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INTRODUCTION
Whether there is any one bacterium which

may always be found in decayed dentine, and
which might therefore be entitled to the name
of the bacterium of tooth decay, or whether
there are various kinds which occur with consid-
erable constancy, we are not able to say. It is
now apparent, however, that various microor-
ganisms are essential in the pathogenesis of den-
tal caries. Orland (451) first demonstrated that
selected streptococcal species, namely, entero-
cocci, produced dental caries in germfree rats
when fed a high-sucrose diet. Furthermore, in-
direct evidence that antibiotics suppressed ex-
perimental dental caries in rodents (396)
strongly suggested the involvement of certain
penicillin-susceptible bacteria in dental caries.

Since that time, various investigations have
been carried out to elucidate the causative rela-
tionship between specific oral bacterial species
and dental caries. In 1960, some streptococcal
strains, isolated from carious lesions of rats and
hamsters, produced dental caries in "caries-re-
sistant" rats and hamsters, respectively (157,
302).
Using a fluorescent-antibody technique, sev-

eral streptococcal strains which shared immu-
nological specificity with the cariogenic strepto-
cocci derived from rats and hamsters were iso-
lated from human carious lesions (275, 628, 629).
These strains also produced severe dental caries
in germfree animals. Since then, similar strep-
tococcal species have been isolated from human
carious lesions by several investigators (183, 202,
321, 322). Carlsson (54, 55) indicated that prop-
erties of these cariogenic streptococci were sim-
ilar to those originally isolated from human car-
ious teeth by J. K. Clarke (81) in 1924 to which
he had given the species name mutans. Thus,
the rediscovery of Streptococcus mutans fol-
lowed the original observation by about 36 years.

S. mutans is now considered to play an im-
portant role in the development of dental caries
in animals and humans. Extensive research on
this microorganism has been done during the
last 10 years. Unfortunately, however, S. mutans
is not given an independent species position in
the newest edition of Bergey's Manual ofDeter-
minative Bacteriology (43). It will be recognized
from the evidence described below that S. mu-
tans is the best-defined species among the oral
streptococci.
The present review is an attempt to define the

current state of knowledge concerning S. mu-
tans. Numerous reviews and books have re-
cently appeared on microbiological or immuno-
logical aspects of dental caries, or oral strepto-
cocci (27, 46, 196, 265, 303, 397, 438, 445, 494,
549).

ORAL MICROBIAL FLORA
The oral microflora is a complex ecosystem

which contains a wide variety of microbial spe-
cies (Table 1). The mouth is colonized by various
microorganisms before teeth erupt, although
newborn infants are essentially free from micro-
organisms (394). With the eruption of teeth,
dental plaque, distinctive patches primarily of
microbial origin, develop on exposed enamel sur-
faces which are covered by a pellicle that is an
amorphous, almost invisible film composed pri-
marily of salivary glycoprotein (162, 194). Large
microbial masses develop on the teeth surfaces
unless proper oral hygiene measures are taken,

TABLE 1. Distribution of bacteria on various sites
in the human moutha

Site

Bacterial group Gingi-
Plaque Tongue Saliva val

crevice
Gram-positive facultative 28.2 44.8 46.2 28.8

cocci
Streptococci 27.9 38.3 41.0 27.1

S. mutans (0-50) (0-1) (0-1) (0-30)
S. sanguis (40-60) (10-20) (10-30) (10-20)
S. mitior (20-40) (10-30) (30-50) (10-30)
S. salivarius (0-1) (40-60) (40-60) (0-1)
S. milleri (3-25) (0-1) (0-1) (14-56)

Staphylococci 0.3 6.5 4.0 1.7
Gram-positive anaerobic 12.6 4.2 13.0 7.4

cocci
Gram-negative anaerobic 6.4 16.0 15.9 10.7

cocci
Gram-negative faculta- 0.4 3.4 1.2 I 0.4

tive cocci
Gram-positive facultative 23.8 13.0 11.8 15.3

rods
Gram-positive anaerobic 18.4 8.2 4.8 20.2

rods
Gram-negative faculta- NDb 3.2 2.3 1.2

tive rods
Gram-negative anaerobic 10.4 8.2 4.8 16.1

rod
Spirochetes ND ND ND 1.0

Modified from Gibbons and van Houte (194, 196) and
Mejare and Edwardson (403). Data are expressed as a per-
centage of total cultivable count on anaerobically incubated
blood agar. Data in parentheses are expressed as a percentage
of the total facultative streptococcal counts.

h ND, Not detected.
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whereas desquamation of epithelial cells does
not permit the heavy accumulation on oral mu-
cosal surfaces such as the dorsum of the tongue
(195). The number of bacteria in dental plaque
can reach 108 per mg (wet weight) (192).
As shown in Table 1, predominant microbial

species are significantly different in different
sites. Irrespective of variation from sample to
sample, streptococci, gram-positive rods, and
veillonellae comprise the majority of the total
viable count. In plaque and gingival crevice,
higher proportions of gram-positive and -nega-
tive rods are observed. More recently, it has
been demonstrated that samples obtained from
deep periodontal pockets in patients with ad-
vanced periodontitis and periodontosis consist
of a significantly higher percentage of gram-neg-
ative anaerobic rods (440, 536, 537).

Clinical observations in humans and animals
indicate that plaque formation is an essential
requirement for both dental caries and periodon-
tal disease. It is of interest to note that a limited
number of bacterial species in the oral flora can
be detected on the tooth surface. Ritz (472)
described the shift in microbial population in
developing plaque from a preponderance of coc-
cal forms in very early plaque with an increase
of rods and filament forms with age. However,
streptococci make up the greater number of the
total bacterial population in plaque throughout
the period. Most of the streptococci can be iden-
tified as one of the following species: S. mutans,
S. sanguis, S. mitior, S. salivarius, and S. milleri
(52, 54, 55, 126, 202, 245, 403).

It appears that certain oral streptococcal spe-
cies have a predilection for colonizing particular
sites in the mouth. S. sanguis and S. mutans
preferentially colonize the human tooth surfaces
and prosthetic devices (54, 59, 62). S. salivarius
is present in low numbers in plaque, whereas
there is no preferred site for S. mitior in the oral
cavity. Whereas S. salivarius is an early colo-
nizer in the mouth after birth, S. sanguis is not
usually found until the teeth erupt (59, 60).
Similar findings have been obtained with S. mu-
tans. The preferred habitat of S. mutans appears
to be tooth surfaces. The numbers of S. sanguis
isolated from previously cleaned teeth were
much higher than those of S. salivarius, indi-
cating the importance of the selective ability of
streptococci to attach to oral surfaces. The ob-
served affinity ofthese species for an oral surface
is reported to correlate positively with the pro-
portions that are found in vivo (195).

ISOLATION AND IDENTIFICATION OF
S. MUTANS AND OTHER ORAL

STREPTOCOCCI
In general, there are many difficult technical

problems in obtaining representative samples
from different oral sites, and in dispersing, cul-
tivating, and enumerating the microorganisms.
No single cultivation method of examining the
complex and variable dental plaque flora will
satisfy all the necessary conditions. Strictly an-
aerobic procedures will be required in many
cases. It is fortunate, however, that most oral
streptococcal species can be isolated from var-
ious sites in the mouth by using a selective
medium, mitis salivarius (MS) agar (Difco Lab-
oratories, Detroit, Mich.). Although MS agar
was originally devised by Chapman to isolate
fecal streptococci, the use of MS agar has dom-
inated other cultural methods for the isolation
of oral streptococci, including S. mutans, be-
cause of its selective and differential properties.
The increasing attention associated with the
occurrence of S. mutans in the various lesions of
the human teeth has resulted in a more refined
methodology regarding its isolation, quantita-
tion, and species identification.
On MS agar medium, most oral streptococci

show a characteristic colonial morphology which
permits their provisional differentiation. Usu-
ally, the agar plate is incubated in an atmosphere
of 95% nitrogen and 5% carbon dioxide at 37°C
for 1 to 2 days, followed by incubation in air for
another 1 to 2 days. A candle jar or the GasPak
system (BBL Microbiology Systems, Cockeys-
ville, Md.) can also be used for primary isolation
of oral streptococci from clinical samples.

In addition to the characteristic colonial mor-
phology, oral streptococci can be differentiated
by their ability to ferment certain sugars (espe-
cially mannitol and sorbitol) and to adhere to
smooth surfaces in the presence of sucrose (245).
Techniques for these tests are described in detail
(92).

Characteristic Properties of Oral
Streptococci

S. mutans. S. mutans was isolated from hu-
man carious lesions by Clarke (81) in 1924. His
description is as follows:

S. mutans was isolated from 36 of the 50 teeth. Acid is very
rapidly produced, the medium, originally pH 7, giving a reac-
tion of pH 4.2 in about 24 hours. All the strains isolated
ferment glucose, lactose, raffinose, mannite (mannitol), inulin,
and salicin with production of acid. There is usually neither
haemolysis nor discoloration on blood-agar. The fact that the
colonies of S. mutans adhere closely to the surface of the teeth
appears to be of great importance.

The occurrence of S. mutans in human carious
lesions was confirmed (108, 183, 220, 321, 382).
Extensive taxonomic studies revealed that these
organisms formed a fairly homogeneous group
of nonmotile, catalase-negative, gram-positive
streptococci (55, 126, 143, 202). A number of
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investigators have also revealed an association
between the occurrence of S. mutans and the
development of caries (vide infra).
As tabulated in Table 2, most streptococcal

strains that ferment mannitol and sorbitol in
addition to various other sugars, and synthesize
adherent water-soluble glucan from sucrose, are
considered S. mutans. They do not usually
deaminate arginine to produce ammonia. S. mu-
tans is mostly a- or y-hemolytic on sheep blood
agar, but a few /i-hemolytic strains (621) have
been reported. A further characterization of
these ,B-hemolytic strains is needed before they
can be identified as S. mutans. S. mutans has
been subclassified into several types based on

immunological, biological and genetic proper-
ties. These properties will be discussed below in
detail.
The natural habitat of S. mutans is the human

mouth. The organism can be isolated frequently
from feces in humans (149, 307, 550) and rats
(261, 576). Although S. mutans appears not to
be widely distributed in wild animals, Dent et
al. (104) isolated S. mutans from the Patas mon-
key and Indian fruit bat of 18 animal species
examined. Coykendall et al. (96) and Lehner et
al. (343) also isolated S. mutans from wild rats
inhabiting sugar cane fields and from rhesus
monkeys. It has also been isolated from experi-
mental rats and hamsters (174).
To compare and differentiate other oral strep-

tococcal species from S. mutans, the following
brief summary of the other principal species is
given.

S. sanguis. The species name was given by
White and Niven (614) to the a-hemolytic strep-
tococci, isolated from the blood of patients with

subacute endocarditis, that split arginine and
esculin and produce glucan from sucrose. They
produce hydrogen peroxide when grown aerobi-
cally. Carlsson (52) demonstrated that the main
habitat of S. sanguis in humans is the oral
cavity, especially in plaque. Low levels of S.
sanguis were reported in human feces (595).
On MS agar, S. sanguis produces small zoo-

gleic colonies with a firm consistency which are
embedded in the medium and which deform the
surrounding agar. Many S. sanguis strains pro-
duce spreading zones typical of twitching motil-
ity on blood agar plates (252).

Strains with a similar colonial morphology
which do not hydrolyze arginine and esculin but
synthesize glucan are considered to be another
type of S. sanguis (55). Although other investi-
gators considered the latter strains as glucan-
producing S. mitior (91, 97, 98), they are in-
cluded within the species sanguis for conveni-
ence and are separated into biotypes A and B as
shown in Table 2 (144, 579).

Serological studies on S. sanguis strains dem-
onstrate the presence of at least three (488) or
four (579) types. The close relationship of S.
sanguis to group H streptococci has been sus-
pected for many years, but still remains to be
defined (88, 144, 146, 245, 252, 490). In spite of
the complexity of its antigenic structure, S. san-
guis is not difficult to identify because of the
unique physiological properties and colonial
morphology on sucrose agar.

S. mitior. S. mitior, frequently called S. mitis,
is an a-hemolytic, bile-sensitive streptococcus
that does not hydrolyze arginine and esculin. It
is peroxidogenic, but does not ferment inulin,
sorbitol, and mannitol. On MS agar, it elaborates

TABLE 2. Generalized key characteristics for identifying the predominant streptococcal speciesa
Fermentation Hydrolysis Hemol-

ysis on
Polysaccharide from Perox- sheep

Organism Man- Sorbi- Meli- Raffi- Escu- In1 Argi- Escu- sucrose ide blood
nitol tot biose nose lin nuli nine lin agar

plate
S. mutansb
a + + + + + + - + Glucan >>fructan + 8
b + + + + + + + + Glucan >> fructan - -y
c/elf + + + + + + - + Glucan >>fructan - y
dlg + ± - - - + - + Glucan >> fructan + 8

S. sanguis'
A - - - + + + + + Glucan + a
B - - - - - - - - Glucan + a

S. mitior - - - -± - - - + + a
S. salivarius - - - + + + - - Fructan >> glucan - y
S. milleri - - - - + - + + - - a/y

a Collected data from references 55, 91, 144, 202, 221, 245, 403, 459, and 522.
b Serotypes according to Bratthall (31) and Perch et al. (459).
c Biotypes according to Torii (579).
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soft, round, black-brown colonies. Some "S. mi-
tior" strains produce extracellular glucan from
sucrose, and develop colonies that are indistin-
guishable from those of S. sanguis. Deoxyribo-
nucleic acid (DNA) base sequence studies
showed the presence of two types of moderately
homologous strains (97). Perhaps "glucan-pro-
ducing S. mitior" can be included in the biotype
B S. sanguis (Table 2), or perhaps these strains
should be given a new taxonomic designation
(144).

S. salivarius. S. salivarius primarily pro-
duces levan (fructan) from sucrose, and there-
fore forms unique large, domed colonies on MS
agar. It does not ferment sorbitol and mannitol.
Colonies of S. salivarius are nonhemolytic on
blood agar and are not peroxidogenic. The
tongue is its main habitat in the oral cavity (55,
91).

S. milleri The species name milleri was orig-
inally proposed by Guthof (214) for streptococci
which had been isolated from dental abscesses.
They deaminate arginine, do not ferment man-
nitol and sorbitol, do not produce extracellular
polysaccharides from sucrose, and do not pro-
duce peroxides. They can be isolated from the
gingival crevice and dental plaque (Table 1). S.
milleri shows some resistance to sulfonamides
and bacitracin (403), and therefore can be grown
on the selective medium devised for isolation of
S. mutans (see Selective Isolation of S. mutans).
Although S. milleri constitutes a fairly homo-
geneous group based on its cultural and bio-
chemical characteristics, it appears that immu-
nological specificity is heterogeneous.

Selective Isolation of S. mutans
MS agar is most widely used to isolate S.

mutans as well as other oral streptococcal spe-
cies. Although MS agar is available commer-
cially, recent investigations (349, 545) have dem-
onstrated significant discrepancies between data
from different MS agar preparations manufac-
tured by different companies for the recovery
and quantitative enumeration of freshly isolated
and stock strains of S. mutans.
Linke (353) indicated that trypan blue in MS

agar will inhibit growth of most S. mutans
strains. Furthermore, addition of Chapman tel-
lurite solution to MS agar resulted in a signifi-
cant reduction in the number of colonies (360).
MS agar has been modified to be more selec-

tive for the isolation of S. mutans by adding
either sulfonamide (MC agar; 53), bacitracin
(MSB agar; 198), polymyxin (154), or even sup-
plemental sucrose (MS40S agar; 266). However,
it has been suggested that some serotype d/g
strains are susceptible to sulfonamide (133, 360),
and incorporation of bacitracin into MS agar
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completely inhibited growth of serotype a
strains (349, 545).
More recently, Linke (353) devised a new se-

lective MSFA medium for S. mutans which in-
cludes mannitol, sorbitol, basic fuchsin, and so-
dium azide. On the other hand, BCY (267) and
MMIO sucrose agars (369) are nonselective me-
dia which allow total bacterial counts and
enumeration of polysaccharide-synthesizing
streptococci, including S. mutans.

Comparative evaluation of various selective
media under standardized conditions indicates
that the growth of most serotypes of S. mutans
is depressed by the use of such media. The
variable cultural results prevent the unqualified
use of a single medium for isolation and enu-
meration of S. mutans (133, 360).

CLASSIFICATION OF S. MUTANS
Immunological Typing of S. mutans

As described in the preceding section, isola-
tion and identification have relied primarily on
phenotypical characteristics rather than immu-
nological specificity. Strains of S. mutans are
phenotypically homogeneous, as confirmed by
numerical taxonomic studies (55, 116). However,
recent investigations have revealed a great de-
gree of heterogeneity of S. mutans when sur-
veyed serologically, genetically, and biochemi-
cally.

