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Abstract

Purpose Clinically, neuropathic pain is frequent and

intense following brachial plexus injury. It is thought that

brachial plexus pain is not generated by avulsed roots, but

rather by non-avulsed roots, since the avulsed root could

not possibly transmit action potentials to central nerves.

The aim of this study was to evaluate pain behavior and

activation of sensory neurons in a brachial plexus avulsion

(BPA) model in rats.

Methods Fifteen male Wistar rats were used. In the BPA

group, the C8–T1 roots were avulsed from the spinal cord

with forceps at the lower trunk level (n = 5). In the naı̈ve

group, rats did not receive any procedures (n = 5). In the

sham-operated group, the lower trunk was simply exposed

(n = 5). Mechanical hyperalgesia of forelimbs corre-

sponding to C6 and C7 dermatomes was measured using

von Frey filaments every third day for 3 weeks. Activation

of DRG neurons was immunohistochemically examined

using anti-ATF3 (a marker for neuron activation) anti-

bodies 21 days after surgery. Von Frey and immunohisto-

chemical data between groups were analyzed using a

Kruskal–Wallis test, followed by Mann–Whitney U tests.

Bonferroni corrections were performed.

Results Animals in the BPA group displayed significant

mechanical hyperalgesia at the dermatome innervated by

uninjured nerves continuing through day 21 compared with

animals in the sham-operated group. ATF3-immunoreac-

tive small and large DRG neurons were significantly

activated in the BPA group (10.6 ± 9.5 and 5.2 ± 4.1 %,

39.7 ± 6.7 and 25.2 ± 10.3 %, 78.0 ± 9.1 and 53.7 ±

29.3 %) compared with the sham-operated group (0.7 ±

0.9 and 0 ± 0 %, 2.8 ± 2.0 and 1.0 ± 2.0 %, 3.9 ± 2.7

and 8.6 ± 10.1 %) at every level of C5, 6, and 7. In the

naı̈ve group, no DRG neurons were activated. ATF3-immu-

noreactive small and large DRG neurons were significantly

activated at the level of C7 compared with C6 and C5, and

significantly activated at the level of C6 compared with C5 in

the BPA group.

Conclusions Expression of ATF3 in uninjured DRG

neurons may contribute to pain following brachial plexus

avulsion injury. Consequently, spared spinal sensory nerves

may represent therapeutic targets for treatment of this pain.
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Introduction

Brachial plexus injury is a common event in humans

caused by traction of spinal cord roots. It is generally

caused by a motorcycle traffic accident or a fall. Individual

or multiple roots are typically avulsed from the spinal cord

and/or ruptured from C5 to T1. Patients display various

symptoms depending on injury level and/or injury type,

such as avulsion, postganglionic injury, and neurapraxia.

Brachial plexus injury produces a characteristic constant

crushing and intermittent shooting pain that is often

intractable [1, 2]. This lesion may lead to important path-

ological changes responsible for increased pain sensations

[3]. The main characteristics of brachial plexus injury are

sensory paralysis, motor palsy, and the rapid onset of pain,

which occurs immediately after the trauma [4, 5].
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In almost 80 % of patients with complete brachial

plexus palsy, at least one root is not avulsed [6, 7].

Hence, it is believed that brachial plexus pain is not

generated by avulsed roots, but rather by non-avulsed

roots. In fact, it has been reported that the injection of

anesthetics close to the non-avulsed roots controls pain

temporarily [8].

Rodrigues-Filho [9] reported that avulsion of the bra-

chial plexus in the rat produces persistent mechanical

allodynia and mechanical hyperalgesia, while Paszcuk [10]

demonstrated that cannabinoid receptors in DRGs were

increased after brachial plexus avulsion. However, no

reports have evaluated DRGs compared with hyperalgesia

rostral to the injury level. We hypothesize that sensory

neurons rostral to the injury-level dorsal root ganglions are

activated and transmit nociceptive signals in brachial

plexus injury-associated pain. The aim of this study was to

evaluate pain behavior and activation of sensory neurons in

a BPA model in rats.

Materials and methods

All protocols for the animal procedures were approved by

the ethics committees of our institutions following the

National Institutes of Health Guidelines for the Care and

Use of Laboratory Animals (1996 revision). A total of ten

male Wistar rats weighing 170–200 g were used in this

study. All animals were kept in cages with free access to

food and water. They were maintained in a temperature-

controlled room (22 ± 2 �C) under a 12 h light cycle

(lights on 0600 hours).

