediated versus

direct interactions, etc.

The review by Biggin [56] uses findings from recent studies to

argue that accessibility is more important than the role of

secondary TFs in determining primary TF binding levels.

However, we do not attempt here to characterize the effect of

accessibility as being stronger or weaker than the effect of

interacting TFs. Integrating perspectives from Biggin and others

[15–17,57,58], DNA accessibility in vivo can be considered the

result of multiple factors playing out simultaneously, possibly

including innate sequence preferences of nucleosome location, a

conglomerate of chromatin remodeling activities and displacement

of nucleosomes by competition with TF binding. Under this view,

there are practical limitations in the approach of directly

comparing the improvement in occupancy prediction due to

accessibility information to that due to secondary motif informa-

tion alone. Moreover, while it may be possible to make broad

statements regarding the influence of accessibility or other

chromatin-related information on TF binding, secondary TFs ,

due to the combinatorial nature of gene regulation, will be factor-

specific in their effects and thus will only be detectable on a few

data sets. Accordingly, our goal is to characterize as many of these

determinants of TF occupancy, from each ChIP data set, rather

than assign any one number to the overall influence of, say,

interactions between the primary and secondary TFs, which will

be factor dependent by definition.

A related study that examined the effects of secondary TFs on

ChIP data is that of Gordan et al. [59] who reported on TF-ChIP

data sets in yeast where a secondary motif alone was a better

correlate of peak location than the primary motif. In some cases,

this may be due to a problem with the primary motif (H.N.P. and

M.H.B. unpublished results). In other cases, such a situation may

reflect indirect binding of the primary TF to the peak, via physical

interaction with the bound secondary TF. It suggests an alternative

model of ChIP data, where binding is predicted to be a sum or

linear combination of the occupancy values of the primary TF

(direct binding) and a secondary TF (indirect binding). We have

not explored this model here, and believe that it is an important

goal for future studies.

Our approach to including accessibility data in the analysis was

to use partial correlations to examine secondary TF influences

before and after factoring out the effect of accessibility on ChIP
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scores. Alternative approaches may directly include accessibility

data in the occupancy models, as was done by Kaplan et al [6],

who changed prior probabilities of binding in their probabilistic

model based on accessibility, and Pique-Regi et al. [7], who

included DHS and histone modification data as features in their

classifier. Future modifications of our approach will attempt to

include accessibility within the biophysical framework of STAP,

and may potentially reveal the role of accessibility even more

accurately.

An intriguing observation from our analyses was the influence of

competitive binding by the secondary TF EXD despite there being

no correlation between EXD sites and the ChIP scores of the

primary TF. It is puzzling because it suggests that the frequency of

EXD sites does not differ between peaks and non-peaks, yet these

sites somehow make a significant difference to binding predictions.

However, it is possible that the frequency of EXD sites overlapping

with primary TF sites is different between peaks and non-peaks,

and the advanced model uses the competition for overlapping sites

to predict lower occupancy in certain sequences than that

predicted by the baseline model, leading to improved agreement

with ChIP scores (Supplementary Figure S11).

Our work opens up several important directions of future

research into TF-DNA interaction on a genomic scale. While the

models we explored used at most one secondary motif in one

interaction mode, a more realistic model will require integration of

more than one underlying mechanisms influencing primary TF

occupancy. Accessibility information will play a crucial role in the

predictive ability of such models. In the longer term, an important

goal will be to develop integrative models where sequence, TF

gene expression and developmental history is sufficient to predict,

at least to a good approximation, both accessibility patterns and

TF-DNA binding profiles. With the future availability of large

collections of TF motifs, such computational surrogates for cell

type-specific ChIP data will enable global studies of gene

regulatory networks and provide specific regulatory assignments

that can be experimentally confirmed.