Zinner et al. (628) first demonstrated a sero-
logical heterogeneity in S. mutans strains FAl
and HS1, which were of rat and hamster origin,
respectively. In a later study, Bratthall (30, 31)
described the presence of five serotypes, a, b, c,
d, and e, within the species. Subsequently, Perch
et al. (459) revealed two additional serotypes, f
and g. The serological techniques used in these
studies were the capillary precipitin test, origi-
nally introduced by Lancefield (334) in classify-
ing beta-hemolytic streptococci; immunodiffu-
sion; comparative immunoelectrophoresis; and
immunofluorescence. The specific antigens of
each serotype have been purified and character-
ized chemically (see Serotype-Specific Antigens
of S. mutans).

Coykendall (94) has reported analysis ofDNA
base composition and DNA base sequence sim-
ilarities of S. mutans strains, showing the pres-
ence of four genetic groups (I through IV), or
"genospecies." These four groups correlated
with four serotypes, c, b, a, and d, respectively.
More recently, he (95) proposed to give the
subspecies of S. mutans species names (Table
3). A considerable overlap in the mole percent
guanine plus cytosine content of these species is
apparent.

Heterogeneity has also been observed in var-



TABLE 3. Chemical composition and immunological determinant of type-specific antigen preparations from
S. mutans

Composition (wt %)

Sero- S Extraction Proposed an- Refer-
type Stram Source procedure Galac- Glu- Rham- Galac- Phos- tigenic deter- ence

tose cose nose t phorusmmne

a HS6 Cells, Boiling 54 10 - 5 5.0 0.3 Glc-,B(1,6)- 426
walls water Glc

b FAl Cells, Cold 27 - 47 2 5.4 2.3 a-Gal 425
walls TCAb

c Ingbritt Cells Cold TCA - 29 69 - 0.5 0.5 Glc-a(1,4)- 355
Glc

c GS5 Walls Hot form- - 29 43 - NDc ND Glc-a(1,4)- 612
amide Glc

d B13 Cells, Cold TCA 62 33 - - 1.6 0.3 Gal-,B(1,6)- 357
walls Glc

e MT703 Cells Hot saline - 37 56 - 5.0 0.3 Glc-fi(1,6)- 231
Glc

e V-100 Walls Hot form- - 24 52 - ND Trace Glc-fl(1,4)- 613
amide Glc

f OMZ175 Celis, Hot TCA - 47 49 - Trace 0.2 Glc-a(1,6)- 216
walls Glc

f MT557 Cells Hot saline - 39 59 - Trace 0.2 Glc-a(1,6)- 216
Glc

g 6715 Cells Hot buffer 61 10 - - 9.5 0.4 ,B-Gal 264
a Glc, Glucose; Gal, galactose.
b TCA, Trichloroacetic acid.
'ND, Not described.

ious enzyme proteins, such as dehydrogenases
(39,40), glucosyltransferase (75), aldolases (375),
and invertases (385, 565) within the species S.
mutans.

In contrast, Shklair and Keene (521) proposed
a biochemical scheme for the separation of S.
mutans into five biotypes, which they reported
to correlate with serotypes a to e. The biotyping
was based on the fermentation of mannitol (with
or without bacitracin), sorbitol, raffinose and
melibiose and the production of ammonia from
arginine. They later refined their scheme to in-
clude additional serotypes f and g and desig-
nated them biotypes I to V (522) (see Table 3).
It is of interest to note that bacitracin inhibited
acid production by serotype a (biotype III)
strains but not serotype c, e, and f strains (bio-
type I) that were otherwise similar to biotype III
(Table 2).
However, a study of 137 clinical isolates com-

posed of serotypes c or e (221) indicates that
serotypes c and e are essentially similar with
respect to fermentation of melibiose, a key char-
acter in the differentiation of biotypes I and V.
Use of this scheme for differentiation ofserotype
c and serotype e S. mutans would result in an
error in the count of serotype e S. mutans.
Therefore, it appears that biotyping is not cor-
related with serotyping, and the suitability of
biotyping as a taxonomical tool remains in
doubt.

It should be added here that all the clinical

isolates (221) belonging to serotype d or g pro-
duced a markedly zoogleal colony on MS agar,
exhibited alpha-hemolysis on sheep blood agar,
and were peroxidogenic, whereas those belong-
ing to serotype c, e, or fdeveloped a small, rough,
raised and undulated colony as shown in Fig. 1
and were nonhemolytic and nonperoxidogenic
(Table 2). Moreover, 23 isolates of serotypes d
and g were strongly agglutinated shortly after
addition of dextran T2000 (500 ,tg/ml, final con-
centration), and 40 out of 41 serotype c/elf
strains were not agglutinated even after 18 h of
incubation. Similar results have been obtained
with reference strains of S. mutans (622). These
results indicate that serotypes d and g and se-
rotypes c, e, and f constitute two major sub-
groups, which correlate with the genospecies
proposed by Coykendall (95).

In summary, to minimize taxonomical confu-
sion of S. mutans, we prefer serotypes to geno-
species or biotypes. Serotyping is a routine pro-
cedure and is as valuable as that used with other
streptococcal immunological groups and types.

Serotype-Specific Antigens of S. mutanm
The antigenic components of S. mutans can

be extracted in a soluble form by various meth-
ods from whole cells or cell walls. These methods
involve the use of hot physiological saline (50,
216, 220, 230, 231, 234), 5 to 10% trichloroacetic
acid (216, 356, 357, 425, 529, 586, 601), formamide
(39, 172, 612), dilute hydrochloric acid (31, 334),

336 HAMADA AND SLADE MICROBIOL. REV.
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IA

FIG. 1. Typical colonial morphologies of S. mutans on MS agar. Colonies of serotype d and g strains are
surrounded by a puddle (zooglea) with a gelatinous consistency (top), whereas those of serotype c, e, and f
strains are small, raised, irregular in margin, and adherent, but do not show the zooglea (bottom). (Reproduced
with permission, reference 221.)
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phosphate buffer, pH 7.3 (264), cell wall lytic
enzyme "mutanolysin" (230), or even water
(426). The crude antigen extracts usually contain
contaminants such as nucleic acids, unidentified
cellular proteins, and cross-reacting polyglycer-
ophosphate (PGP) antigens as well as the type-
specific antigens (234). Therefore, serotype-spe-
cific antigens of S. mutans have been purified by
a variety of column chromatographic proce-
dures, including gel filtration, ion-exchange
chromatography, and affinity chromatography.
The purified antigens from serotype a to g S.

mutans strains are polysaccharides located in or
on the cell wall (Table 3) (354, 531). They are
composed primarily of a combination of either
glucose, galactose, or rhamnose. They differ
from the group-specific polysaccharides of cer-
tain 8l-hemolytic streptococci (326) in the ab-
sence of significant quantities of N-acetylgluco-
samine and N-acetylgalactosamine. A small
quantity of these amino sugars is present in the
a and b antigen. Table 3 summarizes the com-
position of the seven polysaccharides and the
probable antigenic determinant of each. The
chemical composition and recovery of these
polysaccharides (Table 3) illustrate a variation
in their state of purity. This is due in large
measure to the source of the polymer and to the
various methods of extraction and purification.
However, reasonably good agreement has been
obtained in the gross composition of the antigen
in each of the two strains of types c, e, and f.
Confirmation of the immunological determinant
must await studies on more highly purified ma-
terial.
The a (strain HS6) (426), d (strain B13) (357),

and g (strain 6715) (219, 263, 264) serotype poly-
saccharides are composed principally of glucose
and galactose. Although the cell walls of these

TABLE 4. Taxonomic relationship between
serotypes and biotypes of S. mutans and proposed

genospecies
S. mutans DNA base

Proposed species content
a ~~~namec (MOl%Serotypea Biotype' G+C)d

c, e, f I S. mutans 36-38
b II S. rattus 41-43
a III S. cricetus 4244
d, g IV S. sobrinus 44-46
c _ S. ferus 4345
e V
a From Bratthall (31) and Perch et al. (459).
b From Shklair and Keene (522).
c From Coykendall (95).
d From Coykendall (95). G+C, Guanine plus cyto-

sine.
e, Not described.

S. mutans serotypes have been reported to con-
tain a significant quantity of rhamnose (22, 244),
the purified antigens do not contain rhamnose
(Table 3). Considerable cross-reactivity has been
observed among serotypes a, d, and g (31, 219,
356, 459).
A rhamnose-rich polysaccharide has recently

been isolated from cell walls of strain B13, se-
rotype d (464). It is composed of rhamnose and
glucose, whereas the serotype antigen from this
strain is a galactose/glucose polymer (357). It is
immunologically distinct from the latter. Other
distinct antigenic polysaccharides will probably
be found in the cell walls of S. mutans.
The earlier literature reflects confusion in the

serotyping of some S. mutans strains (31). For
example, strain 6715 was originally reported as
serotype d (264), but was later reclassified as
serotype g, using appropriately absorbed typing
serum (219). Furthermore, although strain AHT
was originally reported to be serotype a, it has
been found that some AHT substrains, including
the one deposited in the National Collection of
Type Cultures, London, are serotype g and not
a (219; R. R. B. Russell, personal communica-
tion).

Quantitative precipitin inhibition tests indi-
cate that the serotype a, c, e, and f antigenic
determinants depend mainly upon a glucose-glu-
cose sequence (216, 231, 355, 426, 612, 613). The
specificity appears to be related to the presence
of either a and b forms and (1 -- 4) and (1 -+ 6)
linkages (Table 3). On the other hand, the se-
rotype d and g specificities depend on a config-
uration of galactose and glucose within the an-
tigen molecules (264, 357). However, another
group (42) reports that the serotype a antigenic
determinant may be D-galactose rather than D-
glucose and that the d specificity depends upon
a terminal D-glucose. The result of Brown and
Bleiweis (42) confirms the D-galactose specificity
and the a-d antigenic sites as reported by Mu-
kasa and Slade (426) and Linzer and Slade (357).

Serotype c (strains Ingbritt and GS5) (355,
612), e (strains MT703 and V-100) (231, 613),
and f (strains OMZ175 and MT557) (216) anti-
genic polysaccharides are essentially composed
of glucose and rhamnose. Hapten inhibition
studies suggest that an a-glucosyl residue is the
immunological determinant of the serotype c
and f antigens, whereas a f-glucose residue is
the serotype e determinant (216, 355, 612, 613).
The type f antigen from strain OMZ175 is

related to dextran. This is indicated by the pres-
ence of a-1,6-glucosidic linkages (90% inhibition
of the precipitin reaction by isomaltose and a-
methyl-D-glucopyranoside), adsorption to and
release from a concanavalin A (ConA)-Sepha-
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rose column, and reaction with antidextran se-
rum (216).

This is the only S. mutans type antigen which
reacts with ConA and dextran antiserum. The
cross-reaction between type a and d strains is
due to a common antigenic site (a-d) which is
the same in both cases. The two antigenic spec-
ificities (a and a-d; d and a-d) are present on a
single polysaccharide molecule in each case
(356). This specificity is due mainly to a-D-ga-
lactose-1 -- 6-glucose (Table 3). The D-galactose
specificity of the a-d site has recently been con-
firmed (42).

Serotype e antigen cross-reacts with Lance-
field group E antiserum (31). However, this an-
tigen has two different immunological specifici-
ties. One shares a specificity with group E strep-
tococci (543), and the other is specific for sero-
type e S. mutans (230, 231). The immunological
distinction, based upon a single antigen mole-
cule, differs from the original description of the
antigen (31). We use antiserum against the
whole cells of serotype e S. mutans rather than
antiserum against Lancefield group E cells, be-
cause the former serum possesses far more in-
tensive immunological reactivity with serotype
e S. mutans (220, 230, 231).
A cross-reaction between serotype c antiserum

and one of the serotype e antigens has been
reported (613). The cross-reacting antigen may
be a degraded product resulting from drastic
formamide extraction, thus exposing internal a-
glucosidic linkages which may be reactive with
serotype c antiserum. Some other aspects of
cross-reactive phenomena will be discussed in
the next section.
The nature of the serotype b antigen has not

been adequately explained. Mukasa and Slade
(425) obtained two forms of polysaccharide an-
tigen by chromatographic purification from
strain FAl. The chemical composition and elec-
trophoretic mobility of the two forms are consid-
erably different; however, they possess an iden-
tical immunodeterminant. These antigens con-
tain low amounts of phosphorus and glycerol,
but they are negatively charged. They are ad-
sorbed to diethylaminoethyl-Sephadex A-25
resin (234). On the other hand, Vaught and
Bleiweis (601) purified two antigenic compo-
nents from another serotype b strain, BHT. One
antigen appears to be identical to one of the
polysaccharide b antigens of Mukasa and Slade
(425), but the second antigenic component,
which is more negatively charged, is reported to
be a glycerol teichoic acid substituted with a
galactosyl moiety. Hapten inhibition studies
suggest that the immunological determinant of
serotype b is a f)-D-galactoside (425, 601). Fur-
thermore, all serotype a to g antigens except b

antigen can be extracted by 0.1 M NaOH at
60°C for 30 min. The b antigen as well as the
PGP/lipoteichoic acid (LTA) antigen (vide in-
fra) appear to be destroyed by this procedure.

In this context, the electrophoretic mobility of
16 strains of S. mutans was compared by a
microelectrophoresis technique, and it was
found that two serotype b strains examined
showed the highest surface potential (448). This
may be due to the protein content of the two
antigenic forms of the type b antigen (425). One
form contains 30% protein, in addition to poly-
saccharide. Many of the amino acids in this
protein were those not present in the peptido-
glycan of S. mutans (534). The antigenic speci-
ficity was released from cell walls with lysozyme,
although the walls were not dissolved. Also,
trypsin and pepsin did not release it (426a).
Consequently, the protein bound to the immu-
nologically specific carbohydrate is not the pep-
tide of the cell wall peptidoglycan but another
peptide/protein located in the wall.
As discussed above, immunological cross-re-

actions are frequently observed among some
combinations of serotypes, i.e., serotypes c, e,
and f and serotypes a, d, and g. These close
relationships correlate with the DNA base se-
quence data (195) and the biochemical separa-
tion data (221, 459, 522). These cross-reactions
are evident by immunodiffusion, whole cell or
cell wall agglutination, and immunofluorescence
(31, 32, 37, 219, 220, 244, 356, 402). Serotype
specificity was obtained after appropriate ad-
sorption procedures.

It has also been shown that many gram-posi-
tive bacteria, including all strains of S. mutans,
possess a common antigenic component, PGP
(72, 90, 234, 312, 313, 395, 426, 617). Crude anti-
gen extracts of S. mutans serotypes a to g re-
acted with anti-PGP serum in agar gel. The
cross-reactive PGP antigen was adsorbed with
an anion-exchange resin (234). Many batches of
antiserum against S. mutans whole cells react
with heterologous antigen extracts of various
serotypes and species of streptococci when ex-
amined by the passive hemagglutination tech-
nique (223).

Recently, it was found that antiserum specific
for serotype e S. mutans glycosyltransferase
(GTase) almost completely inhibited the GTase
activity of types c, e, and f S. mutans, whereas
the GTase of types a, d, and g was not affected
by the antibody (236). On the other hand, it has
been reported that antiserum against serotype a
S. mutans GTase reacted with GTase of type a,
d, and g strains, but not with those of type b and
c strains (171). Several other reports (139, 175,
229, 332, 538) also indicate that serotypes c, e,
and f and types a, d, and g S. mutans can be
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separated into two major groups on the basis of
the immunological relatedness of GTase protein
molecules.

In contrast, an antiserum against an S. mutans
type a (HS6) purified GTase, which produced
95% water-insoluble glucan, inhibited the
GTases from serotypes a, b, c, and d (358).
Antisera against similar purified GTase prepa-
rations from other type a strains need to be
tested to clarify these results.

In this connection, Russell (495) has shown on
the basis of sodium dodecyl sulfate-gel electro-
phoresis of whole cell proteins that strains of
serotypes a and b have unique patterns. Sero-
type d and g strains show a very close relation-
ship to each other, as do the strains of serotypes
c, e, and f. This observation corresponds to the
genetic subdivision (95), as discussed above.

Reactivity of S. mutans with Lectins

Plant lectins (phytohemagglutinins) have
been found to react specifically with sugar resi-
dues of polysaccharides and glycoproteins (359).
The lectins bind to the surface components of
microbial cells, frequently resulting in aggluti-
nation (217, 317, 318).

