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Abstract
We propose a semiparametric marginal modeling approach for longitudinal analysis of cohorts
with data missing due to death and non-response to estimate regression parameters interpreted as
conditioned on being alive. Our proposed method accommodates outcomes and time-dependent
covariates that are missing not at random with non-monotone missingness patterns via inverse-
probability weighting. Missing covariates are replaced by consistent estimates derived from a
simultaneously solved inverse-probability-weighted estimating equation. Thus, we utilize data
points with the observed outcomes and missing covariates beyond the estimated weights while
avoiding numerical methods to integrate over missing covariates. The approach is applied to a
cohort of elderly female hip fracture patients to estimate the prevalence of walking disability over
time as a function of body composition, inflammation, and age.
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1. Introduction
Our goal is to estimate semiparametric marginal regression models for longitudinal studies
with non-monotone missing outcomes and covariates, where missingness may be due to
non-response or death. To accommodate deaths, we specify models to estimate associations
that are conditioned on being alive [1]. That is, the target of inference is the mean outcome
at a particular time conditioned on being alive at that time. Cohorts with data missing due to
death are called ‘mortal cohorts,’ and another term for analysis conditioned on being alive,
where missingness due to death and non-response is distinguished, is mortal cohort analysis
[2]. In contrast, ‘immortal cohort’ analysis does not distinguish between the two reasons for
missingness [2]. An analysis approach for mortal cohorts has previously been proposed for
continuous outcomes and one time-dependent covariate, where missing data are integrated
out of a normal working model [3]. We extend this approach to handle (1) marginal means
that are non-linear functions of covariates and (2) a general number of time-dependent
covariates with non-monotone missingness. If the model includes continuous covariates with
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missing data, then integrating over the missing data is intractable, requiring a numerical
approach [4]. To avoid computationally intensive methods, we propose a computationally
simple extension of weighted estimating equations (WEE). WEE involve multiplying the
estimating equation for each observation by the inverse probability of being observed [5, 6].
Motivated by score equations of likelihood-based models for continuous [3, 7] and binary
[8] outcomes, we circumvent the integration by replacing missing covariates with
simultaneously estimated values.

WEE extends generalized estimating equations (GEE) [9] to better handle the missing data.
When there is no selection bias, i.e. data are missing completely at random (MCAR) [10],
GEE produces unbiased results. However, GEE produces biased estimates if outcomes are
missing not at random (MNAR), i.e. missingness depends on variables that are not fully
observed, or are missing at random (MAR), i.e. missingness only depends on fully observed
variables [10]. GEE may also be biased if covariates’ missingness depends on outcome data
or auxiliary variables (variables not included in the analysis model) that are related to the
outcome [5]. An important auxiliary variable in mortal cohorts is survival time. As described
in the previous literature [1, 3], MAR-S is a mechanism similar to MAR, except that the
probability of missingness at a particular time point depends on (future) time of death. WEE
can produce unbiased results if the missingness mechanism is correctly specified [11, 12].
However, the challenge in using WEE to handle the missing data is that the missingness
mechanism cannot be identified solely by observed data. Rather, unverifiable assumptions
are needed for analyses. Conclusions may not be robust across ranges of assumptions, thus a
formal sensitivity analysis is advocated [11–15]. Eliciting assumptions from subject-matter
experts about missingness can improve studies by promoting communication between
statistical and substantive experts and performing sensitivity analyses over scientifically
plausible assumptions.

When using WEE to address the missing data, it is important to distinguish between data
that are missing due to death and data that are missing due to non-response (e.g. refusal or
missed visits). WEE was originally developed to handle missing covariates [5] and missing
outcomes [6, 11] due to non-response. To produce estimates interpreted as conditioned on
being alive, weights at each time point are estimated using only data from participants who
are alive [1, 3].