Materials and Methods

Data
We used 55 TF-ChIP data sets on 37 TFs active in early stages

of Drosophila embryonic development. These include five ChIP-seq

data sets and 20 ChIP-chip data sets from BDTNP [60], seven

ChIP-chip data sets from the Furlong lab [24], and 21 normalized

ChIP-chip and ChIP-seq data sets from the ModEncode project

[1,61]. ChIP data of VFL and TRL were obtained respectively

from [29] and [62]. Stage-specific genome-wide DNaseI hyper-

sensitivity (chromatin accessibility) data, which is mapped to

genome release 4 coordinates, was downloaded from the first

replicate in the BDTNP web site and converted to release 5

coordinates using the liftOver tool and chain files from the UCSC

web site (http://hgdownload.cse.ucsc.edu/downloads.html). We

used 614 Drosophila transcription factor motifs, corresponding to

322 distinct TFs, from the FlyFactorSurvey database [20]. The

motifs were ranked based on expression of the associated TF gene,

using RNA-SEQ data [21] for the appropriate developmental

stage. In cases where a TF-ChIP data set corresponded to a range

of stages, expression values were stage-normalized and averaged

before ranking. Motifs corresponding to heterodimeric complexes

(such as HLH TFs in complex with DNA) were not considered.

Motifs in the top 10% of the expression-based ranked list for the

appropriate developmental stage were tested as candidate

secondary motifs. The one exception to this are results in

Table 3 where the top 25% of the ranked list was considered.

We smoothed each TF-ChIP data set and each DNase I data set

by assigning scores to each 500 bps window over the genome, with

a 50 bps shift. First, raw ‘‘read scores’’ in a data set were mapped

to the nearest genomic position that is a multiple of 50. The score

of a 500 bp window was then computed by averaging over all read

scores mapped to positions in that window; we refer to this as the

‘‘ChIP score’’ of the window. After this transformation, we

selected 1000 non-overlapping, highest scoring windows as

‘‘peaks’’ and randomly extracted 1000 non-exonic, non-overlap-

ping windows without replacement from the remaining genome as

‘‘non-peaks’’. This set of 2000 windows and their ChIP scores

constitutes a TF- and stage-specific data set in our analyses. A

‘‘primary’’ motif was designated for the data set, based on the

availability of motifs for the ChIP’ed TF. In cases where there

were multiple motifs available for the ChIP’ed TF, the motif with

the highest correlation between STAP scores and ChIP scores over

all 2000 windows (see below) was selected. ‘‘Secondary’’ motifs

tested for potential effects on the primary TF’s binding were

selected based on expression data, as mentioned above.

Evaluations of STAP-based TF-DNA occupancy prediction
by 4-fold cross-validation

We used the STAP program [22] to predict the ChIP score of a

window, using the primary motif and optionally a secondary motif

for that TF. STAP has one or more free parameters that require

training data – a set of sequences and their ChIP scores. Hence,

we used cross-validation to train and test various models of TF-

DNA occupancy that are encoded by STAP. We randomly

divided the 1000 peaks into 4 equal partitions and also the 1000

non-peaks into 4 equal partitions. In each fold of cross-validation,

three partitions from the peaks and non-peaks were used as the

training set and one partition (i.e., 250 peaks and 250 non-peaks)

was the test set. Predicted ChIP-scores on each of the test sets of

windows were collected together, and the resulting set of 2000 real

and predicted ChIP score pairs were subjected to evaluations.

Evaluations on a data set were considered a failure if the STAP

parameter values learned in the four folds were widely different;

this happened for one data set.

The STAP model
This was described in [22]. STAP considers each molecular

configuration s that specifies which sites in the given sequence are

bound by their respective TFs. Following standard statistical

physics, the ‘‘Boltzmann weight’’ of s, denoted by W(s),

represents the relative probability of the system being in

configuration s, and is calculated based on TF concentration

and the estimated binding affinity of every bound site in s. The

Boltzmann weight is a product of terms contributed by each TF-

bound site in the configuration. This corresponds to the

assumption that each bound TF interacts independently with the

DNA, with energy contributions that add up [63]. See Figure 1A

for an example where the sequence has two sites (‘A’ and ‘B’) for

TF ‘A’, or Figure 1B where there is one site for each of two TFs ‘A’

and ‘C’. A site’s contribution, q(S), depends on the TF

concentration and the strength of site S, and is given by:

q(S)~½TF �K(Smax)exp½LLR(Smax){LLR(S)�

where [TF] is the concentration of the TF (in arbitrary units),

LLR(?) is the log likelihood ratio score of a site, computed based on

the known position weight matrix (PWM) of the TF [25], Smax is

the strongest binding site of the TF, and K(Smax) is the equilibrium

constant of the TF binding to this site. The product K(Smax)[TF] is
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a TF-specific free parameter denoted by cTF. Let Nk(s) denote the

number of bound sites of TF k in configuration s. The STAP

model predicts the occupancy of TF k as:

Occ(k)~

P
s

Nk(s)W (s)

P
s

W (s)

Note that while Nk(s) counts the number of bound sites for TF k

only, the Boltzmann weight W(s) depends on bound sites for all

TFs.

Assessment of statistical significance by P-value and Z-
score

The accuracy of STAP predictions was assessed by computing

the Pearson correlation coefficient (CC) between real and

predicted ChIP scores of 2000 windows in a data set. To assess

the impact of a secondary motif M2 in modeling a data set whose

primary motif is M1, we tested STAP in a single motif mode

(‘‘STAP(M1)’’) and in two-motif mode (‘‘STAP(M1,M2)’’) and

compared the difference in their accuracies: DCC =

CC(STAP(M1,M2)) – CC(STAP(M1)).

A secondary motif M2 was deemed as a significant influence on

the data set if the following conditions were met:

1. DCC $0.04. This is used as a basic criterion before performing

further assessments. It is a heuristic for reducing the number of

tests we had to perform, thus speeding up the analysis.

2. DCC9 = CC(STAP(M1,M2)) – CC(STAP(M2)) $0.04. This is to

ensure that the model when using both the primary and the

secondary motif fits the data better than a model using the

secondary motif alone (without the primary motif).

3. P-value(DCC) #0.05. To compute this, we permuted the

secondary motif by randomly shuffling rows and columns of

the PWM, which keeps the motif information content intact.

DCC was computed for each permuted version, and by

repeating this 100 times, we estimated a p-value for the original

DCC.

4. Z~(DCC) $3. Here, Z~(DCC) is a ‘‘Z-score’’ that compares the

given DCC to corresponding values obtained from every

candidate secondary motif that was tested, and is analogous to

a multiple hypothesis testing correction. It is a measure borrowed

from outlier detection theory [64], and reflects if the observed

DCC is an outlier compared to a given set of DCC values. It is

defined as Z~(DCC)~
0:6745(DCC{MEDIAN(DCC))

MEDIAN(DDCC{MEDIAN(DCC)D)

We also evaluated the best secondary motif effect for each data

set by computing an ‘‘Area Under ROC’’ (AUC) value for the

interaction model (Supplementary Table S8).

Tests of inter-site spacing bias
For each significant case of cooperative or antagonistic influence

by a secondary motif, we searched for biases in the inter-site

spacing between the primary and secondary TFs. Let us assume a

pair of motifs (M1, M2) represents the binding specificities of the

primary and secondary TFs. To test for a specific spacing bias, say

‘d’ base pairs, between (M1, M2) in a given set of segments, we

grouped all pairs of adjacent heterotypic binding sites (located by

FIMO program with threshold of e27 [65]) into those having or

not having inter-site distance of d. We counted the number of site

pairs in each group and compared these counts to the

corresponding counts in a ‘‘background’’ data set using one-tailed

Fisher’s exact test. The ‘‘background’’ data set was constructed by

shuffling the locations of predicted sites in each segment, thus

preserving the number of binding sites in each segment, and

pooling together 10 such randomized data sets (Kazemian et al.,

manuscript in review). Tests of spacing bias were conducted on a

set of top 250 scoring ChIP peaks and separately on a set of

bottom 250 non-peaks.

