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There are now more than 5 experimental vaccine formulations which induce T and B cell immunity towards the internally situated virus
proteins matrix (M1 and M2e) and nucleoprotein (NP), and towards stem and stalk regions of the HA which have a shared antigenic
structure amongst many of the 17 influenza A virus sub types. Such ‘universal vaccines’ could be used, at least in theory, as a
prophylactic stockpile vaccine for newly emerged epidemic and novel pandemic influenza A viruses or as a supplement to
conventional HA/NA vaccines. My own laboratory has approached the problem from the clinical viewpoint by identifying CD4+ cells
which are present in influenza infected volunteers who resist influenza infection. We have established precisely which peptides in M
and NP proteins react with these immune CD4 cells. These experimental vaccines induce immunity in animal models but with a single
exception no data have been published on protection against influenza virus infection in humans. The efficacy of the latter vaccine is
based on vaccinia virus (MVA) as a carrier and was analyzed in a quarantine unit. Given the absence of induced HI antibody in the new
universal vaccines a possible licensing strategy is a virus challenge model in quarantine whereby healthy volunteers can be immunized
with the new vaccine and thereafter deliberately infected and clinical signs recorded alongside quantities of virus excreted and
compared with unvaccinated controls.

Introduction

Osterhaus et al. [1], Ebrahimi & Tebianian [2] and Du et al.
[3] have reviewed in excellent detail aspects of the univer-
sal influenza vaccine approach and have focused particu-
larly on matrix (M) and nucleoprotein (NP) based vaccines.
In contrast the present review will not emphasize, analyze
or compare the various genetic constructs of M, M2e and
NP which have been formulated. Rather this is a more
general overview and places the established efficacy of
killed influenza vaccines and the potential of new ‘univer-
sal’ influenza vaccines in context whilst examining a role of
the virus challenge model in a quarantine unit both for

discovery and later licensing of universal influenza vac-
cines. More recent research advances using the stem or
stalk portion of the HA as potential vaccines are discussed.

Are current HA/NA vaccines limited
in efficacy and is there a need for a
universal influenza vaccine?

The first formalin inactivated whole virus particle influ-
enza vaccines were developed over six decades ago. The
antibody based immunity and protection induced, both
in animal models and in humans, is focused tightly
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towards the HA and NA of the vaccine virus and its close
relationship to the natural field virus (reviewed in [4]).
Hence the scientific concept is one of close antigenic
matching of the surface HA protein of community virus
and vaccine virus which amounts to pre-estimating which
influenza A (H3N2) and H1N1 and B virus will be domi-
nating in the community and preparing ahead of time a
correspondingly matched vaccine virus. This has been
aided by the surveillance network of 120 or so WHO labo-
ratories around the world which analyze, along with the
five central laboratories in London, Atlanta, Melbourne,
Tokyo and Beijing, around 30 000 human influenza
viruses each year.

The current influenza HA/NA vaccines are safe and
effective but have some limitations as reviewed in [4]. For
example adults, post-vaccination, may produce a broad
cross reacting (CR) series of HI antibodies and may indeed
even recall an antibody response to the first member of
the virus subtype encountered during a lifetime (‘Original
Antigenic Sin’) whereas what is really required is a more
tight response of strain specific (SS) antibody to the
vaccine virus [5]. Therefore immunizing a 70-year-old with
a current influenza vaccine in 2013 may induce CR and SS
antibodies to A/HK/1/68 (H3N2) virus circulating four
decades ago as well as antibodies to the current vaccine
virus A/Victoria/30/2011 (H3N2). The former CR antibod-
ies may even predominate whereas the strain specific
antibody is estimated to be more protective. Nevertheless
the most recent data with naturally contracted influenza
[6, 7] show a good correlation between vaccine induced
HI antibody to the HA (with an HI titre in excess 1/110 for
children and 1/30 for adults) and protection against infec-
tion and disease. This confirms the much earlier data of
Hobson et al. [8] who described the association of protec-
tion against disease both in quarantine and in natural
infection, with increasing level of HI antibody and particu-
larly an HI titre of 1/40 or above.