The aforementioned data structure and analysis goal are exemplified by longitudinal studies
of injured older adults. In one such study, the Baltimore Hip Studies 3 (BHS-3), 205
Caucasian women aged ≥65 years were followed for 1 year after experiencing a hip fracture,
with follow-up visits scheduled for 2, 6, and 12 months post-fracture. Our motivating
example is an analysis that aims to estimate the associations of interleukin-6 (IL-6), an
inflammatory cytokine, and percentage of body fat, a measure of body composition, with
self-reported walking disability (defined as inability or requiring human or equipment
assistance to walk one block), an activity of daily living (ADL), controlling for age at hip
fracture. Body fat and IL-6 are two time-dependent continuous covariates, and walking
disability is a binary outcome. Owing to the missing data, unweighted GEE only includes
67, 79, and 68 observations at 2, 6, and 12 months post-fracture, respectively, and data from
110 unique individuals, of whom only 30 had complete data at all three visits. To produce
estimates that are conditioned on being alive, WEE only uses information at each visit on
the participants who are alive via the estimated weights (inverse probability of being
observed among those who are alive) [1, 3]. IL-6, body fat, and ADL information do not
have the same missingness pattern at a given visit, and all three variables have non-
monotone missing-data patterns. Frequencies of missing-data patterns are found in Table I.
Those who miss visits or who refuse to provide serum for measuring IL-6, to undergo dual-
energy X-ray absorptiometry (DXA) evaluations for measuring the body composition, or to
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respond to the questions about ADLs may have greater functional or cognitive decline or
may be sicker than those who attend visits and provide complete data; therefore, it is not
plausible to assume that data are MAR. MAR-S conditioned on age at hip fracture may be a
plausible missingness mechanism, because age at hip fracture is associated with the post-
fracture ADL disability, high IL-6 levels, and low body fat. That is, it is plausible that
missingness may be independent of unobserved ADL, IL-6, and body fat conditioned on age
and time of death.

2. Data, models, and estimation
In this section, we describe the data structure, missing-data and analysis models, and
estimation procedures for the proposed approach.

2.1. Data
Let Yi j be an outcome at visit j, j = 1, …, J, for participant i, i = 1, …, N, where J is the
number of planned follow-up visits, and N is the sample size. Let t j denote the time of the
jth visit, let Xi j = {Xi jk, k = 1, …, K} be a vector of K incomplete time-dependent
covariates in an arbitrary order for participant i, and let Vi be a vector of fully observed

baseline covariates for participant i. To handle missing data, let  be the response indicator

for Xijk, and let  be the response indicator for Yi j. Let Si be time from baseline until death
(e.g. first scheduled study visit after death in the BHS-3 cohort) for participant i. Let Ai j be
an indicator that participant i is alive at visit j. Lastly, let Wi = {Si, Vi, Xi, Yi} denote all
relevant data for participant i until death, except for response indicators.

2.2. Models
Consider the expected value of Yi j, given covariates of interest, partly conditioned on being
alive [1, 3, 16]:

Our goal is to estimate the regression equation

(1)

where g(·) denotes a link function. Estimating survival, f (Si), is not a primary analysis goal;
thus, we aim to estimate the parameters in equation (1) using semiparametric models.

To accommodate the missing data, let  be the vector of response

indicators for Xi j. Also, specifying  and  to be degenerate, let 
denote the history of response indicators for Yi up through visit j − 1; let

 denote the history of response indicators for Xi up through visit j
−1. We consider the following general model for the joint response probabilities at visit j
given the history of response probabilities and Wi for participants who are alive (Ai j = 1):
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where

(2)

(3)

For example, if K = 2 like in the BHS-3 study, then at the first scheduled post-baseline visit
(j = 1), the joint probability of observing the outcome and both covariates is

The probabilities at j = 2 can condition on the response pattern at j = 1, etc. Conditioning on
Ai j = 1 implies that equations (2) and (3) are response probabilities only among those who
are alive at visit j. As a result, the increasing number of deaths over time will not explicitly
diminish response probabilities at later times. Equations (2) and (3) exemplify MNAR
mechanisms, because missingness depends on variables with the missing data. Further
simplification depends on assumptions about the missing-data mechanism [11]. Also,
although the ordering of the K components of Xi j is arbitrary for calculating joint response
probabilities at visit j, study design aspects may help to simplify the response probability
model and inform the ordering (e.g. covariates with a monotone missing-data pattern at visit
j) [17].

Let , where  and

. That is  is the collection of relevant observed data for
participant i up through visit j − 1, plus survival. The missing-data mechanisms

(4)

(5)

are examples of MAR-S, because the probabilities at time j are functions of observed

histories of Yi and Xi up until j −1 and survival time Si, an auxiliary variable. If  and 
in equations (4) and (5), respectively, were conditionally independent of Si, given the fully
observed covariates, the equations would simplify to an MAR mechanism.
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2.3. Estimation
To estimate the parameters in equation (1), we adapt GEE to accommodate mortality.
However, in order for the parameters to be interpreted as partly conditional on being alive,
an independence working correlation structure must be specified. A non-independence
correlation structure would require specifying pairwise correlations between all visits up
until the last visit prior to death. Thus, the parameters in equation (1) would depend on the
time of death when Si ≤ tJ, not just on being alive (Ai j = 1) [1, 3, 16]. In the absence of the
missing data due to non-response, the independence estimating equation (IEE) to be fit is