Semi-partial correlation
Semi-partial correlation is a statistical technique generally

employed to assess the association of one random variable X with

the other random variable Y after eliminating the effect of a third

random variable Z on Y [66]. In our tests, X represents predicted

TF-DNA binding, Y the experimental TF-DNA occupancy from

ChIP, and Z the accessibility. The semi-partial correlation score

cX ,Y DZ between X and Y, after ‘‘partialing out’’ Z from Y, is

computed as cX ,Y DZ~
DcX ,Y {cX ,ZcY ,Z Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{cY ,Z
2

q , where cA,B is the

correlation coefficient between A and B.

In vitro analysis of TF-TF interactions
Protein interactions were measured in a modification of the

previously described LUMIER or LuMPIS methods [38,39]

except that each protein was expressed in vitro rather than in cell

culture. Open reading frame (ORF) clones for transcription factors

were part of the Berkeley Drosophila Genome Project the collection

of universal donor clones [67]. ORFs were transferred into two

vectors, pHPT7-FlRluc-BD and pHPT7-MBP-BD (HNP and

MHB, unpublished), using Cre Recombinase (New England

Biolabs, M0298L). For one TF, Mad, the ORF was PCR

amplified ligated into AscI and PmeI restriction sites in each

vector. These vectors contain a T7 promoter for in vitro

transcription, a loxP site for cloning and either maltose binding

protein (MBP) or Renilla luciferase (luc) coding regions. Clone

names and primer sequences are provided in the supplementary

information (Table S9).

Proteins were made by coupled in vitro transcription/translation

using the PURExpress In Vitro Protein Synthesis Kit (NEB,

E6800S). All samples were analyzed by Western Blot to confirm

that some full-length product was obtained. Luciferase input was

measured using the Renilla Luciferase Assay System (Promega,

E2820). The proteins were diluted with IP Buffer (150 mM NaCl,

50 mM Tris pH 7.4) such that roughly 106 luciferase counts were

added to each sample and an equivalent amount of MBP protein

were mixed. Proteins were incubated with gentle rocking for 4uC
for 2 hours. Amylose Resin (NEB, E8021S) blocked with 5 percent

BSA was added to proteins and incubated with rocking at 4uC for

2 hours. The samples were washed twice with IP buffer and

transferred to 96-well plates (Corning, 07-200-589) for luciferase

measurements. The luminescence intensity ratio was measured

using as follows:

LIR~
CPS(pulldown)=CPS(input of pulldown)

CPS(negative control)=CPS(input of negative control)

Each experiment was performed in duplicate, the experiments

were averaged, and the standard deviation was calculated. Source

cDNAs, amplification primers and luciferase data are compiled in

Supplementary Table S9.
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In vitro analysis of TF binding
In vitro synthesis of tagged TFs and luciferase assays were

performed as described above. Target sequences were identified

from the top ChIP peak regions that contained strong matches to

the primary and secondary motifs with a spacing and orientation

that was most frequently observed. Other criteria used in selecting

target sequences included whether the ChIP peak lies within a

known enhancer, and whether its predicted occupancy under

STAP’s cooperativity model is higher (in rank) than that under the

baseline model without cooperativity. Double stranded DNA

oligonucleotides were synthesized that contained wild type or

altered sequences. One oligonucleotide containing the wild type

sequence is biotinylated on the first base. The genomic coordinates

for the wild type sequences and all mutant sequences are shown in

Supplementary Table S16. Protein-DNA interactions were mea-

sured in a modification of a previously described microwell-based

assay [46]. Tagged TFs were expressed in vitro rather than in cell

culture and diluted with low-stringency binding buffer (140 mM

KCl, 5 mM NaCl, 1 mM K2HPO4, 2 mM MgSO4, 20 mM

HEPES (pH 7.05), 100 mM EDTA, 1 mM ZnSO4) +1% BSA.