We can justifiably ask whether we need a new series
of influenza vaccines which might also necessitate total
reorganization of licensing requirements or whether the
two approaches viz. anti HA and an M/NP antigens could
be combined to produce both B cell HI antibody and T
cell responses? Undoubtedly the unsettling problem at
the centre of discussion is the sudden emergence of new
pandemic influenza A/California/6/2009 (H1N1) virus,
probably having evolved for 17 years in S.E. Asia but
unexpectedly coming to attention in Mexico. Evolution-
ists have identified S.E. Asia as the place for the emer-
gence of epidemic and pandemic influenza [9]. Huge
technical manufacturing and scientific expertise with cell
substrates such as Vero cells and MDCK cells as well as
embryonated hen’s eggs enabled production of large
quantities of vaccine, in excess of half a billion doses
including whole virion, HA/NA sub unit, split virion and
finally live attenuated vaccines [10]. However the delay
from initiation of vaccine production to clinical use was

still 4–6 months. Within that period the virus had circu-
lated the globe and probably infected at least one billion
persons in both hemispheres. Fortunately, at least com-
pared with the three pandemics of the 20th century, there
were 500 000 deaths rather than millions but still up to 9
million years of life were lost [11].

What is the scientific basis that a
new vaccine composed of internal
virus structural proteins such as
M1, NP and M2e shared by many
influenza A viruses would induce
broadly protective immunity?

That a post infection immune response exists which gives
broad protective immunity was first shown in an impor-
tant series of animal experiments published four decades
ago. Both Werner [12] and Schulman & Kilbourne [13]
noted that mice could be infected with a sub lethal dose
of influenza of one subtype A (H1N1) virus and after
recovering would retain solid immunity to super infection
with an otherwise lethal dose of another antigenically
unrelated (at least with HA and NA) influenza virus
subtype such as influenza A (H3N2) or vice versa (Table 1).
However a viewing of the data in Table 1 shows that het-
erotypic cross immunity is less long lived than homolo-
gous immunity and did not extend to 36 weeks post-
infection in the mouse model. In the ferret heterotypic
immunity was exemplified by a reduction of titre of
excreted virus. Kreijtz et al. [14] have also demonstrated
this phenomenon more recently with antigenically
unrelated influenza A (H3N2) and influenza A (H5N1)
viruses.

These two early animal model papers stimulated a
whole research field just at the time when the chemist
Laver in Australia had developed electrophoretic methods
to separate the external HA, NA proteins, from the internal
NP and M proteins of the influenza virus in biologically
active form [15]. However the first experiments to separate
out NP and M and use them as vaccines per se failed to
induce solid protection in mouse or ferret models as com-
pared with HA [16]. Later experiments on transfer of spe-
cific antibody to M1 and M2 proteins showed both in vivo
and in vitro virus neutralizing activity [17].

Of course currently produced whole virus killed vac-
cines will also have internal M1, M2, M2e and NP proteins
and may also induce a broader immunity than supposed or
detected to date. The so called subunit HA/NA detergent
or/split virion vaccines also have low quantities of M, M2e
and NP protein which are difficult to remove during
subunit purification but these internal proteins may not be
presented to the immune system in an optimum manner,
allowing anti HA responses to dominate.

Finally we have to bring into the practical equation
the important live attenuated virus vaccines where
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investigations started as early as 1947 in the USA and
Russia and were recently (reviewed in [18]) both cold
adapted (ca) master strains have been licensed in the USA,
EU, UK, Russia and India. The ca vaccines do give a broader
immune response across the subtype [19] but not to date,
between subtypes but further study is required.

Examples of current experimental
universal influenza vaccines
formulated with virus structural
M1, M2, M2e and NP proteins and
a variety of adjuvants

The gene 7 of influenza codes for two proteins, M1 and M2,
with a short overlapping region. The M1 structural protein
gives rigidity to the virion and is the larger protein whilst
the smaller M2 (96 amino acid) protein is an integral mem-
brane protein serving as an ion channel for the early steps
of virus uncoating. Virus infected cells may have more M2
molecules than HA on the surface but the virion itself has
only 60 or so M2 molecules compared with 500 HAs.There
has been particular interest in the extracellular region of
M2 (M2e) which has 24 amino acids and 17 of these
have 94% conservation between influenza A viruses.The N
terminal epitope (residues 2–9, SLLEVET) has over 99%
conservation between many influenza A viruses. Unfortu-
nately the native form of M2e is poorly immunogenic
(reviewed in [2]).