(6)

where VarY |X(Yi j) is the j, j term, , of the J × J diagonal working variance–covariance
matrix VarY |X(Yi). In the presence of missing data due to non-response, the missing-data
mechanism can be incorporated into equation (6) via simple inverse-probability-weighted
independence estimating equations (simple W-IEE) using

(7)

In most cases,  and  are not known and need to be estimated. In addition, equation (7)
does not efficiently use observations for which at least one of Yi j or Xi jk, k = 1, …, K, but
not all, are missing. Thus, we consider an estimating equation that can utilize observations
with missing variables beyond the estimated weights.

The proposed approach extends equation (7) to utilize observations where X is observed and
Y is missing beyond the weights for general models for Y. We first describe the equations

for estimating  and  and then introduce the proposed estimating equation for β.

Let  and , k =1, … K, denote the vectors of variables associated with  and ,

respectively. Let  and  denote the regression parameters for  and , respectively.

Unbiased estimating equations for  and  are

(8)

(9)

The summands in equations (8) and (9) are multiplied by Ai j to ensure that the estimated
response probabilities only use data from participants who are alive at visit j. When Yi j
(Xijk) is missing, the summand in equation (8) (equation (9)) simplifies to

. Thus, equation (8) can accommodate MNAR Yij via user-specified
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values for the coefficient of Yij. Similarly, MNAR Xijk in equation (9) can be specified via
the coefficient of Xijk.

To estimate β in our proposed method, we utilize observations with missing components of
X by plugging in consistent estimates of the missing variables conditioned on the observed
covariates. We assume that the mean of Xi jk conditioned on being alive, tj, and fully
observed baseline covariates Vi is

Let  be the K-vector of . To estimate αk = {α0k, α1k, α2k}, we posit a weighted
independence estimating equation. Let Var(Xi) be the JK × JK block-diagonal working
variance–covariance matrix of Xi, which has jth K × K block Var(Xi j). Consistent estimates
of Xijk conditioned on Vi, tj, and observed components of Xij will be functions of α= {αk : k

= 1, …, K} and components of Var(Xi j), with k, k′ component .

Let  denote the collection of all possible K-vector missing-data patterns at visit j,

, for . Thus,  for missing-data patterns in  indicates Xjk is

observed, and  for missing-data patterns in  indicates Xjk is missing. For example,
in the BHS-3 study, K = 2, and all covariate response patterns are possible at all visits;

therefore,  for all j. Let the terms  and 

refer, respectively, to the conditional mean and variance of Yi j, with Xi jk replaced by 

when . If K = 2 then if, for example, participant i at visit j has observed Xi j1 and

missing Xi j2 then  and Xi j2 is replaced by , which equals

, in :

Also, let  denote the subvector of  excluding  when . Similarly,

 is the submatrix of Var(Xij) excluding Xijk when . Let σ denote the vector

of  and  for j =1, …, J and k, k′ = 1, …, K. Let φ= {β, α, σ}. We consider the
following estimating equation for φ:

(10)
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(11)

where

and

 corresponds to the score equation for multivariate normal , with 

specified to be degenerate (i.e. when ). Although  and components of

 can be set to 0 by convention when Aij = 0 their values do not affect estimates of

, and φ, because equations (8–11) only use observations where Ai j =
1. We show in the Appendix that equations (10) and (11) are unbiased so long as the
summands are unbiased.

To understand equations (10) and (11), consider the special case of K = 2. Thus, summing

equation (10) over  produces four terms because there are four
possible covariate response vectors:

(12)

where , and VarY|X(1,1)(Yij)=VarY|X(Yij); therefore the fourth term in
equation (12) equals simple W-IEE in equation (7).

Thus, all data points with Yij observed contribute information to at least one term in
equation (12). However, data points with Xi j1 and Xi j2 both observed contribute
information to all four terms and are the only data points that contribute information to the
fourth term. In contrast, data points with Xi j1 and Xi j2 both missing only contribute
information to the first term in equation (12).
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For general K, equation (10) can be split into 2K terms (unless some patterns are precluded
by study design). Individual i at visit j can contribute information to a particular term

 if  and . Similarly, equation (11) can be split into 2K − 1 terms

(the term with  is degenerate; hence, 1 is subtracted). As a result, when K = 2, equation
(11) is equal to

(13)

where Xij(0,1), Xij(1,0), and Xij(1,1) are just Xij2, Xij1, and Xi j, respectively. Similarly,

, and  are just , and , respectively.