Oligonucleotides were annealed and diluted using annealing

buffer (50 mM Tris-HCl, 0.2 mM MgSO4, pH 7.0). Annealed

oligo mixes were prepared with 5 ul of 1.2 uM biotinylated oligos,

5 ul of 24 mM competitor oligo, 2 ul of 500 ng/ul Poly(dI-

dC)*Poly(dI-dC), and 8 ul of annealing buffer (final volume 20 ul)

and incubated for 1 hour. 106 luciferase counts of the luc-tagged

primary TF and (if appropriate) an equivalent amount of MBP-

tagged secondary TF were mixed (30 ul volume). The diluted

proteins were added to the DNAs and incubated with gentle

rocking at 4uC for 2 hours. Streptavidin coated 96 well plates

(ThermoScientific # 15502) were blocked with 5% BSA and low

stringency binding buffer. The protein/oligo mixture was added to

the plates and incubated for 2 hours at 4uC. The samples were

washed twice with low stringency binding buffer. Recovered

luciferase activity was measured directly in the plates. All values

were normalized by dividing by the luciferase counts recovered in

the sample containing an excess of wild type competitor DNA.

Supporting Information

Figure S1 Detailed examination of ChIP scores and STAP

scores for all 2000 segments and Receiver Operating Character-

istic (ROC) curve for ‘‘BIN_Fchip_s14’’, which is the data set with

the second best CC overall. In the scatter plot (left), blue and red

points represent the 1000 top ChIP peaks and 1000 randomly

selected non-coding segments respectively. The ROC (right panel)

represents a classifier that uses a threshold on the STAP score to

discriminate TF-bound segments from non-bound segments,

defined by the top 50% and bottom 50% ChIP scores. The Area

Under the ROC curve (AUC) is 0.895.

(TIFF)

Figure S2 Receiver Operating Characteristic (ROC) curve for

the data set ‘‘HKB_Bchip_s5’’. The AUC is 0.679. The CC on

this data set is 0.305, which is approximately the average CC over

all 45 data sets shown in Table 1.

(TIFF)

Figure S3 Spacing bias analysis of two data sets, with VFL as the

secondary motif, where cooperative influence was detected even

after partialing out accessibility.

(TIFF)

Figure S4 ROC plots of the baseline model and best TF-TF

interaction models for two data sets, BCD_Bseq_s5 and

HKB_Mseq_s14. BCD and VFL are modeled to exhibit a

cooperative TF-TF interaction, and HKB and JIGR1 are modeled

to exhibit an antagonistic interaction.

(TIFF)

Figure S5 Contributions of peaks and non-peaks to the CC

values reported for the single motif STAP model in Table 1. (Also

see Table S10.) A. Comparison of model performance on peaks to

the overall performance on the 45 data sets. Each point represents

a data set. CC(M1) is the correlation coefficient of the baseline

model driven by the primary motif M1. The horizontal and

vertical dotted blue lines denote CC = 0.15, while the diagonal

dotted blue line represents x = y in this chart. B. Comparison of

model performance on peaks to the performance on non-peaks on

the 45 data sets. C. Model performance may vary with the

strength of the in vivo TF-DNA occupancy. The x-axis shows the

1000 peaks in the data set ‘‘BCD_Bseq_s5’’ divided into eight bins

of 125 segments each based on ChIP scores. The top 125 most

highly occupied genomic windows (rightmost bin) show the highest

CC of 0.486 between in vivo occupancy and STAP prediction.

The overall CC is 0.560, CC on all 1000 peaks taken together is

0.466, and CC on non-peaks is 0.050. D. Scatterplot of ChIP

scores and STAP scores for all 2000 genomic windows in the data

set ‘‘MAD_Bchip_s5’’, where overall CC is 0.635, CC on peaks is

20.206, and CC on the 125 most highly occupied windows is

20.279. Green, blue and red points represent the 125 top ChIP

peaks, 875 next highest ChIP peaks and 1000 randomly selected

non-overlapping non-coding genomic windows respectively.

(TIFF)

Figure S6 Effect of long-range cooperative interactions between

pairs of TFs on the accuracy of modeling ChIP scores within peaks

and non-peaks. We calculated the correlation coefficient (CC)

between the in vivo occupancy and our STAP prediction on peaks

and non-peaks for each of 18 TF-ChIP data sets from Table 2.