It was shown that ConA, a jack bean lectin
reactive with a-D-glucopyranosyl or a-D-man-
nopyranosyl residues, agglutinated the cells of
13 of 15 strains of S. mutans in an 18-h incuba-
tion (217). Among these, type a, d, f, and g
strains agglutinated within 2 h. Cells of seven S.
sanguis group H streptococcal strains and var-
ious other bacterial species were also aggluti-
nated within 2 h by ConA. Binding of ConA to
the surface of serotype f S. mutans was con-
firmed using 3H-labeled ConA (217). Further-
more, ConA will also induce the agglutination of
S. sanguis and S. faecium (287, 452).

Ricinus communis agglutinins (RCA I and
RCA II), castor bean lectins reactive with galac-
tose residues (441, 442), agglutinated cells of
serotype a, d, and g S. mutans, but not those of
serotype b, c, e, and f S. mutans, after a 2-h
incubation (217).
These results with S. mutans indicate that the

two lectins react with a surface polysaccharide
polymer. The binding of ConA, however, did not
inhibit the binding of GTase to heat-treated S.
mutans cells and subsequent adherence due to
glucan synthesis (217). If binding of ConA did
occur at the type-specific polysaccharide or glu-
can sites, the lectin did not occupy a position
which affected the action of GTase. Many other
lectins with different specificities (359) will pos-
sibly bind to and agglutinate the cells of various
oral streptococci. On the other hand, Staat et al.
(546) found that Persea americana lectin in-

hibited the in vitro adherence of S. mutans 6715
(serotype g) to a glass surface. In this case, the
lectin may have bound to the polysaccharide
component of GTase.

Cell Wall Structure of S. mutans and
Other Streptococci

The streptococcal cell wall contains four ma-
jor antigenic polymers: peptidoglycan, group-
and type-specific polysaccharides, protein, and
the glycerol form of teichoic and lipoteichoic
acids. A considerable volume of evidence indi-
cates, in contrast to a layer type structure (326,
326a), the existence of a mosaic structure in
which each of these polymers is accessible for
reactions at the cell surface (532). The outer and
inner structure of the cell wall of S. mutans is
seen in Fig. 2. The protoplast membrane is not
clearly defined.

Fluorescein-labeled antibodies specific for pol-
ysaccharide or a protein component give a uni-
form surface stain of group A (89) and group F
(619) streptococci. Ferritin-labeled antibody to
the group A streptococcal M protein (602) and
group C polysaccharide (602a), and the LTA of
S. mutans (588), show a surface location of these
antigens. The rapid agglutination of some S.
mutans strains by ConA indicates a similar lo-
cation of the polysaccharides (217). The binding
of bacteriophage by the peptidoglycan of the
group A streptococcus indicates a ready acces-
sibility of the latter to the virus (82).
These data support the concept that these

antigenic polymers are available at the cell sur-
face to react with other polymers. Electron mi-
crographs of streptococci show filamentous-type
structures on the cell surface (130, 432, 490, 558)
which react with ferritin-labeled antibody (558,
588, 602). Selective extraction procedures have
distinguished the M protein from the teichoic
acid structures at the cell surface of the group A
streptococcus (13). These filamentous structures
may be termed "fimbriae."
A model of the structure of the streptococcal

cell wall is shown in Fig. 3 (532). The lattice-like
cross-linking of the peptidoglycan is shown, al-
though all the possible linkages are not illus-
trated for purposes of clarity. The teichoic acid
and LTA are shown in transit across the wall
(618) from the site of synthesis in the membrane
(524, 533). Protein and polysaccharide may also
be synthesized in the membrane. Ferritin-la-
beled antibody studies show that the fimbriae
are composed mainly of protein, polysaccharide,
and teichoic acid. Open spaces between the fun-
briae to the peptidoglycan may allow the binding
of bacteriophage. The close association of these
polymers in the wall helps to explain the release
of both polysaccharide and protein by proteo-
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FIG. 2. Electron micrograph of thin section of S. mutans, serotype d, strain B13. F, fimbriae; OW, outer
wall; IW, inner wall; C, cytoplasm. x125,000.
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FIG. 3. Model of the streptococcal cell wall. PR, protein; LTA; lipoteichoic acid; TA, teichoic acid; PS,
polysaccharide. (Reproduced with pernission, reference 532.)

lytic and saccharolytic enzymes (179), the "um-
brella" effect of antibody (531), and their func-
tion as binding sites for enzymes and sites of
enzymatic glucan synthesis in in vitro and in
vivo adherence (13, 130, 531).
The rigid nature of the bacterial cell wall is

due in large measure to a bag-shaped macro-
molecule (606) which is composed of N-acetyl
amino sugars plus N-acetylmuramic acid and
numerous peptides. This basal polymer has been

designated "peptidoglycan" (513). The chemical
composition of the cell walls of S. mutans has
been reported (22, 272, 532). S. mutans pepti-
doglycan consistently contains glutamic acid, al-
aninq, lysine, glucosamine, and muramic acid in
the approximate molar ratio of 1:2-4:1:1:1. In
addition to these major amino acids, the pres-
ence of threonine was reported in the cell walls
of serotypes a (22, 272, 534), d (22), and g (272).
The molar ratio of threonine to glutamic acid in
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these cell walls is approximately 0.7-1:1. These
data indicate that most S. mutans strains con-
tain a peptidoglycan cross-linked by interpeptide
bridges consisting of L-alanyl oligopeptide or
threonyl-alanyl peptide. Figure 4 shows a possi-
ble structure of the peptidoglycan of S. mutans
BHT (serotype b) proposed by Inoue et al. (271).
The bonds probably hydrolyzed by the Flavo-
bacterium cell wall lytic enzymes are indicated.

Figure 2 also illustrates the filamentous struc-
tures on the surface of S. mutans. Their chemi-
cal nature has not been defined. Those of group
A streptococci are individually either protein or
teichoic acid (13). These structures on S. mu-
tans, seen on practically all gram-positive cocci,
have been termed "fuzzy coat" (432). We prefer
the term "fimbriae," although they are not iden-
tical to the structures on the gram-negative ba-
cilli. The latter are frequently termed "pili"
(281a).
Proteins other than those associated with the

serotype b antigen also exist in the cell wall of S.
mutans. A protein which functions as a binding
site for glucan has been isolated (387, 391). Evi-
dence of proteins which act as binding sites for
GTase or glucan has been presented (178, 333,
427, 428, 622, 623). Further studies will probably
identify other active proteins of this type.

POLYMER SYNTHESIS BY S. MUTANS
Extracellular Polysaccharides

S. mutans synthesizes extracellular polysac-

charides, namely, glucans and fructans, from
sucrose by the enzymatic action of GTase (EC
2.4.1.5) and fructosyltransferase (FTase; EC
2.4.1.10). These polysaccharides, especially glu-
cans, are considered to be critically important in
dental plaque formation and hence in the path-
ogenesis of dental caries, because they are water
insoluble and possess a marked ability to pro-
mote adherence when synthesized de novo on
various solid surfaces (Fig. 5). Since various as-
pects of S. mutans glucan have been reviewed
recently (204, 233, 436, 603), only certain topics
will be discussed briefly.
Glucans. In general, all bacterial glucans con-

tain a(l -- 6) and a(1 -- 3) glucosidic linkages,
with the occasional occurrence of a(1 -- 2) or
a(l -- 4) linkages. It has been reported that the
proportion of a(1 -- 3) linkages varies from 0.5
to 60%, depending on the origin of the glucan
(603). ConA binds native glucans to form a pre-
cipitate, and branched glucans have a higher
affinity for ConA than do the linear ones (dex-
trans) (483).

Earlier investigations (182,212) indicated that
extracellular polysaccharides produced by S.
mutans were an a(1 -- 6)-linked linear "dex-
tran." In fact, water-soluble glucan from S. mu-
tans has been reported to consist of an a(1 -*
6)-linked linear glucose polymer with a(1 -- 3)
glucosidic branch linkages (376).
However, most of the S. mutans glucan in

sucrose-containing broth is in a cell-associated
form, which is essentially water soluble. The

/ MU/
/ 1 (a)

MU rNAC /1-Ala--. D-G u-NH2
/ <~ ( a) / 1Y)

/ -Al a-D-Gl u-NH2 GicNAc L-Lys_-.D-Ala-COOH
40() 1, 4

GlcNAc L-Lys-._D-Ala-- L-Al a--_ (L-Al a) -2
.-D-Al a -- L-Al a _+ ( L-Al a) -0 2

MurNAc
/ / s~~~'1 (a)

MurNAc /L-Ala -_ D-Gl u-NH2
/ <:t (a) / (Y)

/ -Ala -_D-Glu-NH2 GlcNAc L-Lys-COOH

G1cNAc L-Lys _-D-Ala - L-Al a-_ (L -Al a)O - 2
1 Et /----'D-Ala -- L-Ala--.(L-Ala)02 t

/1 /
FIG. 4. Possible structures ofpeptidoglycan of S. mutans strains BHT ceU walls and points of attack of a

cell wall lytic enzyme from Flavobacterium sp. strain L-11. GlcNAc, N-acetylglucosamine; MurNAc, N-
acetylmuramic acid; Glu, glutamic acid; Ala, alanine; Lys, lysine. Horizontal arrows, N-acetylmuramyl-L-
alanine amidase; vertical arrows, D-alanyl-L-alanine endopeptidase. (Reproduced withpermission, reference
271)
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FIG. 5. Scanning electron micrograph of S. mutans strain OMZ176 (serotype d) grown in glucose broth
(top) and sucrose broth (bottom). Cells grown in thepresence ofsucrose were covered with amorphous capsule-
like material of heavy thickness which was adherent to a glass surface. (Reproduced with permission,
reference 224)
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insoluble glucan can be extracted in an alkaline
solution, followed by ethanol precipitation. The
precipitate can be separated into structurally
different water-soluble and insoluble fractions.
The latter possesses more a(1-3 3) glucosidic
linkages than does the former (163, 443, 581) and
is more resistant to the enzymatic action of a(1

6) glucanase, i.e., dextranase (224).
Insoluble glucan can be more conveniently

obtained by incubating cell-free GTase and su-
crose. The glucan is obtained by centrifugation
and then washed extensively with water and
lyophilized. Using the glucan thus obtained,
Guggenheim (203) showed that water-insoluble
glucan from S. mutans strain OMZ176 contains
a markedly high proportion (up to about 90%)
of a(1-- 3) glucosidic linkages. He proposed the
name "mutan" to distinguish this water-insolu-
ble glucan from typical linear-linked "dextran."
In contrast to the insoluble glucan from S. mu-
tans, gelatinous glucan from S. sanguis strain
804 has equal amounts of a(1 -- 3) and a(1 -- 6)
glucosidic linkages (203).
Ample evidence has accumulated supporting

the original finding by Guggenheim (203) regard-
ing the chemical structure of water-insoluble
glucans from various strains of S. mutans as well
as other oral streptococcal species (8, 65, 125,
247, 384, 444). It appears that the large propor-
tion of a(1-+ 3) glucosidic linkages found in the
insoluble glucan explains the insoluble nature of
this polymer. The techniques of periodate oxi-
dation, Smith degradation, and methylation
analysis have shown that the consecutive a(1

3) glucosidic linkages form long chains as the
backbone of a highly branched insoluble glucan
(125, 247). A similar type of a(1-- 3) glucan
from the cell walls of certain fungi is a structural
component and is also water insoluble (6).
There are some significant differences in the

quantities and chemical nature of the extracel-
lular glucans synthesized by various serotypes.
According to Trautner et al. (582), their "type
d" S. mutans strains synthesized significantly
higher amounts of glucans than the "type c"
strains, and the ratio of insoluble to soluble
glucans was higher with the "type d" strains.
The difference is explained by the presence of
the higher proportion ofa(1-- 3) linkages in the
"type d" glucans (580), as is discussed above.
Glucans produced by incubating sucrose and
cell-free GTase of S. mutans strains (serotypes
a to g) can be separated further into one water-
insoluble and three soluble fractions. Each frac-
tion possesses a different content of a(1-. 3)
glucosidic linkage, a different molecular weight,
and a different reactivity with ConA or S. mu-
tans cells (273). The regulatory mechanisms for
the synthesis of water-soluble glucans and their

relation to the water-insoluble ones remain to be
elucidated.
Fructans. Certain strains of S. mutans have

been reported to synthesize fructans in addition
to glucans from sucrose (56, 124, 224, 427, 474,
507). In the earlier phase of these studies, the
fructan was considered to be levan consisting of
a(2 -- 6) fructofuranoside linkages.

Baird et al. (8) suggested that the predomi-
nant linkage of the fructan from S. mutans was
an inulin-type ,8(2 -- 1) fructofuranoside linkage
rather than fl(2 -- 6). This has been confirmed
by other investigators (19, 124, 491). S. mutans
fructans occur in both water-soluble and water-
insoluble states (124, 507), and the production of
fructans appears to differ from strain to strain,
depending on cultural conditions.

Polysaccharide-Synthesizing Enzymes
S. mutans can produce extracellular GTase or

FTase constitutively (609), which allows the syn-
thesis of water-soluble, adherent glucans in ad-
dition to certain amounts of fructans from su-
crose (233). Notwithstanding the complex chem-
ical structure of glucans, only GTase(s) appears
to be responsible for the synthesis of glucan. It
catalyzes the transfer of a glucosyl moiety from
sucrose to a terminal site on the growing glucan
molecule:

n . sucrose -- (glucose),, + n fructose

The equilibrium of this reaction is almost irre-
versibly to the right. Practically, sucrose is the
sole substrate for GTase. However, Figure and
Edwards (148) have shown that a-D-glucosyl
fluoride can act as the donor for GTase of S.
mutans FAl to synthesize insoluble glucans.

Purification of S. mutans GTase has been
attempted in various laboratories. Guggenheim
and Newbrun (209) obtained three major GTase
fractions from the supernatant fluid of a culture
of strain OMZ176 (serotype d), using hydroxy-
apatite (HA) chromatography followed by iso-
electric focusing. These fractions possessed dif-
ferent isoelectric points (pH 4.24 to 5.65) and
different pH optima (pH 5 to 7). The multiple
nature of GTase may account for the heteroge-
neity of the product glucans (75).
On the other hand, Fukui et al. (170) separated

GTase and invertase, another sucrose-splitting
enzyme, from culture supernatant of S. mutans
HS6 (serotype a). GTase was separated into two
fractions by agarose chromatography. The
lower-molecular-weight fraction synthesized wa-
ter-soluble glucan, whereas the higher-molecu-
lar-weight fraction synthesized water-insoluble
glucans. Mukasa and Slade (429) obtained a
GTase fraction synthesizing insoluble adherent
glucan from the same strain and another fraction

MICROBIOL. REV.



STREPTOCOCCUS MUTANS 345

synthesizing water-soluble glucan. The former
preparation contained significant portions of glu-
cose polymer, suggesting that the enzyme resem-
bles a glycoprotein. Similar findings have been
obtained with the serotype c strain GS5 GTase
(330) and the serotype b strain FAl GTase (500).
More recently, Mohan et al. (421) have
suggested that soluble and insoluble glucan
syntheses are catalyzed by interconvertible
forms of the same enzyme protein.
A highly active GTase fraction obtained from

strain 6715 (serotype g) contained two separate
bands on polyacrylamide gel electrophoresis
(71). The purified GTase fraction had 30 to 40%
carbohydrate, which coincides with the finding
described above. The GTase activity was also
found to be completely dependent upon a primer
dextran (176). Also, purified GTase was resolved
into two different components which were re-
sponsible for the synthesis of water-soluble and
water-insoluble glucans, respectively (73, 429).
High concentrations of mono- and divalent

cations promote the synthesis of insoluble glu-
can by an enzyme from strain 6715 (424). De-
tailed biochemical properties of the GTase en-
zyme from various S. mutans strains have been
reviewed elsewhere (233, 436).