As written, equations (10) and (11) only accommodate MNAR mechanisms where RY

depends on Y, but not components of X and where  depends on Xk, but not Y or X−k.
However, equations (10) and (11) can be adapted to handle these mechanisms. For example,
for components of RX that depend on Y, the summand in equation (11) is multiplied by

. An implication of this approach is that equation (11) does not use observations with
missing Y beyond the weights; thus, more complicated MNAR mechanisms may lead to less
efficient estimates. We consider this mechanism and approach in the simulation study and
when analyzing the BHS-3 data. When the response probabilities are unknown, the π are
replaced with estimates derived from equations (8) and (9).

3. Simulation study
We performed simulation studies to explore the performance of our proposed method and
several popular alternatives. We considered K = 1, J = 4, one baseline covariate V, and
binary Y. Each study consisted of N = 200 or N = 500 individuals and Nsim = 1000
iterations. Appropriate robust standard errors can be calculated via the information
sandwich; however these estimates are not quite correct [2]. Additionally, it has been shown
[3] that bootstrap standard errors outperform robust standard errors for WEE; thus the
former were calculated with Nbs = 150 bootstrap simulations.

Two different MNAR missing-data mechanisms were explored in this study. The first
mechanism, which we call MNAR1, was specified such that the only incomplete variable on
which RX and RY depended was X and Y, respectively. In the second mechanism, which we
call MNAR2, both RX and RY depended on Y, but only RX depended on X. To implement

estimation assuming MNAR2, the summand in equation (11) was multiplied by . Both
MNAR1 and MNAR2 depended on S.

The simulation proceeded as follows. First, the baseline covariate, V, was simulated from a
Normal(1, 4) distribution. We operationalized S as a discrete survival time interpreted as the
first visit after death, S ∈ {2, …, J +1}, where all individuals are alive at the first visit, and S
= J +1 denotes survival past the end of follow up. S was simulated from a multinomial
distribution with a continuation ratio model where logit[P(Si = s|Si≥s)]= δ0s + δ1Vi, s = 2, 3,
4, δ0 = {−1.65, −2.00, −2.25}, and δ1 = −0.25. The time-dependent covariate, X, was
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simulated from a normal distribution with variance 1, exchangeable correlation 0.5, and
mean

(14)

where tj = j (visit number) here.

A Bernoulli distribution assuming a mixed-effects logistic model was specified for Y such
that a vector of random effects was simulated from a multivariate normal distribution with
mean vector 0, variances 1, and pair-wise correlations 0.5. Y was then simulated,
conditional on the simulated random effects, V, X, t, and S. Let bi denote the random model
component. The subject-specific logistic model was

(15)

where bi = bi0 + bi1 Xi j + bi2Vi + bi4(t j − 1)+ Si [bi5 + bi6 Xi j + bi7Vi + bi8(tj − 1)], and bi0,
…, bi8 are the random effects. Equation (15) was not the target of estimation, because it is
not partly conditioned on being alive. True values of β in equation (1) were found by solving
equation (6):

Lastly, among those who are alive, the response indicators were simulated. For both MNAR

mechanisms, when Ai j = 1,  was simulated from a Bernoulli distribution with logistic

model , where γRX|Y = 0 for MNAR1 and
γRX|Y = 0.75 for MNAR2. In both mechanisms, γRX|X = −0.10. For both MNAR

mechanisms, when Ai j = 1,  was simulated from a Bernoulli distribution with logistic

model , where γRY|Y = 0.75. We analyzed the data
using the proposed method (W-IEE; equations (10) and (11) with K = 1), simple inverse-
probability weighting (simple W-IEE; equation (7)), unweighted logistic regression (IEE),
and weighted GEE (W-GEE) using an exchangeable correlation matrix.

The MNAR1 model resulted in 21(j = 1) to 51 per cent (j = 4) missing data for X, 22 (j = 1)
to 46 per cent (j = 4) missing data for Y, and 37 (j = 1) to 71 per cent (j = 4) missing data for
X or Y. The MNAR2 model resulted in 20 (j = 1) to 47 per cent (j = 4) missing data for X,
21(j = 1) to 48 per cent (j = 4) missing data for Y, and 36 (j = 1) to 57 per cent (j = 4)
missing data for X or Y. The average cumulative incidences of death at j = 2, 3, 4 specified
by the model were 18, 28, and 32 per cent, respectively.