(Also see Table S11.) A. Comparison of model performance on

peaks to the overall performance on the 18 data sets. Each point

represents a data set. CC(M1, M2) is the correlation coefficient of

the cooperativity model driven by the primary motif M1 and the

secondary motif M2. B. Comparison of model performance on

peaks to the performance on non-peaks on these data sets. C.

Comparison of the performance improvement on peaks to that on

the entire data set. DCC (M1, M2) = CC(M1, M2) – CC(M1). D.

Comparison of the performance improvement on peaks to that on

non-peaks.

(TIFF)

Figure S7 Effect of short-range cooperative interactions between

pairs of TFs on the accuracy of modeling ChIP scores within peaks

and non-peaks. We calculated the correlation coefficient (CC)

between in vivo occupancy and our STAP prediction on peaks and

non-peaks for seven TF-ChIP data sets where significant short-

range TF-TF cooperativity has been identified (refer to Table 3

and Table S12). Shown is a comparison of performance

improvement on peaks to that on the entire data set. Each point

represents a data set. CC(M1, M2) is the correlation coefficient of

the cooperativity model with primary motif M1 and secondary

motif M2. DCC(M1, M2) = CC(M1, M2) – CC(M1).

(TIFF)

Figure S8 Effect of antagonistic interactions between pairs of

TFs on the accuracy of modeling ChIP data, for peaks and non-

peaks separately. We calculated the correlation coefficient (CC)

between in vivo occupancy and our STAP prediction on peaks and

non-peaks for 35 cases of antagonism where significant TF-TF

antagonism was identified in Table 5. (Also see Table S13.) A.

Comparison of the performance improvement on peaks with that
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on the entire data set. Each point represents a data set. CC(M1,

M2) is the correlation coefficient of the antagonism model with

primary motif M1 and secondary motif M2. DCC (M1,

M2) = CC(M1, M2) – CC(M1). B. Similar to (A), except that the

x axis represents DCC(M1,M2) on non-peaks rather than peaks.

C. Comparison of the performance improvement on peaks to that

on non-peaks. Red symbols in both panels represent cases where

the improvement on either peaks or non-peaks is larger than the

improvement on the entire data set. Blue symbols represent all

other data sets.

(TIFF)

Figure S9 Performance of the baseline (single motif) model using

two different definitions of the ‘‘negative set.’’ By default each TF-

ChIP data set comprised the top 1000 peaks and 1000 random

non-coding sequence windows (non-peaks). All results in the main

text are based on this definition of non-peaks. Here, we replaced

the 1000 randomly chosen non-peaks with 1000 randomly chosen

non-peaks that happen to be ChIP peaks of a different TF. The

plot shows CC values of the STAP model on each data set, using

these two definitions of non-peaks (x-axis corresponds to the

default definition). Red symbols represent data sets where the CC

with the default definition of non-peaks is better than the CC with

the new definition of non-peaks (by 0.04 or more). Green symbols

represent data sets where the CC with the new definition is better

than the CC with the default definition of non-peaks (by 0.04 or

more). (Also refer to Table S15.)

(TIFF)

Figure S10 Detailed examination of ChIP scores and STAP

scores on data set UBX_Mchip_s5_14, which shows a pronounced

increase in CC when random non-peaks in the data set are

replaced by non-peaks randomly chosen from peaks of other data

sets. A. In-vivo TF-DNA occupancy versus STAP baseline model

prediction on 2000 genomic windows in the default data set that

includes 1000 non-overlapping non-exonic non-peaks extracted

randomly from the whole genome. B. In-vivo TF-DNA occupancy

versus STAP baseline model prediction on 2000 genomic windows

that includes 1000 non-peaks of the TF chosen randomly from

peaks of other data sets (corresponding to other TFs).