Surgical procedure

We used the technique that Rodrigues-Filho [9] reported

to model avulsion of the brachial plexus in the rat. Ani-

mals were anesthetized with sodium pentobarbital

(40 mg/kg i.p.) and treated aseptically throughout the

experiments. The right brachial plexus was approached

through a horizontal incision parallel to the clavicle,

running from the sternum to the axillary region in the

BPA and sham groups. The pectoralis major muscle was

displaced, leaving the cephalic vein intact. The subclavian

vessels were located and the lower trunk of the right

brachial plexus was isolated from surrounding tissues. In

the BPA group, the right C8–T1 roots were avulsed from

the spinal cord with forceps at the lower trunk level

(n = 5). In the sham-operated group the lower trunk was

simply exposed (n = 5). The cut tissue layers were then

approximated and the skin closed with 4–0 nylon sutures.

In the naı̈ve group (n = 5), rats did not receive any pro-

cedures (n = 5).

Evaluation of tactile hyperalgesia

Mechanical withdrawal thresholds (von Frey)

We evaluated 15 rats for tactile hyperalgesia (BPA group,

n = 5; sham group n = 5; naive group n = 5). There were

no animal dropouts on any day. Mechanical thresholds of

the right front paw were assessed using a series of von Frey

filaments (Stoelting, Wood Dale, IL), ranging from 0.008

to 180 g before operation and at 3, 6, 9, 12, 15, 18, and

21 days after operation in the BPA and sham groups. In the

naı̈ve group, thresholds were assessed only at the first test.

The von Frey filaments were applied to right front paws

corresponding to the C6 and C7 dermatomes (area from the

1st digit to the 3rd digit) for five trials at approximately

5 min intervals [11]. Each probe was applied to the paw

until it just bent, and was kept in this position for 6–8 s

[12]. Filaments were applied in ascending order, and the

smallest filament that elicited a foot withdrawal response

was considered the threshold stimulus. The average

threshold stimulus was calculated.

Immunohistochemistry for ATF3 (a marker of DRG neuron

activation)

At 21 days after the operation, rats were anesthetized with

sodium pentobarbital (40 mg/kg i.p.) and transcardially

perfused with 0.9 % saline, followed by 500 ml of 4 %

paraformaldehyde in phosphate buffer (0.1 M, pH 7.4).

Next, dorsal root ganglia from C5 to C7 levels were

resected and the specimens immersed in the same fixative

solution overnight at 4 �C. After storage in 0.01 M phos-

phate-buffered saline (PBS) containing 20 % sucrose for

20 h at 4 �C, each ganglion was sectioned at 12 lm

thickness on a cryostat and mounted on poly-L-lysine-

coated slides. Endogenous tissue peroxidase activity was

quenched by soaking the sections in 0.3 % hydrogen per-

oxide solution in 0.01 M PBS for 30 min. The specimens

were then treated for 90 min at room temperature in

blocking solution consisting of 0.01 M PBS containing

0.3 % Triton X-100 and 3 % skim milk. For staining of

DRGs, the sections were processed for ATF3 immunohis-

tochemistry using a rabbit antibody to ATF3 (1:1,000;

Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted

in blocking solution and incubated for 20 h at 4 �C. Sec-

tions were incubated with goat anti-mouse and rabbit Alexa

488 fluorescent antibody conjugate for visualization

(1:1,000; Molecular Probes, Eugene, OR, USA). After each

step, the sections were rinsed three times in 0.01 M PBS.

Ten sections (two sections of each DRG) in each group

were examined using a fluorescence microscope. The

number of ATF3-immunoreactive (IR) neurons and total

neurons were counted at 4009 magnification using a
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counting grid. DRG neurons were classified as small

(\700 lm2) and large ([700 lm2) according to the mea-

sured cross-sectional area [13, 14]. Positive or negative

staining was blinded and observed by three orthopedic

hand surgeons. If at least two of the observers were in

agreement, their evaluation was used. These observers

were blind to the classification of the groups. A percentage

of ATF3-IR neurons were calculated and compared among

groups.

Statistical analysis

Von Frey measurements and immunohistochemical data

between groups were analyzed using a Kruskal–Wallis test,

followed by Mann–Whitney U tests. Bonferroni correc-

tions were performed.