Intracellular Polysaccharides
Many plaque bacteria can synthesize intracel-

lular iodine-staining polysaccharides (IPS) from
high concentrations of various sugars. Most S.
mutans strains produce a storage IPS which
may contribute to the pathogenicity of S. mu-
tans (16, 17, 191, 594). Stored IPS may be the
source of acid when exogenous sugar is not suf-
ficient or is absent.
Among various serotypes of S. mutans, sero-

type d and g strains produce and metabolize less
IPS than serotype c and e strains. IPS-synthe-
sizing strains degrade the IPS to produce acid(s)
when external carbohydrates are deprived (164).
It is reported that strains 6715 (serotype g) and
OMZ176 (serotype cl), like other serotype d and
g strains, produce little or less IPS, whereas they
produce marked dental caries in experimental
animals (111, 202, 229, 567). Therefore, IPS ap-
pears not to be a prerequisite for the cariogen-
icity of S. mutans. Mutants of serotype c strains
which are weak in their ability to synthesize IPS
show diminished cariogenic activity (166, 568).
IPS is a glycogen-like glucan with a(l -* 4)

and a(1 -* 6) linkages which are susceptible to
a-amylase (99, 596). IPS forms a complex with
I2-KI and produces a brownish-yellow color with
an adsorption maximum at 520 nm (111).
Two enzymes, adenosine diphosphate (ADP)-

glucose pyrophosphorylase (EC 2.7.7b) and
ADP-glucose-glycogen glucosyltransferase (EC

2.4.la), have been shown to be involved in IPS
synthesis in S. mutans (20, 240). ADP-glucose is
synthesized from adenosine triphosphate and
glucose 1-phosphate by the former enzyme, and
the latter enzyme catalyzes formation of glyco-
gen, using ADP-glucose as the glucosyl donor.
IPS metabolism appears to be influenced

mainly by the pH of the external environment
(164). S. mutans will produce ethanol and acetic
acid in addition to lactic acid from IPS under
the limitation of exogenous glucose, whereas
only lactic acid is formed in the presence of
excess glucose (262).

In the deep region of plaque, the cell walls of
gram-positive coccal bacteria become thickened
and the majority of the cells contain scattered
IPS granules in the cytoplasm. On the other
hand, cells located in the superficial portion of
the plaque possess normal cell wall morphology
and fewer IPS granules (597). Rifampin treat-
ment of S. mutans cultures results in accumu-
lation of IPS and thickening of the cell walls
accompanying inhibition of ribonucleic acid
(RNA) synthesis (383), whereas tetracycline
treatment causes cell wall thickening accompa-
nying inhibition of protein synthesis but little
accumulation of IPS (384). These findings indi-
cate that IPS synthesis may be influenced by
various cultural conditions.

Lipoteichoic Acid
LTAs are a glycerol form of teichoic acid

covalently linked to a lipid moiety (616, 617).
LTA occurs as a cellular surface component and
extracellular product of a number of gram-posi-
tive bacterial species, including all serotypes of
S. mutans (90, 223, 285, 381, 519). PGP is the
backbone structure of LTA and is responsible
for a common antigenic specificity among S.
mutans (72, 234, 311, 312, 395). The amphipathic
nature of LTA strongly influences the immuno-
biological activities of this unique polymer. LTA
possesses most of the biological activities of the
lipopolysaccharides of gram-negative bacteria.
Among these are immunogenicity, spontaneous
sensitization of erythrocytes, bone resorbing ac-
tivity in organ culture, complement fixation, and
stimulation of nonspecific immunity (249, 618).
LTAs and certain lipids have also been found to
inhibit cellular autolysis of S. faecalis (83). The
general features and biological characteristics of
LTAs have been extensively reviewed (21, 321,
313, 617, 618).
Evidence indicates that LTAs are closely as-

sociated with the cytoplasmic membrane (524,
533), and they were frequently called "mem-
brane teichoic acids" or "intracellular teichoic
acids." It appears that membrane association
depends upon a covalent linkage between PGP
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and a glycolipid protein of the membrane. An
electron microscope study using the ferritin-la-
beled antibody technique revealed membrane
association more directly in Lactobacillus fer-
menti and L. casei (588). It was further demon-
strated that the label extended from the outer
membrane layer through the matrix of the cell
wall beyond the cell surface and into the external
environment (617, 618). Chorpenning et al. (72)
reported that glycerol teichoic acid was found in
a phenol extract from purified cell walls of S.
mutans. Furthermore, a muramidase (mutano-
lysin) lysate of S. mutans cell walls reacted with
antiserum specific for PGP (S. Hamada, unpub-
lished data), indicating the "presence" of glyc-
erol teichoic acid or even LTA in the cell walls.

Extracellular LTAs are found in the cell-free
culture supernatant of many gram-positive bac-
teria, and in particularly high amounts in S.
mutans strains (285, 381). The greatest recovery
of extracellular LTA was obtained by S. mutans
organisms growing at a low dilution rate at pH
6 to 6.5 in a chemostat (276). It is likely that
extracellular LTAs are present as a result of
active excretion rather than cellular lysis or as
a result of turnover during cell growth. It thus
appears that LTAs are in transit from a cellular
to an extracellular location in the S. mutans cell
(285, 301).
Both cellular and extracellular LTAs can usu-

ally be separated into two peaks by Sepharose
6B gel filtration. One is the acylated form, and
the other is in the deacylated form. Only the
former LTA can sensitize erythrocytes, and it
contains higher levels of fatty acids (381). Both
components are synthesized and excreted by
logarithmically growing cells of S. mutans.
However, in contrast to the LTA from S.

mutans, only deacylated LTA is detected in the
culture fluid of an S. faecium strain. Most prob-
ably this extracellular deacylated LTA is derived
from cellular LTA by enzymatic deacylation
(300).
Most investigators conveniently use a phenol-

water extraction method to obtain "native"
LTAs from bacterial cells (21, 90, 223, 312, 313,
423, 616, 617). Various extraction methods also
yield an antigenic component in the extract
which reacts with antibody specific for the PGP
backbone of LTA. However, drastic procedures
usually split the linkage between PGP and the
lipid moiety or cause the hydrolysis of phospho-
diester linkages (223, 312). LTA is also released
from S. mutans cells by treatment with leuko-
cyte hydrolases or with lysozyme or phenol
(518).
More recently, Silvestri et al. (526) developed

a more refined method to purify LTAs by using
gel flltration, hydrophobic interaction chroma-
tography, and adsorption to synthetic mem-

branes (phospholipid vesicles). The latter are
very effective in separating various contami-
nants from cellular and extracellular acylated
LTAs of S. mutans strains.
There is much speculation concerning the pos-

sible functions of LTAs in mammalian tissue
and the organism itself (21, 83, 259, 618). We
have found that almost all of the hemagglutin-
ating antigen in the culture supernatant of S.
mutans strains can be recovered by 50% ammo-
nium sulfate precipitation. Immunological tests
using an antibody specific for PGP demonstrate
that the hemagglutinating activity is due to ex-
tracellular LTAs. The extracellular LTA is
closely associated with glucosyltransferase activ-
ity, and it is difficult to separate the two (223).
Both cellular and extracellular LTAs are effec-
tively adsorbed to HA powder (76, 223). Phos-
phate and fluoride inhibit adsorption of LTA.
Phosphorus contamination of extracellular glu-
cans synthesized by oral streptococci (404) may
be explained by the strong affinity between glu-
cosyltransferase and extracellular LTA mole-
cules, thus forming complexes of glucan-LTA-
glucosyltransferase. It has also been shown that
sucrose-grown S. mutans binds higher amounts
of calcium than do glucose-grown cells. In light
of these findings, it is proposed (484-486) that
the calcium-binding ability of LTA should be a
major selective factor in the adherence of gram-
positive bacteria to enamel surfaces. It should
be added here that oral streptococcal strains do
not necessarily have LTA. It has been reported
that a considerable number of S. mitior (489)
and biotype B S. sanguis (S. Hamada and J.
Mizuno, unpublished data) strains lack LTA.
Furthermore, a new amphipathic antigen has
been isolated from Actinomyces viscosus (615).
LTA-negative S. sanguis also has an erythro-
cyte-sensitizing antigen which is immunologi-
cally different from LTA/PGP (Hamada and
Mizuno, unpublished data).

Interaction of Glucosyltransferase
with Various Agents

The distribution of GTase in broth cultures of
S. mutans is strongly influenced by various fac-
tors. In many cases, almost all of the GTase
activities are found extracellularly in sucrose-
free media (237, 389, 474), although the occur-
rence of significant cell-associated GTase activ-
ity in addition to cell-free GTase activity is
reported by some investigators (187, 298, 277,
278, 329, 422). Ample evidence indicates that the
presence of, or the addition to culture media of,
sucrose results in the synthesis of cell-associated
GTase (232, 237, 389, 474, 544).
McCabe and Smith (389) consider that GTase

is reversibly bound to the insoluble glucan dur-
ing the synthesis of the glucan by sucrose-grown
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S. mutans cells. The enzyme then becomes ir-
reversibly bound, and is finally inactivated as
insoluble glucan accumulates. Reversibly bound
GTase can be eluted in solutions of clinical dex-
tran or guanidine hydrochloride. This property
is used to carry out affinity chromatography for
purification of GTase (274, 391, 392, 541).
Some commerical media, such as Todd-Hew-

itt broth and Trypticase soy broth (BBL), con-
tain trace amounts of sucrose; when S. mutans
was grown in these media, essentially all GTase
activity was in a cell-associated form (237). Pre-
treatment of these culture media with yeast
invertase before autoclaving resulted in an S.
mutans culture which contained increased
amounts of extracellular GTase. Related to this,
most of the GTase activity produced by S. mu-
tans grown in sucrose-free chemically defined
medium has been found to be extracellular; this
was in contrast with growth on Todd-Hewitt
broth or Trypticase soy broth (232, 277, 505). In
view of these findings, extracellular and cell-
associated GTases are most likely alternate
states of the same enzyme protein.
The addition of soluble dextran stimulates the

reaction of GTase with sucrose (170, 176, 330,
389,429). This activation is due to a requirement
by GTase for a primer molecule; its nonreducing
ends are required for new glucan synthesis. The
primer may also act as the site to which newly
synthesized units are added (178). Equal weights
of dextrans with different molecular weights
show a similar priming effect on new glucan
synthesis by GTase (176, 238). On the other
hand, Robyt and Corrigan (475) have reported
that the activation of GTase by dextran cannot
be due to a primer reaction with the nonreducing
end because of the nonavailability of the non-
reducing ends of the dextrans chemically modi-
fied by reaction with trypsyl chloride or hydrol-
ysis with an exodextranase (475).
The addition of increasing amounts of soluble

dextran will cause a decrease in the synthesis of
insoluble glucan and an increase in the synthesis
of soluble glucan (422, 475). Certain sugars such
as maltose and fructose significantly reduce the
yield of insoluble glucan (238).
The enhancement of GTase activity by var-

ious humoral fluids such as rabbit antiserum
(139), rat oral fluid (45), and monkey antiserum
(26) has been reported.
Fukui et al. (169) reported that the secretory

component ofsecretory immunoglobulinA (IgA)
caused a severalfold acceleration ofGTase activ-
ity as compared with the control without addi-
tives. However, results with purified secretory
IgA component have not confirmed this study
(88).
More recently, lysophosphatidylcholine, a

phosphoglyceride, has been found to cause a 2.6-

fold increase in water-soluble glucan synthesis
by S. mutans GTase. The increased rates of
glucan synthesis by lysophosphatidylcholine
and primer dextran are additive (248). In a sub-
sequent study, phospholipids normally detected
in human oral fluids, e.g., saliva from various
glands, gingival crevicular fluids, and serum, en-
hanced the activity of GTase (503). The GTase
level is reported to be increased about fivefold
in the presence of 1.0% Tween 80; alteration of
the fatty acid composition of the S. mutans cells
also occurs (583). Many other nonionic surfac-
tants promote the activity of GTase, whereas
anionic and cationic surfactants inhibit this ac-
tivity. Lower concentrations of ampholytic sur-
factants activate GTase activity; this is followed
by almost complete inhibition of GTase at high
concentrations (0.1% or more) of the surfactants
(M. Torii and S. Hamada, unpublished data).
Enhanced levels of cell-free GTase are also ob-
tained when cells of S. mutans are grown in
penicillin (100 to 250 ,ug/ml)-containing medium
(278). This may be due to release of certain lipid
components from the cells by an unknown mech-
anism (258) which in turn results in an enhance-
ment of GTase levels.

Invertase
Invertase (,8-fructofuranosidase; EC 3.2.1.26)

is a sucrase that catalyzes the hydrolysis of the
glucosidic linkage of sucrose, which results in
the release of an equimolar ratio of glucose and
fructose.
Gibbons (180) first suggested the presence of

an intracellular, inducible "sucrase" activity
other than GTase and FTase in S. mutans GS5
(serotype c). Toluene treatment of intact cells
that destroys the selective permeability system
of the bacterial cell membrane (338) revealed
enhanced invertase levels in S. mutans GS5 and
KlR (serotype g) (180, 393). The molecular
weight of intracellular invertase has been cal-
culated to be 47,000 to 48,000, and the invertase
has a relatively high Km value for sucrose (35 to
140 mM) (327, 564). The intracellular location of
the invertase implies the presence of a sucrose
permease system, but little is known about the
sucrose transport mechanism of S. mutans. Con-
troversial results have been obtained on the
inducibility of invertase from various strains of
S. mutans (327, 393, 564). The biochemical prop-
erties of the invertases found in the 37,000 x g
soluble cell fraction are different in the individ-
ual serotypes of S. mutans but similar within
the same serotypes (565). Invertases from sero-
types e, f, and g are reported to be structurally
similar to that from serotype c (385).

Extracellular invertase also exists (70, 170)
and has a molecular weight of 5 x 105 (385).
The physiological role of S. mutans invertase
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is not fully understood. However, a large portion
of available sucrose is hydrolyzed by this enzyme
(69). The remainder of the sucrose is converted
to the synthesis of glucan or fructan via GTase
or FTase.

Recently, strains of S. mutans belonging to
various serotypes have been found to have
highly efficient phosphoenolpyruvate (PEP)-de-
pendent sucrose phosphotransferase activity
that can initiate the catabolism of sucrose and
produce sucrose phosphate. The Km value of the
enzyme for sucrose is reported to be about 70
1iM, indicating that the enzyme, unlike invertase,
can function even at low substrate conditions
(499, 535).

a(1-- 6) Glucanase
a(1 -3 6) Glucanase [a(l -. 6)-glucosidase; EC

3.2.1.11] is synthesized constitutively by some
strains of S. mutans as well as certain other
bacterial species in dental plaque (110, 509, 548).
An endoglucanase specific for the a(1 -* 6)

linkage has been purified from the culture su-
pernatant of S. mutans OMZ176 (serotype d)
(205). The biochemical property of the enzyme
is similar to that of mold dextranases in general.
A similar endo-a(1-- 6) glucanase was obtained
from the culture supernatant of serotype g
strains 6715 (131, 177) and KlR (465, 466).
These results indicate that most glucans pro-

duced by growing S. mutans cells or by "crude"
GTase preparations obtained from culture fluids
could be synthesized under the influence of in-
trinsic or contaminating a(1 -- 6) glucanase.
Therefore, structural heterogeneity of the S. mu-
tans glucans may be a result of the combined
enzymatic action of GTase and endoglucanase
activities. Relative quantities of these enzymes
may significantly affect the chemical and phys-
ical properties of glucans synthesized by S. mu-
tans.

In addition to the polymers described above,
S. mutans produces proteases active against ca-
sein and glycoprotein (93) and against collagen
(492), phospholipase A (44), and arylaminopep-
tidase (456). S. mutans also produces intracel-
lular hydroxyapatite crystals which may be re-
sponsible for calculus formation (552).

SUGAR METABOLISM BY S. MUTANS
S. mutans has been reported to be a homofer-

mentative lactic acid bacterium (115, 282, 569).
However, the metabolic pathway of glucose by
S. mutans varies, depending on environmental
factors. The major fermentation product of S.
mutans is lactate, especially when the organism
is grown in the presence of excess glucose,
whereas S. mutans produces significant amounts

of formate, acetate, and ethanol in addition to
lactate when glucose is limiting (61). An in vivo
study supports the latter finding (584).

Sucrose has also been shown to serve as the
energy source during growth of S. mutans in
addition to its role as the substrate for extracel-
lular glucan synthesis. Most of the glucosyls of
sucrose are converted into lactic acid. Only a
small portion of sucrose is diverted to extracel-
lular polysaccharide synthesis (473, 562, 566).
Furthermore, S. mutans is known to utilize su-
crose at a significantly faster rate than other oral
bacteria such as S. sanguis, S. mitis, and Acti-
nomyces viscosus (418,450). S. mutans produces
significant amounts of intracellular polysaccha-
ride from sucrose, which can be converted to
lactic acid after prolonged incubation (419). The
organism also produces mannitol when high lev-
els of sucrose or glucose are present (370). Com-
parison of metabolic activities of "cariogenic"
and "noncariogenic" plaques indicates that S.
mutans is metabolically dominant in plaques
closely associated with the carious lesion (418).
S. mutans is more aciduric than other oral strep-
tococcal species (114).

In the presence of sucrose, S. mutans grows at
the same exponential rate as it does on glucose
(100). A previous finding that growth of S. mu-
tans is linear in sucrose culture (572) is attrib-
uted to an optical artifact based on the formation
of visible cell aggregates (100).