(TIFF)

Figure S11 Influence of the competing DNA binding of HB and

EXD to the TF-DNA occupancy prediction for the data set

HB_Bchip_S9. We trained the STAP baseline model (HB only)

without 4-fold cross validation and obtained HB’s binding weight

parameter value cHB. Then we fit the STAP competition model by

fixing the binding weight parameter value of HB as cHB and

setting the binding weight parameter of EXD as the only free

parameter. The scatter plot shows the predicted TF-DNA

occupancy score of each sequence (peak and non-peak) as per

the baseline model with primary TF only and the advanced model

that includes competitive binding by EXD. From these plots, we

note that many peaks (red) as well as non-peaks (blue) fall below

the diagonal, which represents a lower STAP score from the

advanced model (with competition) than from the baseline model

(without competition). This suggests that the advanced model, to

its advantage, in both peaks and non-peaks, is exploiting

overlapping sites.

(TIFF)

Figure S12 Experimental validation of predicted direct TF-TF

interactions. This chart is an extended version of Figure 4C (right

panel) but with additional negative controls with either CLK or

empty vector (MT). GT-GT, MAD-MED and CLK-CYC positive

controls are shown. The same chart also appears in Supplemen-

tary Table S9 (Excel file, worksheet named ‘‘heterodimers + more

controls’’).

(TIFF)

Table S1 Ten data sets excluded from detailed analysis. These

include seven data sets for which no model was able to achieve CC

above the chosen threshold ($0.15) (top seven rows).

FTZ_Bchip_s5 and RUN_Mchip_s5_14 are excluded due to the

negative association between ChIP profile and the estimated TF-

DNA occupancy in the single-motif baseline model. GATAE_M-

chip_s5_11 is also disregarded since 1) the parameter values

learned from different folds of the cross-validation experiment

were widely different, and 2) the learned parameter values were

sensitive to the site threshold used in STAP. We categorized these

‘‘failed’’ data sets into two classes: C1 = only one data set was

examined for this TF, so both the model and data set quality are

suspect; C2 = multiple data sets were examined for this TF (from

different sources and/or developmental stages) and at least one

data set shows a CC $0.15, suggesting that this failed data set is

suspect rather than the model.

(TIFF)

Table S2 Effect of cooperative interactions between pairs of TFs

on the accuracy of modeling ChIP data. Shown here are all cases

where P-value is , = 0.05 and Z-score is . = 3 at distance

threshold of 150 bps. Column semantics are as in Table 2 of the

main text.

(TIFF)

Table S3 Cases of significant influence of VFL, in cooperativity

mode with distance threshold = 150 bp. Column semantics are as

in Table 2 of the main text. A ‘-’ indicates that the effect was

insignificant.

(TIFF)

Table S4 Cases of significant influence of TRL, in cooperativity

model with distance threshold equal to 150 bp. Column semantics

are as in Table 2 of the main text. A ‘-’ indicates that the effect was

insignificant.

(TIFF)

Table S5 Spacing bias analysis for antagonistic influences where

the bias is significant in the non-peaks and not in peaks. Shown are

cases where the STAP model, using the primary motif and the

secondary motif listed in column ‘‘Motif 2’’, with antagonistic

interaction at distance less than ‘‘Distance threshold’’, led to

significant improvement in CC on a data set. In each case, we

tested for a bias for a spacing range [1–2, 2–3, 3–4, …, 29–30], in

peaks and non-peaks separately, and report the lowest p-value

observed across all spacing ranges.

(TIFF)

Table S6 Correlation coefficient between ChIP scores and each

of two different computational scores: STAP predictions using the

primary motif (CC(M1)) and STAP predictions using the primary

motif but set to zero in inaccessible regions (CC(AccFilter(M1))).

(TIFF)

Table S7 Effect of VFL before (DCC) and after (DSPCC)

partialing out accessibility. A substantial effect ($0.04) remains

even after partialing out accessibility for the data sets CAD_B-

seq_s5 and HB_Bseq_s5, while a borderline significant effect

remains for the data set KR_Bseq_s5.

(TIFF)

Table S8 The CC and AUC scores of the baseline model and

best TF-TF interaction model of 45 amenable data set.

CCImprOverM1 is the difference of CC(M1+M2) and CC(M1),
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where M2 is a best secondary motif candidate under the most

beneficial TF-TF interaction model. AUCImprOverM1 is the

corresponding AUC difference under these two models. Bold font

in the two columns refers to cases where the improvement arising

from the best model is . = 0.04.