Results

Effects of brachial plexus injuries on mechanical

hyperalgesia

Figure 1 shows that there was no significant difference in

the mechanical threshold between the naı̈ve, sham-operated

and pre-operated groups. BPA produced a marked decrease

in the mechanical threshold at C6 and C7 dermatomes at all

time points studied (3, 6, 9, 12, 15, 18, and 21 days) when

compared with the sham and naı̈ve groups. The statistical

analysis of these data showed significant differences among

the groups (p \ 0.01).

Immunohistochemistry (Figs. 2, 3)

In the naı̈ve group, no C5 DRG neurons were activated. In the

sham-operated group, the percentage of C5 DRG small and

large neurons expressing ATF3 was 0.7 ± 0.9 and 0 ± 0 %,

respectively. In the BPA group, percentages were 10.6 ± 9.5

and 5.2 ± 4.1 %, respectively. There was a significant dif-

ference between sham and BPA groups (p \ 0.01).

In the naı̈ve group, no C6 DRG neurons were activated.

In the sham-operated group, the percentage of C6 DRG

small and large neurons expressing ATF3 was 2.8 ± 2.0

and 1.0 ± 2.0 %, respectively. In the BPA group, per-

centages were 39.7 ± 6.7 and 25.2 ± 10.3 %, respec-

tively. There was a significant difference between sham

and BPA groups (p \ 0.01).

In the naı̈ve group, no C7 DRG neurons were activated.

In the sham-operated group, the percentage of C7 DRG

small and large neurons expressing ATF3 was 3.9 ± 2.7

and 8.6 ± 10.1 %, respectively. In the BPA group, per-

centages were 78.0 ± 9.1 and 53.7 ± 29.3 %, respec-

tively. There was a significant difference between sham

and BPA groups (p \ 0.01).

ATF3-immunoreactive small and large neurons were

significantly activated at the level of C7 DRG compared

with C6 and C5 DRG (p \ 0.01), and were also signifi-

cantly activated at the level of C6 DRG compared with C5

DRG in the BPA groups (p \ 0.01).

Discussion

In this study, we report that mechanical hyperalgesia

developed after BPA injury. This brachial plexus injury

model engenders neuropathic pain at dermatomes corre-

sponding to intact DRG neurons. Expression of ATF3-

immunoreactive neurons was observed in non-injured DRG

neurons.

Brachial plexus injury, a common event in humans caused

by spinal cord root avulsion, produces a characteristic con-

stant crushing and intermittent shooting pain that is often

intractable [1, 2]. Ciaramitaro [15] reported that the incidence

of neuropathic pain in peripheral nerve injury was 52 % and

following root avulsion injury was 100 %.

Although the injured roots are not connected to the

spine, patients nevertheless suffer from intolerable pain. It

is thought that brachial plexus pain is not generated by

avulsed roots, but rather by non-avulsed roots. In fact, it is

reported that injection of anesthetics close to the non-

avulsed roots controls pain temporarily [8].

Von Frey

Postoperative Time (days) 

M
ec

ha
ni

ca
l  

T
hr

es
ho

ld
 (

g)
 

0 

2 

4 

6 

8 

10 

12 

14 

-1 3 6 9 12 15 18 21 

Sham BPA 

Fig. 1 Effects of brachial plexus injuries on mechanical hyperalge-

sia. BPA produced a marked decrease in the mechanical threshold at

C6 and C7 dermatomes at all postoperative time points compared

with the sham and naı̈ve groups. Statistical analysis of these data

showed significant differences between the groups (p \ 0.01)
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Fig. 2 In the naı̈ve group, no DRG small or large neurons expressed ATF3. In the sham-operated group, few DRG small and large neurons

expressed ATF3. In the BPA group, many small and large neurons expressed ATF3
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Fig. 3 ATF3-immunoreactive

small and large neurons were

significantly elevated at the

level of the C7 DRG compared

with the C6 and C5 DRG

(p \ 0.01), and significantly

elevated at the level of the C6

DRG compared with the C5

DRG in the BPA group

(p \ 0.01)
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Rodrigues-Filho reported that avulsion of the brachial

plexus in rat produces persistent mechanical allodynia and

mechanical hyperalgesia in the hind paw [9]. Paszcuk

described the development of long-lasting mechanical

allodynia in the hind paw of mice submitted to BPA until

the 30th day after surgery [10]. However, the authors did

not reveal that the DRG activation was relevant to hyper-

algesia at levels rostral to the injury level. We demon-

strated that sensory neurons in the dorsal root ganglions

rostral to the injury level were activated and mechanical

hyperalgesia occurred after BPA rostral to the injury level.