We should note that post-infection antibodies to M2
are rare [20] and that only 1–2% of persons in the commu-
nity have antibodies to M2e. Anti HA antibodies are more
neutralizing than antibodies to M2e but antibodies to the
latter protein bind to virus infected cells and may thus
mediate CD+8 cell killing whilst such antibodies may also
impede influenza virus exit.

Therefore to formulate a novel universal influenza
vaccine the scientific strategy has been to construct fusion

proteins of M2e, for example using hepatitis B core antigen
[21, 22] or fused to the heat shock protein (HSP) 70 of M.
tuberculosis [23] in attempts to enhance the immuno-
genicity of this small protein. Some of the formulations
summarized in Table 2 [24–29] do induce antibody and/or
T cell responses in animal and clinical models but to date
only a single construct has been tested and the data pub-
lished against a virus challenge in humans ( [30] see
below).

Cross reactive epitopes on
the HA: a second variety of
universal vaccine

Most antibodies, either from natural infection or from
immunization with conventional HA/NA influenza vac-
cines, bind to the externally located globular head of the
HA where the HA1 protein is located.

However there are regions in HA2, the second
polypeptide of the HA, where antibodies bind and
several of these antibodies are the subject of new inves-
tigations which have identified cross reactive antigenic
regions in the HA stalk or stem [31–37]. One group of
investigators has designed and produced an E. coli
expressed antigen, called HA6, made of most of HA2
and two small regions of HA1. Immunization of mice
gives protection against homologous influenza A (H3N2)
viruses in a broader sense than using the whole HA. Simi-
larly Steel et al. [32] have described an HA2 stalk antigen
which gives broad immunity within the subtype also
raising expectations of a truly universal vaccine against all
17 subtypes.

Babon et al. [35] have located a CD4+ T cell epitope near
the fusion peptide of the HA at the junction of HA1 and
HA2 which is well conserved across at least 16 subtypes
and, most interestingly, of influenza B.

Table 1
Heterotypic (cross sub type) immunity in mouse and ferret models

Model
Animal initially
infected with:

Number of animals infected
(ferrets) or dying (mice) at
(weeks) after challenge with
A/PR/8/34 (H1N1) virus:

Titre of virus excreted
post-infection
(log10 EID50 ml-1)3 12 36

CBA mouse A/HK/1/68 (H3N2) 1/10* 2/17 19/20 ND

B/LEE 19/20 12/18 12/14 ND

A/PR/8/34 (H1N1) 1/15 2/19 1/10 ND

None 20/20 ND
Ferret A/PC/1/73 (H3N2) 12/12 – – 2.4�0.5

None 7/7 – – 6.2�0.8

J.S. Oxford, previously unpublished data.
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Infection of immunized volunteers
with influenza virus in quarantine
may allow licensure of universal
influenza vaccines which do not
induce HI antibody

The approaches to universal influenza vaccines described
above contain either the HA2 stalk region of the HA, or
internal proteins MP,M2e and NP,none of which will induce
HI antibody. As a key part of the current licensing require-
ments new influenza vaccines are tested for HA content
(10–15 mg per dose) using single radial diffusion [38]. How
then can such HA free vaccines be licensed and would
they, like the current inactivated HA vaccines, be required
to be relicensed yearly or less frequently? One solution for
licensing would be the establishment of a precise and
quantitative level of cellular CD4+ and CD8+ cells or an anti-
body response to virion M and NP peptides which have
been shown to correlate with protection in quarantine
experiments. An alternative licensing procedure could be
an actual virus challenge experiment in a quarantine unit
whenever the vaccine is formulated. Typically 70–80% of
volunteers who are HI antibody negative are infected after
challenge with influenza A/Wisconsin/67/05 (H3N2) virus
[39] and 79% of these develop symptoms.