(TIFF)

Table S9 Data tables for the in vitro pull down experiments

characterizing the interaction between MBP and luciferase tagged

transcription factors. For detailed explanation see worksheet

‘‘notes’’ in this file.

(XLSX)

Table S10 Evaluation of single motif STAP model on peaks and

non-peaks of 45 TF-ChIP data sets (refer to Table 1). The

‘‘Overall’’ column is identical to the column labeled ‘‘CC(M1)’’ in

Table 1.

(TIFF)

Table S11 Effect of long-range cooperative interactions between

pairs of TFs on the accuracy of modeling ChIP scores within peaks

and non-peaks (refer to Table 2). Rows where the data set name is

in underlined font represent cases where the DCC on peaks or

non-peaks is $0.04, and the corresponding CC(M1+M2) is $0.15.

(TIFF)

Table S12 Effect of short-range cooperative interactions be-

tween pairs of TFs on the accuracy of modeling ChIP scores

within peaks and non-peaks (refer to Table 3). These cases

correspond to the rows of Table 3 that are significant at distance

threshold 30 bp and marked with asterisks. In none of these seven

cases does DCC within peaks or within non-peaks rise above the

nominal threshold of 0.04, suggesting that the observed improve-

ments due to short-range cooperativity modeling (Table 3) arise

mainly from a better discrimination of peaks from non-peaks.

(TIFF)

Table S13 Effect of antagonistic interactions between pairs of

TFs on the accuracy of modeling ChIP data, for peaks and non-

peaks separately (refer to Table 5).

(TIFF)

Table S14 Effects of cooperative DNA binding by the primary

TF and a secondary TF (‘‘M2’’) chosen from the top 25–50% most

highly expressed TF genes, that were significant at distance

threshold either 30 bp or 150 bp, with P-value#0.05 and Z-score

$3. Cases where the improvement at distance threshold 30 bp

was better than that at 150 bp are highlighted in bold. Dashes

indicate that the secondary motif was not observed to show

significant improvement at the specific distance threshold. This

table presents results from testing all secondary motifs whose TFs

were in the top 25–50% most highly expressed TF genes (out of

the ,300 TF genes with motifs) at the appropriate developmental

stage.

(XLSX)

Table S15 Performance of the baseline (single motif) model

using two different definitions of the ‘‘negative set.’’ CC(M1) is the

Pearson correlation coefficient between STAP predictions and

ChIP scores for each data set, which comprises the top 1000 ChIP

peaks and 1000 randomly chosen non-peaks. CC(M1)a is the

correlation coefficient in a data set where the non-peaks are

randomly chosen from the top 1000 ChIP peaks of other TFs.

There are 20 data sets with CC(M1)a . CC(M1), and for 11 of

these (shown in green) the difference is 0.04 or more. We took

UBX_Mchip_s5_14 as an example of such cases and examined

the in vivo occupancy and STAP baseline model predictions for

this data set in detail (see Figure S10). For the remaining 25 data

sets we found CC(M1)a , CC(M1), and for 11 of these, shown in

red, the difference is 0.04 or more.

(XLSX)

Table S16 Data and oligo sequence information for cooperative

DNA binding assays. Constructs are the same used in the in vitro

pull down experiments. For detailed explanation see worksheet

‘‘notes’’ in this file.

(XLSX)

Table S17 All cases where VFL has a significant cooperativity

effect at distance threshold = 30 bp or 150 bp, showing the effect

at both distance thresholds. Column semantics are as in Table 3 of

the main text. A ‘-’ indicates that the effect was insignificant.

(TIFF)

Table S18 All cases where TRL has a significant effect at

distance threshold = either 30 bp or 150 bp, showing the effect at

both distance thresholds. Column semantics are as in Table 3 of

the main text. A ‘-’ indicates that the effect was insignificant.

(TIFF)

Table S19 Spacing bias analysis for antagonistic influences

where the bias is significant in the peaks and not in non-peaks.

Columns have semantics as in Table S5.

(TIFF)
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