S. mutans transports glucose into cells via a
membrane-associated PEP-dependent phospho-
transferase system (132, 241, 501, 508). Sucrose
and lactose are similarly transported in S. mu-
tans by this system (49, 499, 535). The nonfer-
mentable glucose analog D-2-deoxyglucose is an
effective inhibitor of glucose transport by the S.
mutans PEP-dependent glucose phosphotrans-
ferase system (506).

ADHERENCE OF S. MUTANS
The adherence of S. mutans and other oral

bacteria to tooth surfaces and the formation of
dental plaque are of major significance in the
development of dental caries. These processes
are complex and involve a variety of bacterial
and host components. Various aspects of bacte-
rial adherence in the oral cavity have been ex-
tensively reviewed (194, 195, 233, 530, 531, 589).

Initial Attachment of S. mutans to
Smooth Surfaces

Bacterial attachment to the tooth surface is
usually preceded by the formation ofan acquired
pellicle of salivary origin. The initial stages of
plaque development on cleaned tooth surfaces
require cell attachment to the pellicle suffi-

MICROBIOL. REV.



STREPTOCOCCUS MUTANS 349

ciently firm to resist local cleansing forces of
salivary flow and muscular movements. The at-
tachment may involve specific interaction ofpel-
licle components with selected bacterial species.

0rstavik et al. (454) found a significant in-
crease in attachment of S. mutans, S. sanguis,
and S. salivarius to pellicle-coated enamel slabs
when compared with an uncoated slab. The in
vitro adherence of S. sanguis was significantly
greater than that of S. salivarius, and both
species adhered in greater numbers than did S.
mutans.

S. mutans has been found to attach in greater
numbers to dextran-coated HA than to pellicle-
coated or uncoated HA, whereas the attachment
of S. sanguis and S. mitior was not enhanced by
dextran-coated HA (350, 351). The in vitro affin-
ity of each oral streptococcal species for pellicle-
coated solid surfaces appears to correlate with
the proportions of that species found in vivo
(195). It is likely that S. mutans does not play a
key role in the initial stages oftooth colonization,
although the latter experiment was performed
in the absence of sucrose.

Recently, a model has been proposed by Rolla
(486) suggesting that cells of S. mutans and S.
sanguis behave like negatively charged particles
in their electrostatic interaction with HA sur-
faces in vitro. He demonstrated that calcium
and protamine phosphate significantly increased
uptake ofbacteria, whereas fluorides, phosphate,
or even saliva decreased the uptake of the cells.
The acidic proteins in saliva are selectively
bound by HA. It is considered that pellicle for-
mation by acidic protein results in a reduction
of the cationic nature of the surface and reduces
the binding of bacterial cells.

It appears that a large number of hydroxyl
groups on the surface of sucrose-grown S. mu-
tans and S. sanguis cells preferentially form
hydrogen bonds with the pellicle proteins (487).
LTAs are closely associated with extracellular
GTase (223) and its product glucan (76, 404).
LTAs possess a strong affinity for HA (486).

Divalent cations such as Ca2" were found to
enhance the interaction between a negatively
charged pellicle surface and a similarly charged
bacterial cell surface (293, 484). Related to this,
ethylenediaminetetraacetic acid, EDTA, is
known to have a strong plaque-disintegrating
ability (293, 369); this supports the concept that
calcium bridges are essential for the initial bind-
ing of the bacterial cell to the pellicle surface.
The major discrepancy between the reports of
Rolla (486) and those of Liljemark and Schauer
(350, 352) and 0rstavik et al. (454) may be
ascribed to the use of buffers of high ionic
strength in the case of the latter investigations.

Interaction of Salivary Components
with Streptococcal Cells

Direct interaction ofsalivary components with
bacterial cells seems to be significant in regulat-
ing the attachment and accumulation of differ-
ent bacterial species involved in plaque forma-
tion. Whole saliva is known to possess the ability
to agglutinate many plaque bacteria (193). The
salivary agglutinating factor was reported to be
a high-molecular-weight glycoprotein which is
heat-stable and Ca2" dependent and which oc-
curs optimally between pH 5 to 7.5 (193, 250). It
is unlikely that IgA is involved in these interac-
tions (136, 288, 620). Different agglutinating fac-
tors have been found for S. mutans, S. mitior,
and S. sanguis (136, 194, 286). When saliva is
pretreated with wheat germ agglutinin, the sa-
liva does not induce the agglutination of S. mu-
tans strains. N-Acetylglucosamine, for which the
lectin shows a specificity, does not block the
inhibitory effect of the lectin (420).
These salivary agglutinating factors may re-

semble lectins in that specific determinants may
bind selected bacterial species. The salivary ag-
glutinating factor that is responsible for binding
S. sanguis was destroyed by neuraminidase or
protease treatment, indicating the importance of
sialic acids (386). The mucin-like glycoprotein
agglutinated both S. mutans (serotypes b and d)
and S. sanguis strains ATCC 10556 and 10558
(347). Interestingly, elimination of sialic acid
from the glycoproteins resulted in a loss of ag-
glutination of S. sanguis but not of S. mutans.
It is suggested that salivary lysosyme may par-
ticipate in the agglutination of some S. mutans
strains (463).

Preincubation of various bacteria and saliva
reduced the attachment of bacteria to HA sur-
faces (78, 80, 379). Serotype c S. mutans cells
appeared to bind salivary components (78, 379).
Therefore, it is suggested that the agglutinating
factor free in saliva competitively inhibits the
interaction between salivary coated HA and
those surface components of the bacterial cells
which contain bound salivary glycoproteins.

Recently, Gibbons and Qureshi (189, 190)
found that strains of S. mutans and other oral
bacteria bind the blood group-reactive (BGR)
mucins of saliva after exposure to whole saliva
or partially purified mucin preparations. Differ-
ent serotypes of S. mutans bind different com-
ponents of BGR mucins. BGR salivary mucins
are present in the acquired pellicle on the tooth
surface (542), which may serve as receptor mol-
ecules involved in the attachment of bacteria to
teeth, suggesting that a lectin-receptor-type
mechanism is involved (181).
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Implantation of S. mutans
Active transmission of S. mutans implies im-

plantation in a receptive host. However, S. mu-
tans is not easily implanted in adult humans.
Variability in the ability of S. mutans to implant
in different subjects has been noted, and a grad-
ual decrease in the number of implanted orga-
nisms has been observed over an extended pe-
riod of time (284, 323).
When S. mutans was implanted onto human

tooth surfaces, the bacterium was recovered in
much higher numbers from originally pellicle-
free than pellicle/plaque-coated tooth surfaces
(493).
An in vivo study with human subjects has

revealed that S. mutans can be recovered from
cleaned tooth surfaces after a few hours of oral
exposure when the salivary concentration of this
bacterium exceeds a certain level. In adult hu-
man subjects with a salivary S. mutans count of
about 104 colony-forming units (CFU)/ml or

less, the organisms could not be isolated from
the tooth surface (593). On the other hand, at a
salivary concentration of 103 CFU/ml, artificial
fissures inserted in three adult subjects were

colonized (555). Fluoride administration is un-
related to the colonization of S. mutans on hu-
man teeth (590). In a later study (118), the
frequency of detection and concentration of S.
mutans in saliva were higher in older children.
However, some infants can acquire S. mutans
shortly after tooth eruption (15, 382).
When organisms of serotypes a and c S. mu-

tans were implanted in humans, serotype a
(strain E49) failed to colonize, although a sero-

type c strain of human origin appeared to colo-
nize (556). The intraoral spread of the implanted
S. mutans was confirmed on the adjacent and
antagonistic tooth surfaces (557). Furthermore,
surfaces which harbored significant numbers of
S. mutans tended to remain positive, whereas
surfaces which did not possess detectable num-
bers of S. mutans remained at that level, indi-
cating that S. mutans does not evenly colonize
the surfaces of teeth (184).
Sucrose-Dependent In Vivo Adherence

of S. mutans
Sucrose has been reported to markedly facili-

tate the colonization of S. mutans on teeth. In
early studies using hamsters and rats, it was
found that S. mutans could be established far
more easily when the animals were given su-
crose-containing diets (128, 207, 319, 320). It was
also found that S. mutans could implant in the
human oral cavity after inoculation with a pure
culture, and the frequent chewing of sucrose
gum enhanced the implantation (128).

More recently (600), the colonization of S.
mutans 6715 occurred in rats fed diets with a
sucrose content from 56% to as low as 1%, in
which the lowest effective inoculum was 105
CFU by a single oral administration (600). More
frequent inoculations with about 5 x 108 CFU
were needed to establish the organisms on a
high-glucose diet. When inoculated with less
than 107 CFU, however, the cells were gradually
eliminated from the teeth.

It should be noted here that streptomycin-
resistant mutants of S. mutans frequently colo-
nize less effectively than parent strains (12, 158).
For example, the minimum dose required for
implantation of a streptomycin-resistant mutant
of S. mutans LM7 was more than 2 x 107 CFU,
whereas the minimum dose of the parent strain
was about 104 CFU (79, 591). The basis of the
phenomenon has not been well explained.
Preformed dextran/glucan, whether associ-

ated with S. mutans cells or with the tooth
surface, does not permit the degree of cell at-
tachment that occurs in the presence of sucrose
(598). Apparently, de novo glucan synthesis (see
next section) leads to a far stronger adherence
to the tooth surface than that which occurs in
the presence of dextran/glucan precoated on
either tooth surface or bacterial cell surfaces,
although sucrose may not be indispensable to
the initial attachment of S. mutans in the oral
cavity. In this connection, high numbers of S.
mutans may be detected in the mouths of chil-
dren with sucrase-isomaltase deficiency who,
therefore, consume a diet with an extremely low
sucrose content (592).

In rats, colonization of S. mutans occurred
with increasingly greater difficulty as the rats
became older (599). The actual mechanism re-
sponsible for the changes during aging remains
to be elucidated. However, the age effect was
not observed when rats were fed a sucrose diet,
whereas the results from rats fed a glucose diet
indicate that changes may have occurred early
after weaning.

In Macaca irus monkeys fed by stomach tube
and provided with oral supplements, the colo-
nization of S. mutans was dependent upon su-
crose from the drinking water. Withdrawal of
the sucrose resulted in complete absence of de-
tectable S. mutans on the teeth, although the
salivary counts of S. mutans remained un-
changed (306).

Sucrose-Dependent In Vitro Adherence
of S. mutans

Active glucan synthesis from sucrose has been
found to foster the adherence of S. mutans to
various solid surfaces (195, 215, 233, 388, 427,
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428, 530, 531, 578). Synthesis of the glucan is
mediated by the enzymatic action of cell-free
(extracellular) or cell-bound GTases. This con-
cept is supported by the finding that mutants of
S. mutans which lack the ability to synthesize
water-insoluble, adherent glucans do not adhere
to solid surfaces (107, 165, 314).

Heat-treated cells of S. mutans which do not
have cell-bound GTase adhered to a glass sur-
face when incubated simultaneously with su-
crose and exogenous GTase. No adherence oc-
curred in the absence of de novo glucan synthsis
(215, 427, 428). Later studies have clearly dem-
onstrated that the adherence of S. mutans in the
presence of sucrose depends primarily upon the
specific binding of extracellular GTase synthe-
sized by S. mutans (218, 235, 237, 428, 530). The
nonadherent property of other bacterial species
is due to their inability to bind GTase to the cell
surface. However, a nonspecific adherence of
cells of a variety of bacterial species can be
obtained when the cells, GTase, and sucrose are
incubated together (218, 530). This process, due
to cell-free synthesis of glucan, is a nonspecific
trapping mechanism for adherence that may
contribute to the development of dental plaque.
Glucan on the surface of S. mutans appears to

function as a binding site for GTase (232, 237,
333, 531). Antiserum against a glucan synthe-
sized by a type c strain blocked binding of GTase
and subsequent adherence (237, 427, 428). The
strong affinity of GTase to glucan has been
reported; however, adherence was not measured
in these experiments (314, 389, 391, 392, 472).
Antiserum against the type a polysaccharide
antigen also inhibited adherence. These results
indicate that glucan may not be a specific bind-
ing site and that other complex polysaccharides
may mediate the process. Protein is also in-
volved in the binding of GTase (428). The gly-
coprotein-like characteristics of GTase (531)
may be related to its ability to bind to both
polysaccharide and protein molecules. Figure 6
illustrates a possible mechanism of this binding
(531, 531a). Also illustrated is the participation
of S. mutans surface protein in the binding of
dextran (see next section).

Cell-free water-soluble glucan "particles"
treated by sonic oscillation bind GTase and
cause marked adherence to glass accompanied
by de novo glucan synthesis (Fig. 7; 237). This
finding strongly supports the hypothesis that
GTases bound to the surface glucan participate
in the adherence of S. mutans cells to smooth
surfaces when sucrose is present in the oral
environment. Other water-insoluble glucans
such as amylopectin and cellulose do not bind
GTase significantly (238).

XX
glucan-j ,XX

iX "X- AX3,X' dextran-A,?

/ ~ ~ ~~uA"its '

FIG. 6. Polysaccharide (PS) and protein (PR) as
binding sites for GTase and the binding of dextran
to protein on the surface of S. mutans. TA, lipotei-
choic acid. Symbols: 0, dextran-like site which in-
volves binding of GTase; U, site which binds the
dextran responsible for cell agglutination. (Repro-
duced with permission, reference 532.)
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FIG. 7. Glucan synthesis from [14C]glucose-la-
beled sucrose (59,000 dpm) by extracellular GTase
bound to the surface of heat-treated S. mutans B13
(serotype d) cells and cell-free, water-insoluble glu-
cans and subsequent adherence to a glass surface.
To heat-treated cells or insoluble glucans (1.0 mg,
dry weight) was added to 0 to 100 jil of extracellular
GTase (specific activity, 56.6 mU/lI), and the mixture
was incubated for 10 min at 200C. The suspension
was centrifuged and washed twice with phosphate
buffer (0.05 M, pH 6.8). New glucan synthesis due to
cell- and glucan-associated GTase was measured by
incorporation ofradioactivity from ['4CJsucrose. Ad-
herence to a glass surface was measured as percent-
age of adherence of cell or glucan. Symbols:
*-*, cell-bound '4C-labeled glucan synthesis;
O-O, glucan-bound 14C-labeled glucan synthesis;
*-0, adherence of cells due to new glucan synthe-
sis; 0-----0, adherence ofglucans due to new glucan
synthesis.

When S. mutans is grown in sucrose-free com-
plex medium or the chemically defined medium
FMC (575), the organisms do not have enough
cell-bound GTase to produce significant adher-
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ence to solid surfaces when sucrose is added. On
the other hand, cells grown in complex media
containing sucrose (e.g., Todd Hewitt broth and
Trypticase soy broth) or sucrose-containing
FMC have strong cell-associated GTase activity.
These cells produce marked adherence to solid
surfaces in the presence of exogenous sucrose
(232, 237). Furthermore, the presence of sucrose
determines the ratio of cell-free and cell-bound
GTase (232, 237).
Kuramitsu (328) reported that a preformed

glucan layer on a glass surface produced a partial
adherence of heat-treated cells of two of four
serotypes of S. mutans, claiming that glucan
synthesis need not be restricted to the cell sur-
face of S. mutans for cellular adherence to de-
velop. However, the presence of residual GTase
and sucrose in the precoated glucan has been
demonstrated, and the function of active GTase
in this case cannot be ruled out (215, 230, 314).
An in vivo study in which conventional rats were
used also supports the latter concept (598; see
previous section).
Maltose has been demonstrated to inhibit the

in vitro adherence of S. mutans to glass surfaces
(11, 238, 439). Furthermore, the increased glucan
synthesis in the presence ofprimer water-soluble
dextrans inhibits adherence to a glass surface
(238).

Cell-to-Cell Adherence:
Bacterial Aggregation

Cells ofS. mutans grown in a complex medium
have been shown to agglutinate upon addition
of high-molecular-weight dextran T2000 (molec-
ular weight, 2 x 106) (185). This means that
whole cell agglutination is due to cells which are
bound together by dextran molecules. The bind-
ing of dextran has been demonstrated by using
radioactive dextrans/glucans (554, 623). Agglu-
tination of S. mutans strain 6715 (serotype g) is
detected at pH 8.5 upon addition of 6 ng of
dextran T2000. This corresponds to about three
molecules of dextran per cell in the reaction
mixture.