Our own quarantine work in London [39–41] has drawn
heavily on the prior experience of the MRC Common Cold
Unit, Harvard Hospital in Salisbury, where between 1948
and 1988 many thousands of quarantined volunteers were
infected with respiratory viruses [42].

At the first screening visit the volunteer is helped
through the informed consent, a very important docu-
ment, and once signed, a medical history is taken and
inclusion criteria for the particular trial are checked. Entry
criteria are most strict and half the young 20–40-year-old
volunteers fail the screen on medical criteria. Next the vol-
unteers are screened for HI antibody to the challenge virus
[commonly influenza A (H3N2)] and again more than half
the healthy volunteers are rejected for possessing HI anti-
body which would prevent infection.

For the 9 day quarantine the volunteers are housed
in individual rooms with an en suite bathroom, with
negative air pressure and with no opportunity to
exchange viruses with each other or with the medical and
nursing staff who are protected with modern personal
protective equipment (PPE) including a small HEPA
half suite. Nasal and throat swabs are harvested there-
after each day post-infection for laboratory quantification
of virus whilst quantitative assessment of respiratory
symptoms are constructed from diary and temperature
charts, tissue counts and weight of tissues and with
additional precise clinical observational scoring of sore
throats.

There is intense daily clinical monitoring of the volun-
teers by ECG and spirometry. Haematology and blood
chemistry investigations are carried out before, through-
out the trial and afterwards. Several blood samples can be
taken daily to analyze for human gene activity in the
PBMCs and for relative immune CD4+ and CD8+ T cell
activity.

Table 2
Stages of development of some universal influenza vaccines

Company or scientific group Construct Animal vs. clinical data and references

A Vaccines of internal virus proteins

Acambis and Sanofi (USA) M2e HBc Ag fusion protein: a particle coated with
M2e

Immunogenic in phase I in trials adjuvanted with Q521
humans [21, 22]

VaxInnate (USA) M2e flagellin fusion protein Immunogenic in phase I trials [25] when
co-administered with conventional flu vaccine [27]

Seek (UK) Peptides of HA, NP and M1 Immunogenic in phase I trials [24]

University of Oxford (UK) M1 and NP cloned into modified Vaccinia Virus Ankara
(MVA)

Immunogenic in phase I trial and induced moderate
protection in volunteers in quarantine [30]

Cytos Biotechnology (Switzerland) M2e is fused to the coat protein of RNA phage AP
205. VLP

Animal model [26]

Razi Institute (Iran) 4 ¥ M2e HSP70c fusion protein Animal model [23]

Merck M2e synthetic peptides conjugated to outer membrane
protein complex

Immunogenic in animal models [29] and including
primates

Biondvax Concatamer of nine conserved sequences from HA, NP
and NA

Immunogenic in phase I trials

Dynavax M2e and NP fusion protein conjugated to CpG
oligonucleotide TLR-9 ligand

Animal model and phase I

B Vaccines
Academic groups Regions of HA2 Animal models only to date 31–37

Note that this is not an exhaustive listing of current scientific endeavours.
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The first example of a candidate
universal influenza vaccine to show
efficacy in quarantine

A group at the Jenner Institute in Oxford [30] formulated
an experimental universal influenza vaccine using vaccinia
virus (MVA) into which was cloned influenza genes for
internal proteins NP and M1.

Following intranasal influenza challenge in quarantine,
two out of 11 vaccinees and five out of 11 control subjects
developed laboratory confirmed influenza (symptoms
plus virus shedding). Additionally clinical symptoms of
influenza were less pronounced in the vaccinees than in
control subjects. Furthermore a more activated profile of
specific T cells was detected in vaccinees compared with
control subjects, with an increase in perforin, granzyme A
and CD38 expression. This study provided the first evi-
dence of clinical efficacy of a specifically designed univer-
sal influenza vaccine.