Table II shows results comparing W-IEE, simple W-IEE, W-GEE, and IEE for N = 200 and
N = 500. Overall, bias using W-IEE and simple W-IEE was smaller than that when using
IEE or W-GEE for both sample sizes. Under the MNAR1 assumption, when α can be
estimated using observations with missing Y, W-IEE produced smaller standard errors than
simple W-IEE; however, when MNAR2 was assumed, the differences in standard errors
were negligible. This result was expected because, under MNAR2, equation (11) only uses
observations with Y observed, whereas under MNAR1, inclusion in equation (11) does not
depend on whether Y is observed. For both MNAR mechanisms, standard errors using W-
GEE and IEE tended to be smaller than those using W-IEE and simple W-IEE. This result
for W-GEE was due to the implicit imputation that occurs when specifying GEE to have a
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non-independence correlation structure in the presence of incomplete data. IEE reflected the
MCAR assumption, and observations with Y and X observed varied less than those from the
population distribution.

Comparing estimated standard errors to empirical standard errors shows that the bootstrap
with Nbs = 150 performed well. Overall, coverage was slightly closer to the nominal 95 per
cent using W-IEE and simple W-IEE compared with IEE or W-GEE. The small decrease in
empirical coverage for W-GEE when N = 200 compared with the nominal coverage
reflected that the overestimated standard errors using W-GEE (compared with the empirical
standard errors) compensated for the large bias. We also explored W-GEE using an
unstructured covariance matrix, which resulted in non-convergence problems for N = 200
and little improvement in performance when N = 500 (not shown).

Figure 1 shows the true and estimated proportions (P(Y = 1)), when Vi = 1, its mean, and Xi
= (0.65, 1.15, 1.65, 2.15), the means from equation (14), for both MNAR1 and MNAR2
mechanisms when N = 200. In both cases, IEE overestimated the proportion, whereas W-
GEE underestimated the proportion, and W-IEE and simple W-IEE produced unbiased
estimates.

4. BHS-3 data analysis: a sensitivity analysis approach
Our goal was to quantify the association of IL-6 (pg/mL) (XIL-6) and body composition
(XFat) (operationalized as fat mass as a percentage of total mass assessed via DXA
evaluations) with prevalence of walking disability (Y) measured at the same time among
older women (aged ≥65 years) who experienced a hip fracture, after controlling for age at
hip fracture and time since fracture, conditioned on being alive. For this target of inference
(i.e. cross-sectional means at time j partly conditional on time-dependent variables at time j,
time, and baseline covariates, for j = 1, …, J), independence estimating equations are an
appropriate estimation method [18]. Seven, 15, and 27 women died by the 2-, 6-, and 12-
month evaluations, respectively. Thus, the impact of deaths on the interpretation of
regression coefficients should be considered. One option was to model Y as a trichotomous
variable, treating death as a response state of Y as in Miller et al. [19]. However, death was
not the primary outcome of interest (if it were, it could be more appropriately handled as a
continuous time-to-event variable); thus, we used estimating equations to partly condition on
being alive.

In addition to deaths, only 30 participants provided information about Y, XIL-6, and XFat at
all three visits. All 23 possible missing-data patterns between the three variables were
observed during at least one visit (Table I). Within a visit, the variable most commonly
missing was IL-6, perhaps because it required the most invasive collection procedure of the
three variables; the pattern with only IL-6 collected was the least common. Only 51
participants provided serum at all three visits, compared with 66 and 79 participants who
self-reported ADLs and underwent DXA evaluations, respectively, at all three visits.
Although less common than longitudinal monotone patterns within a variable, 10, 3, and 4
women provided information at only 2 and 12 months post-fracture (missing at six months)
for ADLs, IL-6, and body composition, respectively. Similarly, 5, 8, and 2 women provided
information at six months only for ADLs, IL-6, and body composition, respectively.
Monotone patterns whereby women missed early visits, but returned at later visits were
almost as common as drop outs. We assumed that those with missing observations were in
worse physical condition than those providing information. Therefore, these patterns may
reflect the competing forces of recovery post-fracture and aging-related physical decline.
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We analyzed the BHS-3 data using the proposed W-IEE approach (equations (10) and (11)
with K = 2), simple W-IEE (equation (7)), W-GEE, and IEE (logistic regression). Weights
were estimated using the following MNAR2 models:

(16)

(17)

(18)