Pretreatment of S. mutans cells with 4.0 M
urea, 0.01 M EDTA, or 0.1% sodium dodecyl
sulfate prevents agglutination, and divalent cat-
ions reverse the effect of EDTA (293). McCabe
and Smith (390) have reported that agglutina-
tion is independent ofcell-bound GTase activity.
GTase activity is almost completely abolished
by chemical treatments without adversely af-
fecting the agglutination reaction. However, rab-
bit antisera specific for GTase are shown to
inhibit the agglutination reaction (449). Further-
more, cells grown in sucrose-free complex me-
dium (544) or chemically defined synthetic me-

dium (623) show a markedly decreased ability to
agglutinate. Therefore, GTase associated with
the surface glucan of the cell may augment the
function of a "dextran receptor."

In this context, glucan/dextran-binding pro-
teins have been demonstrated in S. mutans. The
multiplicity of proteins showing this capacity or
GTase activity indicates the complexity of the
cell-to-cell and cell-to-surface adherence mech-
anisms of S. mutans (178, 387, 497, 531).

In addition to cell-to-surface adherence de-
scribed above, cell-to-cell adherence is of impor-
tance for dental plaque formation. Surface com-
ponents which affect the aggregation ofbacterial
cells are therefore functionally critical for adhe-
sion among bacteria in dental plaque.
Many strains of S. mutans agglutinate (ho-

mologous cell-cell adherence) upon addition of
high-molecular-weight dextran (185). Certain
strains of S. mutans are also reported to form
aggregates with other bacterial cells such as
Nocardia and Neisseria (heterologous cell-cell
adherence) (188). Strains of A. naeslundii and
A. viscosus have been shown to form aggregates
more often with strains of S. sanguis and S.
mitior than with strains of S. mutans (77, 129,
188, 401). Coaggregation between A. viscosus
and S. sanguis is inhibited completely by,-
linked galactosides (i.e., lactose) (401). However,
when S. mutans cells are coated with high-mo-
lecular-weight dextran or grown in the presence
of sucrose, they form visible aggregates with A.
viscosus (23).
Another example of heterologous cell-cell ag-

gregation is shown between S. mutans and Can-
dida albicans. Artificial plaque formation by an
S. mutans strain is augmented when a C. albi-
cans strain is inoculated with the S. mutans
(416a).

Conversely, certain oral bacteria in plaque and
saliva are demonstrated to produce dextranase
that may inhibit the adherence of S. mutans to
smooth tooth surfaces (431, 504, 548, 603).
The increased synthesis of polysaccharides by

plaque bacteria during a sucrose-rich diet is ac-
companied by increased levels of dextranase and
levanase of plaque bacteria (173).

It now appears from these various data that
the adherence of S. mutans and other oral spe-
cies to pellicle-covered teeth occurs in several
steps. The initial attachment of single cells,
chains of celLs, or aggregated cells may involve
divalent ions (such as Ca2+) and the negative
charges on the bacterial cell and the tooth pel-
licle (486). This proposal, however, suffers from
many limitations (181). It seems more likely that
a complex may form between a glycoprotein in
the pellicle and a polysaccharide on the bacterial
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surface. The reverse may also occur (181, 190,
233, 235). This may be a lectin-like effect (181).
The second phase of the process would depend
in large measure on the multiplication of S.
mutans and glucan synthesis. The maturation of
the plaque, containing various gram-positive and
occasionally gram-negative species, would be
mediated by the synthesis of glucan by S. mu-
tans. Glucan would ensure the stability of the
plaque. Bacterial species which enter the devel-
oping plaque after the phase of initial attach-
ment may do so by random contact with the
adhesive glucan of the plaque (233, 235).

GENETIC ASPECTS OF S. MUTANS
Lysogenicity and Plasmids

The occurrence of genetic elements such as
plasmid and prophage in bacteria may relate to
various phenotypes such as ability to ferment
sugars, production of toxins, bacteriocins, and
antigens, and antibiotic resistance.

In 1971, Greer et al. (200) reported that there
was a consistent positive correlation between
the lysogenicity and cariogenicity of S. mutans.
"All" cariogenic streptococci including eight
strains of S. mutans and one strain of S. sali-
varius underwent lysis after induction with ul-
traviolet light and mitomycin C. In contrast to
cariogenic strains, "no" noncariogenic strepto-
coccal strains displayed the induced lysis. An-
other group (309) also reported that a phage
with similar morphology was induced from 15
cariogenic strains including A. viscosus and S.
sanguis in addition to 9 strains of S. mutans.
However, an S. mutans that had been cured

of its prophage exhibited cariogenicity essen-
tially similar to that of its lysogenic parent strain
when examined in animal models (R. J. Fitzger-
ald, personal communication).

Higuchi et al. (254) found that plasmid-curing
agents induced mutants at high frequency; these
mutants produced diminished insoluble polysac-
charide. A satellite band of plasmid DNA in cell
lysates of parent strains of PK1 and JC2 was
subsequently found, whereas mutants of these
strains, that had lost the ability to synthesize
adherent, insoluble polysaccharides had no de-
tectable satellite band of DNA (253).
Other investigators have been unable to find

a plasmid in many strains of S. mutans, includ-
ing strains PK1 and JC2 from which Higuchi et
al. (253) isolated plasmids. Furthermore, no phe-
notypic function has yet been ascribed to any of
the reported plasmids of S. mutans.

Later studies reported (225) that only the
parent strain of PK1 (254) carried prophage and
that the mutant strains ofPK1 were transformed
to the "cariogenic" strain with adherence ability

by infecting them with the phages or with free
phage DNA. In addition, all transformants were
reported to acquire a new character, the deami-
nation of arginine. Furthermore, S. sanguis
strain ATCC 10556 was transfected with free
phage DNA of parent strain PK1, and two trans-
fectants which had developed the "cariogenic
nature" were obtained (256). However, the car-
iogenicity of these strains was not tested. No
explanation was given of the relationship be-
tween prophage and plasmid DNA of parent
strain PK1.
A small plasmid has been isolated from S.

mutans strain LM7 (serotype e). The plasmid
has a molecular weight of approximately 3 x 106
and is calculated to have 16 copies per chromo-
somal genome equivalent (120). Since then,
more than 100 strains of S. mutans, including
laboratory-maintained strains and clinical iso-
lates, have been examined for plasmid DNA by
examination of cell lysates on cesium chloride-
ethidium bromide gradients (84, 377, 378, 471).
The frequency of occurrence of plasmid DNA in
S. mutans of human origin has been reported to
be approximately 5%. The value is lower than
that of plasmids in other bacterial species, in-
cluding gram-positive and -negative species
(145).
Macrina et al. (377, 378) have reported that

the four plasmids isolated by them are identical
in molecular weight (3.6 x 106) and are present
to the extent of approximately 30 copies per
chromosomal equivalent. These results are es-
sentially similar to those obtained with LM7
plasmids obtained by Dunny et al. (120). In spite
of their physiological comparison of the plasmid-
containing and plasmidless S. mutans strains,
they failed to find any clues regarding possible
function of the plasmids, although production of
bacteriocin-like activity was different in the two
plasmid-containing strains.
The few occurrences of plasmids in S. mutans

argue against earlier claims of plasmid-mediated
polysaccharide synthesis by this bacterium. Re-
lated to this, Donkersloot et al. (112) isolated
mutants of S. mutans LM7 that had essentially
no GTase activity, but still retained plasmid
DNA. Therefore, these mutants are different
from the plasmidless, GTase-deficient mutants
of strains PK1 and JC2 (253). Furthermore, no
difference between the mitomycin C-induced
lysis of parent and mutant LM7 cultures was
observed, which is contrary to previous findings
(254, 309). Similar results have been obtained
with a "cariogenic" S. faecalis strain ND539.
Isogenic pairs with or without plasmid
(pAM539) are found to exhibit only a marginal
degree of caries activity (84), indicating that
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these plasmids do not control cariogenic poten-
tial of these S. mutans strains. In certain bacte-
rial species, the loss of virulence factor has been
demonstrated to be not necessarily accompanied
by the loss of a plasmid (541a).

It should be added here that Katayama et al.
(289) isolated a plasmid from seven "mucoid"
strains of S. mutans, using an enzyme, mutano-
lysin, with lytic activity against the cell wall.
They feel that use of mutanolysin results in a
more consistent detection of the plasmid.
The transfer of genetic elements by conjuga-

tion is well known in gram-negative bacteria.
LeBlanc et al. (337) have recently reported that
a ,/ plasmid from a group F streptococcus, which
codes for resistance to erythromycin and linco-
mycin, is transferred to S. mutans, S. sanguis,
and S. salivarius by cell-to-cell conjugal transfer
when donor and recipient cells are incubated on
a membrane filter but not in broth cultures.
The presence of the ,B plasmid in S. mutans
confers on this bacterium the ability to serve as
a /3-plasmid donor to other S. mutans strains
with more than 50-fold-higher frequency than is
obtained in the original transfer from group F
streptococcus to S. mutans.

Transformation
Transformation has been shown to occur

among most groups of streptococci and S. san-
guis (group H, strain Challis) (460). Davidson et
al. (101) have shown that strain Challis is capa-
ble of incorporating DNA prepared from strep-
tomycin-resistant strains of S. mutans, S. san-
guis, and S. salivarius. However, transfer of
other genetic markers such as fermentation of
sorbitol and mannitol and the synthesis of water-
soluble polysaccharide was not demonstrated.
Reciprocal transformation is observed only be-
tween SM resistant strain Challis and S. sanguis
strains ATCC 10556 and ATCC 10557, but not
between strain Challis and S. mutans (101).

Subsequently, Westergren and Emilson (611)
examined the prevalence of competent strains
among oral streptococcal isolates and surveyed
the ability for transformation ofsome competent
strains when exposed to heterologous DNA.
They confirm that DNAs from streptomycin-
resistant strains of five oral streptococcal species
including S. mutans transform S. sanguis strain
Challis. None of the S. mutans strains is trans-
formed to streptomycin resistance after expo-
sure to S. mutans DNA. In contrast to S. mu-
tans, 13 out of 50 S. sanguis strains are found to
be competent in response to DNA from strep-
tomycin-resistant S. sanguis 804 (611), whereas
most spreading and twitching strains of S. san-
guis from the human throat are reported to be

competent for DNA from strain Challis (251).
A later study reported that DNA prepared

from a spontaneous rough mutant, G26-R, of S.
sanguis transforms wild-type smooth strains
G26-S, G30-S, and Challis-S of S. sanguis into
variants with rough colonial morphology. The
rough S. sanguis G26-R strain shows an in-
creased ability to adhere to solid surfaces in
vitro. However, the transformation with DNA
from S. mutans strain Ingbritt that produces a
rough colonial morphology was not successful
(610).

BACTERIOCINS OF S. MUTANS:
MUTACINS

Orginally, the term "bacteriocin" was applied
to proteins of the colicin type which cause death
of the bacterial host. These proteins had activity
against strains of the same or closely related
bacterial species, and were adsorbed to specific
receptors (470, 560). However, the activity spec-
tra of bacteriocins produced by gram-positive
bacteria, including S. mutans, are broader than
those in gram-negative bacteria, and only a few
bacteriocins of gram-positive bacteria are known
to have the properties of the colicins (560).

Bacteriocinogeny Among S. mutans
Kelstrup and Gibbons (296) first reported that

in stab culture using Typticase agar plates sev-
eral S. mutans strains out of 13 oral streptococci
tested produced inhibition zones against other
streptococcal strains, including those of S. py-
ogenes and enterococci, but not against unre-
lated bacteria such as lactobacilli, staphylococci,
and Escherichia coli. Because the inhibition
zones were not infective, the possibility of the
involvement of bacteriophages was excluded. All
bacteriocins were protease sensitive and had a
relatively low molecular weight. However, no
activity was demonstrated in broth cultures.
These bacteriocins required a stabilizing agent
such as agar, agarose, starch, dextran, or glyc-
erol.

In subsequent studies, some additional strains
of S. mutans were found to produce bacteriocins
active against several species (298, 476, 624).
Hamada and Ooshima (226), using the stab

culture method, found that some ofthe reference
and freshly isolated S. mutans strains inhibited
the growth of a wide variety of gram-positive
bacteria, including mycobacteria, streptomyces,
and actinomyces. They proposed that the bac-
teriocin of S. mutans be designated "mutacin"
to differentiate it from those produced by other
streptococcal species. The name has been ac-
cepted (46, 560).
Among 113 clinical isolates of S. mutans from
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Japanese children (220), 84 strains (74%) in-
hibited at least one of the ten indicator strains,
which included S. mutans, S. salivarius, S. san-
guis, and S. pyogenes (225). This result indicated
the high level of bacteriocinogenic ability of S.
mutans as compared with other gram-positive
bacteria (560, 605). Serotype c strains account
for 85 of the 113 clinical isolates, and these
strains produce mutacins more frequently than
those of other serotypes (225). Essentially simi-
lar results have been obtained by others (480).
Very few strains are found to produce muta-

cins extracellularly (225). Stabilizing agents did
not support mutacin production (298). Mutacins
are generally heat stable, and some are protease
sensitive. Mutacins contain at least two kinds of
active components which have different molec-
ular weights (225, 479). Production of mutacins
is influenced by the culture media used. Fur-
thermore, when the indicator S. mutans strains
are cultured in broth containing 5% sucrose,
sensitivity to the mutacin decreases remarkably
(225). A coating of extracellular glucan most
likely renders normally susceptible organisms
resistant to mutacin action (477).

Strains of S. mutans have been characterized
and differentiated by the production of, and
sensitivity to, mutacins. Mutacin typing may be
a useful tool in epidemiological studies (14, 298,
478, 480). The possibility of maternal and/or
intrafamilial transfer of S. mutans has been sug-
gested based on the similarity of mutacin pat-
terns (14, 478, 382). Rogers (478) reported that
one mutacin type of S. mutans predominates in
the individual human mouth. However, plural
serotypes of S. mutans were isolated from a
single human subject (220, 382). These strains
should have different mutacin patterns.
Eleven of 17 human strains and 7 of 16 rat

strains of S. mutans, all of which are nonlyso-
genic, produce mutacins. Most of the nonmuta-
cinogenic rat strains are tetracycline resistant
(290).

Extracellular Mutacins
Although many strains of S. mutans produce

mutacins on solid agar plates, only a few strains
have been reported to produce mutacins extra-
cellularly in broth culture of the same composi-
tion (225,294,458,479). Addition ofyeast extract
(2 to 4%, final concentration) to Trypticase soy
broth promoted the synthesis of extracellular
mutacins (225, 294).

Paul and Slade (458) isolated and partially
purified the extracellular mutacin from S. mu-
tans GS5 (serotype c). It was necessary to add
horse serum (5%, vol/vol) to the broth media to
obtain consistent activity. The mutacin GS5 is
a protein with a molecular weight of about
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20,000, and it is sensitive to trypsin and pronase.
It is lethal for various streptococcal strains be-
longing to Lancefield groups A, C, D, G, L, and
0, but inactive against S. mutans strains of
serotypes a, b, c, and d. The mutacin binds to
the sensitive cells as well as to the cells resistant
to its lethal action. Recently, Perry and Slade
(461) isolated the specific receptor molecule for
the mutacin from an S. pyogenes strain which
inhibited the activity of mutacin GS5. The re-
ceptor has a molecular weight of about 93,000
and may be a heat-sensitive glycoprotein.

Delisle (102) obtained a bactericidal substance
from S. mutans strain BHT (serotype b) by
sonication or agitation of the culture with glass
beads. The chemical properties of this mutacin
have not been described. The extracellular glu-
cans produced from sucrose by this strain did
not prevent mutacin production. Furthermore,
sensitivity of the indicator strains producing
polysaccharides from sucrose remained unal-
tered even when sucrose was present (103), con-
trary to the results of Hamada & Ooshima (225)
and Rogers (479).
The only information available on the mech-

anism of action of bacteriocins of streptococci
indicates an inhibition of DNA, RNA, and pro-
tein synthesis (512). No involvement of a plas-
mid in mutacinogeny has been reported, al-
though extensive surveys have been made (102,
225, 226, 290, 294).
More recently, S. Hamada and H. Imanishi

(unpublished data) found that a clinical isolate
of S. mutans (serotype g) produced mutacin
extracellularly in tryptose phosphate broth. Nei-
ther yeast extract nor serum was required for
the production of the mutacin. It was heat sta-
ble, protease insensitive, and active against some
other S. mutans strains as well as other strep-
tococcal species. Similar mutacinogenic serotype
g strains were isolated from the sister and
mother of the patient, indicating an intrafamilial
transmission, as has been suggested by others
(316). Characterization of this mutacin is now in
progress.
A possible in vivo role for mutacins has been

suggested recently. The streptococcal species
killed by a mutacin in vitro were also sensitive
to the mutacin in vivo (604). Rogers et al. (481)
reported that a mutacinogenic S. mutans strain
prevented the oral establishment of A. viscosus
Nyl when introduced into gnotobiotic rats.
However, a nonmutacinogenic S. mutans strain
did not show such an inhibitory effect. Similar
findings have been obtained with a mutacino-
genic parent strain and a nonmutacinogenic mu-
tant strain of S. mutans (482). Mutacin produc-
tion by S. mutans strains has been shown to
occur in vivo, and this ability appears to be
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ecologically advantageous to the invading S. mu-
tans strain in a microenvironment (585). Fur-
thermore, a cell-free preparation of mutacin
from a serotype c strain was shown to inhibit
caries induction by a mutacin-sensitive S. mu-
tans strain (T. Ikeda et al., Int. Assoc. Dent.
Res. Abstr. no. 1147, 1979). These results indi-
cate that some mutacins are concemed in the
ecology of the oral flora.