Several authors have reported studies of neuropathic

pain models incorporating paw measures. The plantar

surface of the rat forepaw is innervated by the C6–C8

spinal nerves and the rat hindpaw is innervated by the

L3–L5 spinal nerves [10]. Regarding cervical nerve injury,

C7/8 dorsal rhizotomy [19], C7 spinal nerve compression

[20], spinal nerve ligation [20], and BPA [15] are all

capable of contributing to neuropathic plantar pain in the

rat. In these studies, injury-level DRG neurons were eval-

uated and were activated by nerve injury, but uninjured-

level DRG neurons were not evaluated.

Among the three major neuropathic [10, 16, 17] hind

paw plantar pain models in rats [18–20], the L5 and L6

spinal nerve ligation (SNL) model is unique because the

uninjured L4 DRG neurons are clearly separated from the

axotomized L5 and L6 DRG neurons. Thus, the activated

L4 spinal nerve should be the main route through which the

impulses evoked in the periphery are transferred to the

spinal dorsal horn in this model [21]. Considering previous

reports and the current study, we conclude that activation

of intact spinal nerves transmits pain from the foot pad to

the spinal dorsal horn in the current BPA injury model.

In the current study, we measured ATF3-positive DRG

neurons in small and large neurons in a BPA model. ATF3

is a commonly used marker of DRG neuron activation, and

it is also known that ATF3 regulates neurite outgrowth

[22–27]. Lindwall reported that ATF3 is a c-Jun dimer-

ization partner and that JNK-mediated c-Jun activation is

associated with axonal outgrowth following axotomy of

adult rat sensory neurons [25]. Seijffers demonstrated that

ATF3 contributes to neurite outgrowth in injured neurons

[26]. Woolf showed that the central terminals of primary

afferents sprouting into lamina of the dorsal horn contrib-

ute to neuropathic pain [27]. ATF3 expression might not

only represent a neural marker of injury, but may also

functionally contribute to neuropathic pain.

The mechanisms associated with mechanical allodynia

can include the sensitization of C fibers; however, recent

evidence points to a major contribution of large-diameter

myelinated Ab fibers. In previous studies [25], the

expression of calcitonin gene-related peptide (CGRP)

mRNA and preprotachykinin (PPT; a gene encoding

substance P) mRNA increased in large DRG neurons

(which do not transmit pain under physiological condi-

tions) in rat lumbar neuropathic pain models.

Furthermore, after nerve injury-induced central sensiti-

zation of spinal cord neurons, large diameter, low-thresh-

old Ab mechanoreceptors begin to sprout into lamina II of

the dorsal horn and an area that normally receives only

noxious information then receives input from non-noxious

tactile stimuli, thus becoming capable of generating pain

[26, 27]. Such sprouting of Ab fibers into lamina II of the

dorsal horn has been clearly observed following sciatic

axotomy, partial nerve ligation and, more recently, after

sciatic chronic constriction injury [28–30]. It is proposed

that Ab inputs can trigger withdrawal reflexes to previously

innocuous mechanical stimuli, presumably by activating

sensitized pain-responsive neurons [31]. Spread of hyper-

algesia is likely due to central sensitization of nociceptive

neurons in the spinal cord by primary nociceptive afferent

input (neurogenic hyperalgesia) [32]. The current data

related to ATF3 activation of large DRG neurons may

explain mechanical allodynia commonly seen following

BPA in humans. However, further studies are needed to

explore pathological mechanisms related to BPA pain.

There are some limitations to this study. First, we did not

evaluate contralateral (uninjured) DRGs in either the BPA or

sham rats. Regarding previous investigations, although there

are no reports describing changes in contralateral DRGs in the

BPA model, Hatashita [33] reported contralateral DRG neu-

ron and spinal glia activation following hemilateral spinal

nerve injury in rats. It is possible that contralateral DRG

neurons are activated by brachial plexus avulsion. Second, we

did not evaluate neurons at all DRG levels. Therefore, we do

not know how neurons were activated at all DRG levels.

Our results suggest that heightened expression of ATF3

in uninjured spinal nerves may contribute to neuropathic

pain after BPA injury. The current findings suggest that

uninjured nerves are therapeutic targets for pain relief

following brachial plexus damage.
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