Arbitrarily assigning k = 1 for IL-6, and k = 2 for body fat, we did not include  or

 in equation (17) due to sparseness. MNAR1 was specified by excluding Yi j from
equations (16) and (17). Both MNAR1 and MNAR2 depended on S. For both MNAR

mechanisms, assumptions were needed about  and γRY|Y, the coefficients
for Xi j(IL-6), Xi j(Fat), and Yi j in equations (16)–(18), respectively, because these parameters
were not identifiable by observed data. To address this issue, ranges of parameter values
were elicited from two subject-matter experts, a geriatrician (RRM) and geriatric physical
therapist (GEH), to perform a sensitivity analysis. The experts were interviewed separately
(by MS) about their beliefs regarding the parameters. The experts were asked the following
set of three questions: (1) ‘Holding all else constant, who is more likely to provide responses
about ADLs: those who can independently walk one block, or those who cannot
independently walk one block?’, (2) ‘What is a plausible range of values for the odds ratio
of providing a response, comparing (group chosen in question 1) to (group not chosen in
question 1)?’, and (3) ‘What is your rationale for these beliefs?’ The questions were repeated
to compare women whose IL-6 levels differed by 10 pg/mL about providing serum, and to
compare women whose body fat levels differed by 5 per cent about undergoing DXA
evaluations.

The experts were in agreement about the directions of associations and rationale, but
opinions differed regarding the magnitudes of associations. After reaching a consensus by
connecting the elicited ranges, the experts believed that those without walking disability
(those who could independently walk one block) had 1.0 to 2.0 times greater odds of
providing a response compared with those with walking disability. The reasons for this
belief were that those without walking disability would be proud to admit so, and those with
walking disability would feel embarrassed to admit it. Also, walking independence requires
cognitive ability, and those lacking the cognitive ability to walk independently may also lack
the cognitive ability to respond to interview questions [20]. Comparing women whose IL-6
levels differed by 10 pg/ml, women with lower IL-6 were thought to have 1.0 to 2.5 times
greater odds of providing serum than women with higher IL-6. IL-6 levels tended to be
highest in the most frail patients. Also, elevated IL-6 is a marker for lingering adverse
effects of the hip fracture; thus, those in worse general health were thought more likely to
refuse the needle venopuncture required for providing serum [21, 22]. Lastly, the experts
assumed that women would have 1.0 to 1.5 times greater odds of undergoing DXA when
compared with women with 5 per cent less body fat. Both experts mentioned that elderly hip
fracture patients are rarely overweight, and that those with the lowest fat percentage were
most likely underweight, a marker of frailty. Given that DXA evaluations required travel
from home or hospital to a location with DXA equipment, those who were most frail were
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thought most likely to refuse. In summary, those who were in better physical health were
thought more likely to provide data than those in worse physical health.

We performed sensitivity analysis using the elicited expert information by assuming MCAR
and six MNAR assumptions. We defined MNAR1-Min, MNAR1-Mid, and MNAR1-Max,
as MNAR1 mechanisms assuming odds ratios that were the minimum, midpoint, and
maximum elicited departures from the null, 1.0. MNAR2 mechanisms were analogously

named. For example, elicited values of  ranged from 1.0 to 1.5; thus, the odds
ratios corresponding to the minimum, midpoint, and maximum departures from 1.0 were
1.0, 1.25, and 1.5, respectively. The ranges of elicited odds ratios for all three parameters
included 1.0; thus, MNAR1-Min simplified to the MAR-S mechanism. Analyses were
performed using W-IEE, simple W-IEE, W-GEE, and IEE.

The estimated model parameters are shown in Table III. With the exception of the
coefficient for body fat assuming MNAR2-Max using W-IEE, directions of parameters were
robust to estimation method or missing-data mechanism. In general, higher levels of IL-6
and body fat and older age were associated with walking disability, adjusted for time since
hip fracture and conditioned on being alive. After controlling for IL-6, body fat, and age,
estimated prevalence of walking disability using W-IEE for all assumptions except
MNAR1-Max was highest at 2 months and lowest at 6 months post-fracture among those
who were alive.

Magnitudes of parameters were sensitive to estimation method for a given missing-data
mechanism. For example, the coefficient for IL-6 assuming MNAR2-Min ranged from 0.12
(W-IEE) to 0.18 (W-GEE). The parameters were also sensitive to assumptions about the
missing-data mechanism for a given method. The coefficient for body fat using W-IEE
varied from −0.01 (MNAR2-Max) to 0.14 (MNAR1-Min and MNAR2-Min). Overall,
estimates using W-GEE and simple W-IEE fluctuated across assumptions about missing
data more than those using W-IEE, perhaps because the former methods used fewer
observations than W-IEE. This reason is also a plausible explanation why estimated
associations for IL-6 and body fat were stronger more often using simple W-IEE and W-