IMMUNOLOGICAL ASPECTS OF
S. MUTANS

Distribution of S. mutans Serotypes
in Humans

It is essential to know the distribution of S.
mutans serotypes in human populations before
considering the immunological aspects of S. mu-
tans and dental caries. After the existence of five
serotypes in S. mutans was established (32), the
geographical distribution of S. mutans serotypes
in plaque samples obtained worldwide was sur-
veyed (32). Serotypes c and d were found in
every area. Serotypes a and b were also detected
in samples from 6 and 9 areas, respectively, of
the 14 studied. All of the plaque sampled from
American boys (14 to 16 years of age) contained
serotype a and d strains. Serotypes b and c were
present in 74 and 8% ofthe samples, respectively,
and no serotype e was detected (201).
However, later studies with isolates cultured

from human plaques have revealed that serotype
c is the most frequently detected serotype of S.
mutans, irrespective of age, country, sampling
site, or isolation and serotyping procedures. Se-
rotype c usually comprises about 80% of the
total isolates (38, 220, 368, 382, 459, 467, 577).
Other serotypes such as d, e, f, and g have been
occasionally isolated. However, it is surprising
that almost none of serotype a and b strains
were found in most of the recent studies. This
finding is in sharp contrast to the earlier reports
demonstrating the prevalence of serotypes a and
b in plaque samples (32, 201, 275).
Other investigators also demonstrated, using

a biotyping method, that strains similar to se-
rotype c predominated (174, 292, 521, 522), al-
though the biotyping method cannot differen-
tiate serotypes c and e (221, 577).

In Vitro Effects of Antisera Against
S. mutans

Antibodies raised against various cellular and
extracellular components of S. mutans have
been shown to exert a variety of effects on the
biological activities of S. mutans. Antisera
against whole cells of S. mutans markedly in-
hibit the adherence of homologous or immuno-
logically related cells of S. mutans to smooth
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surfaces (230, 427, 428, 447). The adherence in-
hibition was found to depend on IgG antibody
(447). The antibody specific for the a-d site of
the serotype a S. mutans was reported to inhibit
the binding of GTase and subsequent adherence
of S. mutans cells (427). Antibody specific for
serotype e, but not cross-reacting group E anti-
gen, inhibited adherence of serotype e S. mutans
cells. However, these antibodies did not prevent
the binding of GTase to serotype e S. mutans
(230). Similar findings have been obtained with
serotype d S. mutans cells (237).
Some antisera against whole cells ofS. mutans

significantly inhibit the enzymatic activity of
extracellular GTase and hence the subsequent
adherence to smooth surfaces (139, 222, 230, 427,
428, 538). Anti-GTase activity is not related to
whole cell agglutination titers (222), and the
inhibitory activity cannot be diminished by ad-
sorption with the homologous whole cells (139,
222). The inhibition by antiserum is serotype
dependent. Serotype c, e, and f and type a, d,
and g S. mutans are separated into two major
groups. Similar relations have been reported
with the antisera directed against extracellular
GTase of S. mutans (236, 331, 332, 538).

Information on the penetration of antibody
into the plaque is limited. In vitro S. mutans
plaque was found to contain the specific anti-
body at the plaque surface as shown by immu-
nofluorescence (279). Additional studies are
needed.

Opsonization of S. mutans, followed by phago-
cytosis and killing by polymorphonuclear leu-
kocytes, has been demonstrated by using anti-
sera from rhesus monkeys immunized with
whole cells of serotype c S. mutans (516, 517).
The monkey antiserum to serotype c S. mutans
induced maximum phagocytosis and killing of
serotype c and e strains, which are immunolog-
ically related. Serotype a and d cells were also
opsonized but to a lesser degree.

Immunological Responses of Host to
S. mutans

Various antibodies reacting with S. mutans
have been detected in serum, saliva, and colos-
trum by several investigators using different
methods. In many infectious diseases, serum
antibodies play a protective role. Patients with
immunoglobulin dysfunctions have been found
to have a greater susceptibility to dental caries
(87). In addition to humoral antibody responses,
local immunity may be enhanced to contribute
to protection against diseases of mucosal sur-
faces including the oral cavity (397).
Only a slight difference in serum antibody

titers was observed between caries-free and



STREPTOCOCCUS MUTANS 357

rampant-caries groups (299). Cell-wall aggluti-
nation tests were used to detect antibody against
S. mutans in sera. However, the cell walls were
prepared from serotype a, b, and d S. mutans,
which were later found to be rare serotypes in
the human population as discussed above. More
recently, it has been suggested that the immu-
nological response against dental caries is asso-
ciated with the proportion of IgG to IgA and
IgM classes of antibodies to serotype c S. mutans
(346).
Many oral bacterial species have been found

to react with salivary antibody (29). Significant
levels of agglutinins specific for the five sero-
types of S. mutans were detected in normal
human colostrum and saliva, whereas relatively
low levels were found in serum. The agglutinin
activity was identified as secretory IgA (5). It is
suggested that antigenic stimulation occurs at a
site remote from the oral cavity, because secre-
tory IgA to the bacteria of the indigenous oral
flora was found in the colostrum as well as the
saliva (398, 414).
Arnold et al. (4) further demonstrated that 8

of 25 patients with selective IgA deficiency had
significant levels of IgM in their saliva. In the
normal control group, IgA was responsible for
antibody activity. These results suggest a biolog-
ical activity for secretory IgM which compen-
sates for the absence of secretory IgA.
A positive correlation between increased car-

ies incidence and decreased levels of salivary
IgA in humans has been reported by different
groups of investigators (41, 66, 140, 141, 341,
453). Recently a significant negative correlation
has been reported between salivary IgA specific
for serotype b S. mutans and the dental caries
of 20 children (3 to 7 years old), implying that
IgA provides protection against dental caries
(142).
IgA antibodies reacting with serotype c S.

mutans in secretions from minor salivary glands
of humans have been found (234). Furthermore,
parotid saliva from all subjects tested had IgA
antibodies to various serotype-specific polysac-
charides, LTAs, and the peptidoglycan of S.
mutans (33-35). It should be noted that a signif-
icant variation of antibody titers was observed
during the experimental periods (33, 35, 234).

Possible Vaccination with
S. mutans Antigens

Immunization with S. mutans is an attractive
concept for the control of dental caries (339). In
this respect, two different hypotheses have been
proposed for the mechanisms of immunological
control against dental caries. One hypothesis,
put forward primarily by British groups, is that
serum IgG antibodies are mainly responsible for

the protective effect (47, 343, 344), whereas
American workers suggest that secretory IgA in
saliva inhibits adherence of S. mutans to tooth
surfaces (138, 400, 409, 573). However, it should
be noted that these two mechanisms are not
necessarily mutually exclusive.
A preliminary study has shown that three irus

monkeys vaccinated with whole, live cells of a
serotype c S. mutans developed significantly
fewer carious lesions than control, nontreated
monkeys (24). Subsequently, it was demon-
strated that whole cell or broken cell vaccines
conferred significant protection in monkeys, es-
pecially when the immunogen was administered
by intraoral submucosal injection (26). It was
suggested that the induction of local immunity
is not a prerequisite, because good protection
was obtained by immunization via both submu-
cosal and subcutaneous routes (85). Protection
was not obtained with glucosyltransferase prep-
arations in the monkey test system (26, 85).
Lehner et al. (342, 343) have reported the

immunization of rhesus monkeys with serotype
c S. mutans cells mixed with incomplete Freund
adjuvant. They found protection with use of the
complete immunogen and a delayed onset of
caries with the adjuvant alone. Immunized ani-
mals contained demonstrable serum antibody to
GTase that inhibited GTase activity (498). Im-
munization enhanced serum IgG and IgM titers,
whereas there was little increase in the salivary
IgA titers in the immunized compared with non-
treated control monkeys (340). The reduction in
caries was associated with a reduction in the
number of CFU of S. mutans in the fissures
(340). A correlation was found between the CFU
of S. mutans and the number of carious lesions
in rhesus monkeys (47). More recently, protec-
tion was demonstrated against dental caries in
rhesus monkeys infused passively by the intra-
venous route with antibodies of the IgG class.
Intact molecules of IgG, IgA, and IgM have been
shown to pass from plasma to the oral cavity via
crevicular fluid, and therefore can contribute to
local defense mechanisms (67, 343).

In contrast to the findings described above,
ample evidence has been reported indicating the
primary importance of local immunity due to
secretory IgA antibodies. Taubman and Smith
(573) demonstrated that local immunization
with formalinized whole cells of S. mutans re-
sulted in an enhanced salivary IgA response and
reduced caries development in both conven-
tional and gnotobiotic rats. It was also found
that similar immunization using cell-free GTase
preparations with Freund complete adjuvant re-
sulted in the presence of antibodies in saliva of
rodents (540, 574) and monkeys (7). Oral im-
munization of hamsters with the enzyme pro-
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duced similar results (540). Reductions in car-
ious lesions were greater on smooth surfaces of
teeth than on occlusal surfaces, probably due to
interference with adherence of S. mutans (325,
574). In these cases, salivary antibody is the
most likely protective principle in the rodents.

Local immunization with whole cells of S.
mutans stimulates a specific salivary IgA re-
sponse which is protective against caries induc-
tion by S. mutans infection (400). Similar find-
ings have been demonstrated in irus monkeys
by injection of S. mutans into the vicinity of the
major salivary glands or parotid ducts (134, 138).
The ingestion of Formalin-treated cells of a

serotype g S. mutans strain has been shown to
stimulate specific secretory antibodies in saliva
and milk but not in serum of rats. These anti-
bodies were found to be of the IgA class. Orally
immunized rats developed significantly fewer
carious lesions than nontreated control rats
(409). The level of specific salivary IgA antibod-
ies in rats correlated with a reduction in the
level of plaque and caries scores and the viable
counts of S. mutans in plaque (408).

Intravenous or intramucosal administration of
vaccines to female rats produced elevated IgG
in colostrum, milk, and serum and elevated IgA
in colostrum and milk, respectively. Passive
transfer of either IgG or IgA has been found to
render protection against caries development in
rat offspring (399, 407). These results support
earlier findings (345).
A recent report (406) has indicated that a

secretory IgA immune response is elicited in
humans by ingestion of capsules that contain
Formalin-treated cells of S. mutans strain
OMZ176 (serotype d). No increase in serum
antibody levels was demonstrated. It is of inter-
est to note the simultaneous appearance of an-
tibodies in remote secretory glands such as the
salivary and lacrymal glands without a serum
antibody response.

Protein-malnourished rats exhibited in-
creased caries susceptibility (405). However, a
nutritionally compromised rat can elicit a spe-
cific immune response that protects against S.
mutans-induced caries (411).

It should be noted here that immunological
cross-reactions have been observed occasionally
between human heart tissue and certain com-
ponents of S. mutans strains (85, 498, 587).
These antigens have not been described, but
their presence in vaccine antigens is of great
concern. It seems possible, however, that certain
antigens, GTase for example, may be useful
(540). Low concentrations of IgG antibody to
this enzyme exist in the serum of young normal
adults (22a). Heart-reactive antibody was not

adsorbed from pooled acute rheumatic fever sera
by S. mutans 6715 (587). The quantity of anti-
body necessary to reduce the caries rate in hu-
mans after oral immunization with GTase may
not be detrimental to the host (540).
Other antigens of S. mutans deserve consid-

eration as a vaccine to reduce the incidence of
dental caries. Antibodies to the type-specific
polysaccharide and the glucan of serotype a
(strain HS6) will inhibit the in vitro adherence
of this species (427, 428). Type-specific polysac-
charide antibodies to the type e (strain MT703)
have the same property (231). The isolation of
a rhamnose-rich polysaccharide from the cell
wall of serotype d S. mutans (462) indicates that
polymers other than the serotype polysaccha-
rides remain to be characterized. Polysaccha-
rides would be expected to produce fewer reac-
tions when used as an antigen in humans.

CARIOGENICITY OF S. MUTANS
IN EXPERIMENTAL ANIMALS
Caries Induction in Animals

After the epoch-making experiments by Or-
land and his co-workers (451) in which germfree
rats were used, Fitzgerald and Keyes (157) dem-
onstrated in 1960 that certain streptococcal
strains isolated from carious lesions of rats and
hamsters could produce caries in gnotobiotic
rats and "caries-inactive" hamsters (156, 157,
302). These strains are not termed "S. mutans."
The "caries-inactive" hamsters have been found
to be free from indigenous microflora which
could induce dental caries when a caries-induc-
ing high-sucrose diet is fed. Once S. mutans is
established in the mouth of the animal, caries
activity is transmitted from parent to offspring
(157, 302).

In the earlier stage of caries research, it was
thought that there might be a specificity be-
tween the caries-inducing streptococci and the
host animal species. However, Zinner et al. (628)
demonstrated that human strains of S. mutans,
which reacted with the antiserum against the
hamster strains of S. mutans, could produce
extensive caries in hamsters. Since then, many
streptococcal strains isolated from the human
mouth have been shown to be cariogenic in
various animal model systems (126, 127, 151,
183, 202, 207, 229, 321, 322, 433). Most of the
cariogenic strains belong to the species S. mu-
tans. However, organisms other than S. mutans
can occasionally induce variable levels of caries
in animals (for review, see reference 196).
Dental caries have been induced in various

kinds of animals, including monkeys (24), gerbils
(150), mice (229, 551), rats, and hamsters. The
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transmission of S. mutans from hamsters to mice
and caries induction in mice have also been
demonstrated (551).

Strains of S. mutans, regardless of their sero-

types, almost always induce smooth-surface and
pit-and-fissure caries in animals (229, 322, 410).
Strains of serotypes a, d, and g S. mutans tend
to produce smooth-surface caries preferentially
in rats (229, 410). However, variations are fre-
quently observed in the pattern and severity of
the induced carious lesions in experimental ani-
mals (366). In general, young animals are more

susceptible to a caries attack (335, 412, 434, 515).
Dietary factors critically influence the com-

position and pathogenic potential of inoculated
S. mutans by affecting the implantation, colo-
nization, and metabolic activities of the bacte-
rium. Sucrose has been demonstrated to be most
cariogenic and supports the most rapidly pro-
gressive pathogenesis, although other sugars,
such as maltose, lactose, and fructose, also sup-
port the induction of dental caries in animals to
some extent (51, 168, 563).

Noncariogenic and Supercariogenic
Mutants of S. mutans

To identify a virulence factor in the pathogen-
esis of an infectious disease, mutants which lack
one or more characteristic properties possibly
responsible for pathogenic processes are a useful
tool to analyze the mechanism of the pathogen-
esis.

In the work cited below, it should be noted
that the presence of a single mutation has not
been established. It is reasonable to assume,
based on the techniques used, that more than
one mutation is present. Also, a mutation, if
present, may be only indirectly related to the
character(s) being considered.
De Stoppelaar et al. (107) isolated a mutant

which failed to synthesize cell-bound glucan in
5% sucrose broth from a serotype c strain of S.
mutans. The inability to synthesize insoluble
glucans of an adherent nature was accompanied
by a significant reduction of cariogenic potential
in experimental animals. The mutant also
showed a dramatic loss of viability due to acid
production from either glucose or sucrose (113).
Freedman and Tanzer (165) isolated mutants

of S. mutans 6715 (serotype g) that differed from
each other in colonial morphology on MS agar.
They found that the mutants lost the ability to
adhere to a wire surface but retained the ability
to agglutinate and form macroscopically visible
clumps in the presence of sucrose or exogenous
glucans. The mutants were found to produce
increased amounts of water-soluble extracellular
glucans (163, 165). The latter finding coincides

with the fact that cells of these mutant strains
bound significantly lower quantities of extracel-
lular GTase from S. mutans (235).