A quarantine experiment has
identified pre-existing memory
CD4+ cells reacting with internal
influenza M and NP peptides
which correlate with
disease protection

McMichael and colleagues [43] described protective
effects of T cells directed towards internal influenza pro-
teins in volunteers infected with influenza at the MRC
Quarantine Unit in Salisbury. Recently we performed a
similar experiment but used HI antibody negative volun-
teers and two separate viruses, namely influenza A (H3N2)
and influenza A (H1N1) for challenge [39] alongside
modern techniques to search for CD4+ vs. CD8+ T cell activ-
ity and for the biological activity of these cells.

We found a significant inverse relationship between
pre-existing T cell responses to NP and M1 protein and
severe illness and this was most closely associated with the
number of pre-existing CD4+ T cells rather than CD8+ T
cells, although both made a contribution. Furthermore we
were able to identify a number of particular peptides to NP
and M which reacted with CD4+ T cells in the volunteers
with reduced symptoms after challenge [39].

We concluded that identification, for the first time, of
particular ‘protective’ epitopes in the virus structural pro-
teins M1 and NP would provide a more satisfactory basis
for the logical construction of a T cell epitope vaccine than
has been possible to date.

Discussion

A broadly reacting universal influenza vaccine inducing
immunity to newly emerging pandemic viruses would

complement the existing stockpile of anti (H5N1) vaccine
which, of course, would only be effective against the
homologous virus. This latter preventative public health
measure is recognized by many governments especially
since the pandemic (H1N1) vaccine was so effective [44]
and bird influenza is recognized as the most likely influ-
enza virus to spread and cause a pandemic. The UK has a
strategic stockpile of some 17 million influenza A (H5N1)
vaccine doses.We have noted above that other influenza A
viruses could also emerge, such as the virus of a relatively
recent pandemic in 1957, namely influenza A (H2N2), and a
universal influenza vaccine would be expected, although
not guaranteed, to provide cross immunity.

At present the potentially pandemic virus influenza A
(H5N1),‘bird flu’, causes human mortality each month in SE
Asia and Egypt and the most recent analyses show human
infection to be five times more common than previous
estimates. Furthermore a retrospective analysis of an influ-
enza A (H5N1) outbreak in Abbotsbad on the Pakistan/
Afghanistan border in 2007 [45] showed person to person
spread. Finally, the recent studies of Imai et al. [46] and
Herfst et al. [47] show that as few as four mutations in the
genome can convert a purely avian influenza A virus such
as (H5N1) into one able to spread between mammals and,
by deduction, humans. Given the extraordinary high muta-
tion rate of influenza whereby 10% of the virus population
can be mutants (reviewed in [18]), the number of poten-
tially infected and carrier migrating ducks and geese (over
100 million) and 21 billion domesticated chickens and
given that each infected bird can easily harbour 109 influ-
enza viruses, it is not difficult to hypothesize that such
mutants are existing already in nature and constitute a
public health threat.

Approximately 500 million doses of conventional influ-
enza A and B vaccines are used yearly to protect especially
vulnerable groups in the community against epidemic and
reformulation and relicensing is carried out yearly unlike
any other vaccine either for adults and children. However
at present most persons in the community, including chil-
dren,are not offered vaccine although with the licensing of
live attenuated vaccines this rather unsatisfying situation
could change [18]. It should be noted that the strict licens-
ing requirements for influenza vaccines have taken over 30
years to develop and refine using SRD and HI testing.
Should new vaccines such as those described in the
present review reach the stage of phase II testing in the
community, licensing would not be straightforward and
could impede the speed of clinical use. Here we raise the
possibility for the first time that precise and quantitative
virus challenge in a quarantine unit could provide data for
clinical and virological efficacy in vaccinees who have
received a novel anti HA-2, M or NP vaccine, and provide a
basis for licensing.

Our own studies [39] have provided a new and stronger
scientific basis for the design of a universal influenza
vaccine for humans. We have identified particular virus
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peptides of M and NP proteins which could be formulated
into a vaccine to target and stimulate memory CD4+ T cells
which in turn would be expected to ablate influenza symp-
toms and virus excretion regardless of the influenza A
subtype causing the infection.
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