GEE than those using W-IEE. Among those for whom , the prevalences of
walking disability at 2, 6, and 12 months post-fracture were 0.90, 0.72, and 0.72,
respectively, whereas the analogous prevalences among those for whom

 (data only used by W-IEE beyond the weights) were 1.00, 0.82, and

0.84. Similarly, the means of IL-6 among those with  at 2, 6, and 12
months post-fracture were 21.0, 16.6, and 17.5 pg/mL, whereas the means of those with

 (data only used by W-IEE beyond the weights) were 17.8, 22.1, and

12.0 pg/mL. Finally, the means of body fat percentage among those with 
at 2, 6, and 12 months post-fracture were 29.5, 30.2, and 31.4 per cent, whereas the means

among those with  (data only used by W-IEE beyond the weights)
were 28.7, 29.1, and 29.5 per cent. These estimates cannot be interpreted as time-specific
prevalences of walking disability owing to the missing data; however, with the exception of
2- and 12-month IL-6, these descriptive statistics correspond with the assumption that
healthier participants were more likely to provide observations.

Estimates in general fluctuated more across MNAR2 assumptions than MNAR1
assumptions. This result was expected because weights for RX assuming MNAR2, unlike
MNAR1, depended on assumptions about Y, and fewer observations were used in MNAR2
than in MNAR1. Estimated adjusted time-specific prevalences of walking disability are
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shown in Figure 2 Panel A for IEE and W-IEE for a hypothetical participant with IL-6, age,
and body fat at the observed time-specific mean levels. The lowest estimated prevalences of
walking disability were derived using IEE, reflecting the MCAR assumption that those
providing data were representative of those with missing data. Estimated prevalences were
higher assuming MNAR2 than when assuming the analogous MNAR1 mechanism due to
the dependence of RX on Y. Despite the sensitivity of parameter estimates on assumptions
about the missing data, all mechanisms except MNAR1-max suggested some recovery from
walking disability by 6 months post-fracture followed by incident disability at twelve
months, perhaps due to advancing age. Panel B of Figure 2 compares the estimated
prevalence of walking disability and 95 per cent confidence intervals between W-IEE and
simple W-IEE for MNAR1-mid and MNAR2-mid mechanisms. For MNAR1-mid, the 95
per cent confidence interval was wider when using simple W-IEE than when using W-IEE,
but the confidence intervals were of similar width between the two methods under MNAR2-
mid. Also, when assuming MNAR2-mid, the estimated prevalences of walking disability
were higher when using simple W-IEE than when using W-IEE at each time point.

5. Discussion
We proposed a computationally simple approach to marginal modeling of longitudinal
studies with deaths and non-monotone missing outcomes and covariates partly conditioned
on being alive. This approach is flexible enough to handle a general number of missing
covariates and data that are MNAR, and it does not require performing numerical integration
over missing covariates. Also, the simulation study shows that the proposed method
performs well for sample sizes as small as N = 200 and results in more efficient estimates
than when using simple W-IEE assuming MNAR1. If the missing-data mechanism of each
incomplete variable is specified to depend on Y and all components of X, then the proposed
method simplifies to simple W-IEE. Otherwise, the proposed simultaneous estimating
equations can provide some efficiency benefits by using more data than simple W-IEE for
deriving estimates.

The simulation study and example focused on the scenario when all components of X are
continuous to motivate use of a multivariate normal working model for X. When some
incomplete covariates are categorical, this model is not correct. However, so long as π,
μY | A,X, and μX|A are correctly specified, the proposed estimating equation is unbiased.
Previous empirical research focusing on continuous outcomes also suggests that WEE
performs well when a normal working model for X is incorrectly specified [7]. Although the
simulation study shows no bias for both W-IEE and simple W-IEE, the BHS-3 analysis
shows that results from a particular study may vary between the two methods; thus, it is
preferable to use as many observations as possible.

An important limitation of our method is that the number of parameters to estimate can
become large when several incomplete covariates are included in the model or when there
are many follow-up visits. However, this limitation can be overcome by making plausible

assumptions to control the number of parameters, for example by assuming that  for
j, j′ ∈ {1, …, J}, j ≠ j′. Also, as is always the case for missing data, the missing-data
mechanism cannot be identified from the observed data; thus, untestable assumptions are
required for performing the analysis. No statistical method accommodating missing data is
more beneficial than data collection methods that can minimize the missing data. Therefore,
efforts should be made to reschedule missed appointments and obtain responses to interview
questions. If missing data remain, a sensitivity analysis should be performed to assess the
impact of assumptions about the missing-data mechanism on scientific conclusions. Such an
analysis can be facilitated by collecting information to understand the reasons for
missingness. For example, those who miss visits due to poor health conditions may differ
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from those who miss visits due to inclement weather. Additionally, missingness may be due
to reasons that are not related to the study participants. For example, some variables may be
collected from clinicians as part of the standard clinical care, whereas others may only be
collected as part of a research protocol. Thus, reasons for missingness should also be
collected from clinicians. This information can be used when estimating weights. Finally,
the method is only appropriate for studies with prescheduled visits (i.e. discrete time).
Otherwise, data should be analyzed within the framework of informative observation times
[23].