Furthermore, the mutants differed from the
parent strain in that each failed to form plaque
on the smooth surface of the teeth and to pro-
duce smooth caries in specific-pathogen-free and
gnotobiotic rats (567). However, these mutants
produced sulcal caries, although with diminished
intensity. These results indicate that surface-
associated glucan synthesis by S. mutans appar-
ently contributes to the local environment and
promotes the pathogenic potential of S. mutans
on smooth tooth surfaces. This is probably due
to a barrier effect of the glucan layer to the
diffusion of metabolically excreted lactic acid,
which has been considered to be critical in the
demineralization of the teeth (567). The above
results also indicate that cell-to-surface adher-
ence via insoluble glucan synthesis from sucrose
is a more important factor than cell-to-cell ag-
glutination induced by glucan in the pathogen-
esis of dental caries.
A surface fuzzy coat is suspected to contain a

glucan receptor which may be responsible for
glucan-induced agglutination in both parent and
mutant strains of S. mutans 6715. On the other
hand, only the parent strain produces extracel-
lular glucans with predominantly fibrillar mor-
phology (432).
Other investigators also isolated similar types

of mutants from serotype g S. mutans strain
AHT (308, 314) and serotype c strains GS5 (28,
280, 281) and PS14 (415). A mutant of S. mutans
LM7 (serotype e) forming little cell-bound glu-
can has been reported to attach to the teeth of
rats comparably to its parent. However, cari-
ogenic activity of these strains was not compared
(79).
Mutants which produce elevated levels of

GTase have been isolated independently by two
different groups (415, 502). These mutants dem-
onstrate increased ability to adhere to glass sur-
faces (415, 502) and produce more carious lesions
than the parent strain (415). Thus, a clear cor-
relation has been demonstrated between cari-
ogenicity, in vitro adherence, and insoluble glu-
can synthesis in S. mutans.
Other types of mutants that synthesize or

degrade less IPS have been isolated from two
serotype c strains which are strong producers of
IPS (166). These mutants had diminished viru-
lence both on smooth tooth surfaces and in
fissures (568). The loss of cariogenicity of these
mutants is attributed to diminished ability to
produce acid from endogenous IPS storage in
the absence of exogenous carbohydrates. How-
ever, strains of serotype dlg which have low
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IPS-forming ability (164) do not appear to de-
pend on this property for caries induction as do
strains of serotype c.

S. MUTANS AND DENTAL CARIES
IN HUMANS

Effect of Sucrose on the Proportion
of S. mutans

The famous Vipeholm study provided strong
support for a close relationship between sucrose
intake and human caries prevalence (213). Re-
cent studies with gnotobiotic rats (413) have
revealed that as little as 0.1% sucrose in the diet
can significantly promote the development of
dental caries by S. mutans 6715, indicating that
the consumption of artificially high levels of
sucrose is not necessary for the induction of
dental caries.

It is well known that dietary carbohydrates
and infection with S. mutans are essential fac-
tors in the development of dental caries (303,
511). Among dietary carbohydrates, sucrose is
considered to be directly related to dental caries
(51, 168, 380).
Several studies on the effect of dietary sucrose

on streptococcal composition in plaque flora
have been carried out with human subjects.
Carlsson and Egelberg (58) reported that plaque
formation was heavier during high-sucrose diet
periods than in glucose diet periods. When six
subjects were instructed to abstain from any
dietary carbohydrates for 17 days, the S. mutans
count decreased to an undetectable level while
the percentage of S. sanguis increased (109).
Such an inverse relationship between the S.
mutans and S. sanguis population was observed
in other investigations (167, 547). Other nutri-
tional interactions between S. mutans and S.
sanguis may be important for the ecology of
these organisms in the oral flora (57).

Contrary to an earlier study (58), it was re-
ported that high-sucrose diets had no significant
effects on total plaque accumulation, although
tQtal viable microbial density and populations of
S. mutans and lactobacilli increased (547). A
low-sucrose diet did not completely eliminate S.
mutans from the oral flora (547) as was shown
in a study with monkeys (306).

Epidemiological Relationship Between
S. mutans and Caries Development

Many strains of S. mutans isolated from hu-
mans have been demonstrated to be cariogenic
in experimental animals as described above.
However, these results do not necessarily apply
to human dental caries. To clarify the etiological
role of S. mutans in caries development in hu-
mans, we must depend on epidemiological stud-

ies which relate the microbes of the carious
lesion or dental plaque to the initiation of caries
at the tooth site. The rationale for the hypoth-
esis that S. mutans is strongly associated with
human caries has been supported by the follow-
ing epidemiological studies.

S. mutans was isolated from all carious lesions,
whereas only 23% of the samples from sound
tooth surfaces of children (13 to 14 years old)
contained the bacterium (362). Similar tenden-
cies were also found in younger (135, 553) and
older (17 to 22 years old) (257, 523) subjects.

In an extensive study, it was concluded that
there is a strong association between percentage
levels of S. mutans in single occlusal fissures and
dental caries. Seventy-one percent of the carious
fissures retained S. mutans, accounting for more
than 10% of the viable count, whereas 70% of the
fissures free from caries had no detectable levels
of S. mutans (372). Furthermore, it has been
shown that aciduric bacteria such as Lactoba-
cillus are detected in significant quantities in
the dentinal carious lesion as the decay pro-
gresses (373, 525, 561).
More recently, it was demonstrated that the

proportion of S. mutans in samples from early
carious lesions (white spots) of smooth tooth
surfaces was significantly higher than that from
the adjacent sound surface. No significant num-
bers of lactobacilli were found in the early lesions
(118).
However, the etiological involvement of a bac-

terium in the oral flora cannot be fully attributed
by cross-sectional studies in the case of a chronic
disease such as dental caries. To overcome the
problem, several longitudinal studies that dem-
onstrate cause-and-effect relationships have
been reported. The distribution of S. mutans on
the tooth surfaces was followed over a period of
18 months. The development of caries was more
frequently preceded by colonization with ele-
vated levels of S. mutans (268). Subsequently,
other investigations (291, 310, 559) have led to
similar findings.
On the other hand, no significant relationship

between S. mutans and the initiation of dental
caries in Danish preschool and British school
children was found (246, 416). The variable re-
sults may be attributed to complex factors such
as sampling sites, methods of cultivation, fluo-
ride content, eating habits of the subjects, su-
crose intake, and possible immunity in the oral
cavity.

It is of interest to note here that a significant
increase in S. mutans in saliva and dental plaque
is observed in patients who have received radia-
tion therapy of the major salivary gland. A close
relationship is established among rampant car-
ies, xerostomia due to degeneration of salivary
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glands, and an increase in S. mutans (363).
In a survey of 22 infants over a period of 30

months, no clear-cut association between the
development of caries and previous detection of
S. mutans was reported (382). However, S. mu-
tans was isolated from all 12 of the infants who
developed caries. During the test period,
changes in the distribution of serotypes were
occasionally noted. Serotype dlg strains have a
tendency to give rise to smooth-surface caries;
serotype c strains were always present (382).

In this context, as the number of erupted teeth
increases, there is a gradual increase in the prev-
alence of S. mutans. Edentoulous newborns or
aged men do not harbor significant quantities of
S. mutans (59, 62, 63, 382). It appears that S.
mutans is most likely transmitted intrafamilially
(14, 15, 316, 382).

PREVENTION OF CARIES CAUSED BY
S. MUTANS

In theory, dental caries can be prevented by
eliminating cariogenic bacteria, especially S. mu-
tans, from the mouth, as well as by increasing
the resistance of teeth and modifying the diet
(303, 305, 366, 437, 511). In the following sections,
emphasis has been paid mainly to methods in
the first category.

Suppression of S. mutans by Antimicrobial
Agents

The usefulness of penicillin in preventing ex-
perimentally induced caries has been noted since
the pioneering work of McClure and Hewitt
(396); they suspected Lactobacillus acidophilus
as a causative agent. Since then, ample evidence
has accumulated which shows that most anti-
biotics with antimicrobial activity against gram-
positive bacteria depress the development of
dental caries induced in experimental animals
(18, 152, 153). Furthermore, young human pa-
tients (6 to 19 years old) who had received long-
term administration of penicillin and/or tetra-
cycline for treatment of chronic infectious dis-
eases developed about two-thirds fewer caries
than did control subjects (242). This observation
could be explained by the recent finding that the
presence of the very low concentrations of both
penicillin G and sulfadiazine markedly inhibits
in vitro plaque formation by S. mutans (607).
However, Weld and Sandham (608) reported

that long-term therapy with penicillin and sul-
fadiazine did not cause a significant reduction in
the proportions of S. mutans or lactobacilli, al-
though the organisms isolated from the patients
demonstrated high susceptibility to penicillin.
No penicillin-resistant strains of S. mutans have
been described.

S. mutans has been reported to be highly
susceptible in in vitro tests with penicillin, am-
picillin, erythromycin, cephalothin, methicillin,
and many other antibiotics (10, 147, 361). It is of
interest that serotype a and b strains of S. mu-
tans are very susceptible to bacitracin and po-
lymixin B, respectively; other serotypes are not
susceptible (361).

In spite of the in vitro effectiveness of anti-
biotics, it is not practical to use them for caries
control. Recent investigations, however, suggest
that certain antimicrobial agents may be used
on a short-term basis to suppress S. mutans.
Such agents as vancomycin (105, 283), kanamy-
cin (367), and iodine (64, 184, 570) can be used
topically for this purpose.
Other agents that have been reported to sup-

press S. mutans and other cariogenic bacteria
include fluoride (371, 374, 627), bisbiguanidines
(137, 197, 570), and surfactants (9, 571). Many of
these antimicrobial and antiplaque agents have
been found to inhibit GTase activity of S. mu-
tans (74; Torii and Hamada, Abstr. Jpn. Assoc.
Oral Biol., 1979).
Another unique method is the use of a bacte-

riolytic enzyme termed "mutanolysin," which
has been purified from a soil bacterium (625,
626). Most S. mutans strains, including labora-
tory stock cultures and fresh clinical strains, are
markedly lysed by this enzyme (239). Mutano-
lysin inhibits the accumulation of dental plaque
and the development of caries induced by S.
mutans strainAHT or KIR in specific-pathogen-
free hamsters (455).

Inhibition of Adherence of S. mutans by
Glucan-Hydrolyzing Enzymes

The synthesis of insoluble adherent glucan
from sucrose by S. mutans is a prerequisite for
the induction of dental caries in experimental
animals. Plaque deposits on wire can be removed
by a dextranase preparation obtained from Pen-
icillium funiculosum (159). In vitro studies in-
dicate that dextranases, a(1-6) glucanases,
have limited ability to degrade the extracellular
glucans produced by S. mutans (203, 224, 315,
435, 514). In subsequent studies, a(1-6) glucan-
ases of different origins effectively prevented
plaque formation and caries induction by S.
mutans strains in hamsters (155, 159, 161). Sim-
ilar positive results have been obtained with
other animal model systems (25, 227, 228, 463).
Human clinical trials of a(l -.6) glucanases have
resulted in conflicting antiplaque effects (48, 117,
199, 304, 364, 430).
Other investigators claimed that a(1-+6) glu-

canase exerted no inhibition of plaque formation
or of caries induction in a rat test system (208).
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They later reported that a(1- 3) glucanase,
termed "mutanase," from a strain of Tricho-
derma harzianum (206) did inhibit caries induc-
tion (210, 211). Preparations of a(l- 3) glucan-
ase have been reported to impair the coloniza-
tion of S. mutans in plaque (295) and to inhibit
the formation of dental plaque and gingivitis in
humans (297). Several insoluble glucan-hydro-
lyzing enzymes have been obtained from differ-
ent origins (123, 270). In vivo effects of these
a(l,o3) glucanases have not been examined.
More recently (527), a dextranase from a strain
of Fusarium moniliforme (528) had a much
greater affinity for HA than did the Penicillium
dextranase. The investigators suggest the occur-
rence of a more effective interference with the
initial attachment of S. mutans and subsequent
accumulation of dental plaque.

In this connection, yeast invertase that splits
sucrose into glucose and fructose is not regarded
as having a caries-inhibiting potential (160). Fur-
thermore, Gibbons and Keyes (186) reported
that addition of low-molecular-weight dextran
into a caries-inducing diet inhibited plaque for-
mation and caries induction as well as the in
vitro prevention of insoluble glucan synthesis by
S. mutans GTase. This finding, however, has
not been supported by other investigators (520).
A "coupling sugar" preparation significantly re-
duced caries activity in rats when it was substi-
tuted for sucrose in a rat diet (269). The coupling
sugar is produced by incubating starch, sucrose,
and cyclodextrin GTase from Bacillus megate-
rium (3, 446).

ENDOCARDITIS CAUSED BY
S. MUTANS

Subacute endocarditis caused by streptococci
is frequently due to the alpha-hemolytic and
nonhemolytic types. Abercrombie and Scott (1)
first reported a case of endocarditis caused by a
streptococcus that was considered identical to S.
mutans proposed by Clarke (81). In a recent
study in England, Parker and Ball (457) identi-
fied the species of the 317 streptococcal strains
which had been isolated from patients with sub-
acute endocarditis. The most numerous are S.
sanguis (16.4%), S. bovis (15.1%), and S. mutans
(14.2%, 45 strains). It is of interest to note that
all of them as well as certain S. mitior strains
(7.3%) synthesize glucan from sucrose.

Fifty-four strains of S. mutans from cases of
endocarditis in Denmark have been identified
and serotyped. The most prevalent was serotype
c (459). Seventy-seven stock strains isolated
from human blood designated as S. bovis were
rechecked, and 35 were identified as S. mutans
(106). There are no appreciable differences be-

tween the isolates from human blood (54 strains)
and dental plaque (50 strains) in terms of their
physiological characteristics (143).

Recently, several investigators have con-
firmed that subacute bacterial endocarditis can
be caused by S. mutans (243, 260, 365). The
patients had the typical picture of fever, heart
murmur, weakness, and repeated positive blood
cultures. Most patients had prior known valvular
heart disease. Teeth were suspected to be the
locus of infection in some cases. All the strains
were susceptible to various antibiotics including
penicillin G (243, 260). All the patients were
treated with penicillin G and streptomycin (243),
but a fatal case did occur (365).

It is important that clinical laboratories dif-
ferentiate S. mutans from the enterococcal spe-
cies. S. mutans is susceptible to low concentra-
tions of penicillin G, in contrast to enterococci,
which are usually resistant to this antibiotic (10,
243).
Experimental endocarditis due to various bac-

teria can be readily induced in rabbits by placing
a catheter in the left side of the heart (121).
With this model, Durack et al. (122) investigated
the effect of prior immunization with S. mutans
and S. sanguis on the susceptibility of rabbits to
experimentally induced streptococcal endocar-
ditis. Rabbits with a high complement-fixing
antibody titer to the infecting organisms devel-
oped the disease with a significantly lower fre-
quency than those with lower titers. The results
do not support the concept that immunization
with S. mutans for the prevention of dental
caries may increase the susceptibility of the im-
munized subjects to an endocarditis caused by
S. mutans (122).
The initial event of the pathogenesis of bac-

terial endocarditis is the attachment of bacteria
to heart valves, particularly those with damaged
aortic valves possessing a platelet-fibrin throm-
bus (2). Cell-bound glucan appears to promote
the establishment of S. mutans and other glu-
can-producing streptococci on the heart valves
(468, 510). Adherence to damaged valves is ap-
proximately five times higher than adherence to
normal valves. These results may explain the
high prevalence of glucan-synthesizing strepto-
cocci, including S. mutans, as the causative
agent of subacute endocarditis. Thus, the adher-
ence-promoting ability of glucan synthesized by
S. mutans appears to be the initial step in the
pathogenesis of endocarditis as well as dental
caries.

SUMMARY
It is likely that S. mutans is the primary cariogenic

bacterium in both humans and animals. Other bacteria
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found in actively progressive carious lesions are con-
sidered to be secondary invaders, probably commensal
with S. mutans with regard to their physiological
activities. Only a limited number of species of bacteria
other than S. mutans are occasionally found to be
cariogenic in experimental animals.

Virulence factors of S. mutans responsible for its
cariogenicity include the ability to adhere to smooth
surfaces and acidogenic-aciduric properties. Adher-
ence to smooth tooth surfaces is responsible for cari-
ogenic plaque formation by S. mutans and is mediated
by the de novo synthesis of a glucose polymer from
dietary sucrose. The synthesis is due to the action of
cell-free or cell-associated forms of GTases. This ex-
plains the marked caries-inducing property of sucrose
in diets.

In terms of bacterial taxonomy, the species S. mu-
tans includes a number of heterogeneous strains. Var-
ious immunological, biological, and biochemical prop-
erties and the epidemiological distribution of S. mu-
tans have been discussed in this review with special
reference to the seven serotypes of the microorganism.
The occurrence of S. mutans in subacute endocarditis
and the possibilities of a vaccine against dental caries
have also been discussed.
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