The analysis goal that motivated the proposed method was to estimate cross-sectional
marginal prevalence of walking disability generalized to those who are alive as a function of
simultaneously measured body fat percentage and IL-6, at 2, 6, and 12 months post-fracture.
In this case, a W-IEE analysis can provide unbiased estimates if the missing-ness
mechanism is correctly specified. However, if the investigator is interested in whether body
fat percentage and IL-6 causally affect walking disability, the proposed W-IEE method
needs to be adapted to handle time-dependent confounders. For example, if body fat
percentage or IL-6 are endogenous (walking disability affects body fat percentage or IL-6 at
later times), then previous walking disability is a time-dependent confounder. To address
this issue, our proposed method can easily be adapted by using inverse probability of
treatment weights (IPTW) [24]. In the BHS-3 example, this would involve multiplying the
summand in equation (10) by the inverse joint density of body fat percentage and IL-6
conditional on previous walking disability and other time-dependent confounders. Also, if
the investigator is interested in generalizing inferences to the whole cohort, not just those
who are alive, then methods for estimating survivor average causal effects are needed to
address healthy survivor bias [25]. Additional considerations regarding the use of IPTW can
be found elsewhere [24, 26].

One challenge for performing a sensitivity analysis is determining a plausible range of
assumptions to explore. The best sources for these assumptions are subject-matter experts.
In the BHS-3 example, a geriatrician and a physical therapist were interviewed to obtain
plausible assumptions about why hip-fracture patients may refuse to respond to interview
questions, provide serum, or undergo DXA evaluations. Although estimates varied, weak to
marginal evidence was found across assumptions about the relationship of IL-6 and body fat
with walking disability conditioned on being alive, controlling for age and time since hip
fracture.

Our proposed method is an example of a selection model, where the probability of response
conditional on potentially missing variables and fully observed variables is modeled [27].
Eliciting information interpreted as odds ratios of response for selection models from
subject-matter experts may be difficult. An alternative approach, which may be easier for
subject-matter experts to interpret, is to specify missing-data mechanisms using pattern-
mixture models, where means of a variable are specified separately for those with missing
and observed data [13, 15, 27]. However, the pattern-mixture model would require
parameterizing models conditional on response pattern. Future research involves
marginalized pattern-mixture models conditioned on being alive to retain the benefits of
both selection and pattern-mixture models. Additionally, the proposed method was
motivated by mortal cohorts where survival status is known for all participants during the
study period. Thus, future research involves extending the method to handle possible
censoring of mortality. In this case, assumptions about the censoring mechanism would be
needed to account for missing values of vital status.
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Appendix

In this Appendix, we establish that equations (10) and (11) are unbiased if , and

 are correctly specified, irrespective of the missing-data mechanism. Let

, where . Using iterated expectations on equation
(10),

because

Next,
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where  is the indicator that  is the member of  where  for k = 1, …, K
because

Finally, , where  is  for .

Similarly, we use iterated expectations to show that equation (11) has mean 0. First,

Next, . Thus, equations (10) and (11) are unbiased so long as

, and  are correctly specified, even if the distributions of Xi j and Yi j are
not correctly specified.
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Figure 1.
Simulation results, N = 200, Nsim = 1000. Estimated proportions (P(Y = 1)) under two
MNAR mechanisms and four estimation methods.
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Figure 2.
BHS-3 results. Panel A: estimated prevalence of walking disability (P(Y = 1)) at 2, 6, and 12
months post-fracture for MCAR (IEE) and six MNAR (W-IEE) mechanisms. Panel B:
estimated prevalence and 95 per cent confidence interval of walking disability (P(Y = 1)) at
2, 6, and 12 months post-fracture for MNAR1-mid and MNAR2-mid mechanisms from W-

IEE and simple W-IEE. Min, mid, and max of ,
(−log(1.50), −log(1.75), log(1.25)), and (−log(2.00), −log(2.50), log(1.50)), respectively.
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