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Abstract: The study of gene-based genetic associations has gained conceptual popularity recently. Biologic insight into 

the etiology of a complex disease can be gained by focusing on genes as testing units. Several gene-based methods (e.g., 

minimum p-value (or maximum test statistic) or entropy-based method) have been developed and have more power than a 

single nucleotide polymorphism (SNP)-based analysis. The objective of this study is to compare the performance of the 

entropy-based method with the minimum p-value and single SNP–based analysis and to explore their strengths and weak-

nesses. Simulation studies show that: 1) all three methods can reasonably control the false-positive rate; 2) the minimum 

p-value method outperforms the entropy-based and the single SNP–based method when only one disease-related SNP oc-

curs within the gene; 3) the entropy-based method outperforms the other methods when there are more than two disease-

related SNPs in the gene; and 4) the entropy-based method is computationally more efficient than the minimum p-value 

method. Application to a real data set shows that more significant genes were identified by the entropy-based method than 

by the other two methods. 
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1. INTRODUCTION 

 Single nucleotide polymorphism (SNP)–based genome-
wide association studies (GWAS) have been a popular and 
successful method to identify disease-related SNPs. Howev-
er, this approach has much lower power when the number of 
SNPs increases and SNPs are correlated, especially when 
their effect sizes are small and only their cumulative effect is 
associated with a disease. Gene- or region-based analysis 
may have higher power to identify the causal variants that 
affect the complex disease, because it takes into considera-
tion the correlations among SNPs within a single gene. 

 The simplest method for gene-based analysis is the SNP-
based method, in which each genotyped SNP is tested for 
association, and multiple testing corrections based on the 
Bonferroni procedure are applied to control the type-I error 
rate. The most widely used single SNP-based association test 
method is Cochran-Armitage trend test (CATT) which has 
high power under additive and multiplicative disease models 
but much low power under recessive disease model [1-4]. 
The genotypic test based on a 2 3 contingency table is ro-
bust to different disease models [5]. Some other innovative 
methods include entropy-based method which is generally as 
good as or even more powerful than the genotypic test [5, 6]. 
The SNP-based method for gene-based analysis has low 
power when the causal variants are highly correlated with 
one or more genotyped SNPs and when the causal SNPs are 
not genotyped. The power of the SNP-based method can be 
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improved by combining the information from neighboring 
SNPs within a single gene. Several methods have been de-
veloped to analyze multiple SNPs within the same gene sim-
ultaneously. These methods include Fisher’s method for 
combining p-values by a logarithm function of p-values and 
the minP (minimum p-value) or maxT (maximum test statis-
tics) method in which the significance level can be deter-
mined by the observed p-value. However, the empirical p-
value must be calculated by using permutation, because the 
limiting distributions of Fisher’s statistic and minP (maxT) 
statistic are unknown under the null hypothesis that the gene 
is not associated with the disease.  

 Another alternative method to combine multiple SNPs is 
to do multivariate tests. Chapman and Whittaker proposed a 
multivariate score test statistic that is equivalent to the score 
test for the logistic regression model [7]. Another test statis-
tic based on an empirical Bayesian model for the parameters 
was similar to the above multivariate score test statistic [8]. 
Wang and Elston proposed a test statistic using a weighted 
Fourier transform of the genotypes to reduce the test degrees 
of freedom [9]. Chapman and Whittaker compared the above 
five methods by simulation studies, and they found that the 
minP (maxT) and Goeman’s method perform well over a 
range of scenarios [7].  

 For the minP (maxT) method, a Monte Carlo (MC) 
method can be used to evaluate the empirical p-values based 
on approximating the joint distribution of the test statistics 
by an MC-sampling approach. This is computationally feasi-
ble compared with a permutation method [10]. An entropy-
based test statistic was recently proposed to test gene-disease 
association based on the joint genotypes on multiple SNPs 
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within a gene and a cluster-based analysis method was used 
to reduce the degrees of freedom of the test statistic [11].  

 In this study, we compare three methods, namely the sin-
gle SNP-based method, the maxT method with MC sampling 
to estimate the empirical p-value, and an entropy-based 
method, by simulation studies and real data analysis. We 
start with a detailed description of each method, followed by 
simulations and real data analysis.  

2. METHODS 

2.1. MaxT (or minP) Method with Monte Carlo Sampling 

 Much of what follows in the section below is adapted 

from Lin [10]. Consider one gene with m genic SNPs, each 

with two alleles. Let iY  be the phenotypic value of the i-th 

individual; let 
jiX  = 0, 1, or 2 be the genotype of i-th indi-

vidual at locus j; and let nYY
n

i
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where mjni 1,1 , and n is the sample size. The 

test statistic for the j-th locus within this gene is defined as 
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 distribution with jr  degrees of freedom, 

where jr  is the dimension of 
jU .  

 The test statistics (T1, T2,…, Tm) may be correlated due to 

linkage disequilibrium among SNPs within one gene. The p-

values evaluated by using the actual joint distribution of (T1, 

T2,…,Tm) can be computationally intensive. Lin [10] pro-

posed an MC method to approximate the actual joint distri-

bution to evaluate the empirical p-values by MC sampling. 
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jj

T

jj UVUT
~~~ 1

= , where 
jU

~
 = 

i

n

i jiGU
=1

, and G1, G2,…,Gn are independent, standard, 
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realizations from distributions of jT
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Pr( maxmax tT , where  is the preset significance lev-

el, then the null hypothesis that this gene is not associated 

with the disease is rejected. 

2.2. Entropy-based Test Statistic and Genotype Grouping 
via Penalized Entropy 

 For one gene with m genic SNPs, there is a total of 3m 

joint genotypes. However, the real number of joint genotypes 

is much less. Denote the number of observed joint genotypes 

for one gene by s (s<3m). Let 
A

ip  and 
U

ip  ( si1 ) be 

the frequencies of the i-th joint genotype in cases and con-

trols, respectively. Then the entropy-based test statistic for 

testing the association between this gene and a disease is as 

follows [11]: 
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 Under the null hypothesis that there is no association 

between this gene and a disease, Tgene follows a central 
2

 

distribution with m-1 degrees of freedom. 

 When the number of genic SNPs is high, the degree of 
freedom increases so that the power will decrease. To in-
crease the power, the rare joint genotypes could be grouped 
into common ones by using the penalized entropy measure 
(PEM) [11]: 

k

k

j
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where mk is the number of k-th joint genotypes. The joint 
genotype set with maximum value of I will be the corre-
sponding common joint genotype. To do so, we first sort all 
joint genotypes in descending order, according to their fre-
quencies. Then we calculate the PEM by adding one joint 
genotype to the present joint genotype set. If the PEM begins 
to decrease when the k-th joint genotype is added to the cur-
rent set, the common joint genotype set will include the for-
mer k-1 joint genotypes. 

 Once the grouping threshold is determined, we can pro-
ceed to calculate the similarities between one rare-joint 
genotype with frequency less than the threshold and all 
common genotypes and then group it with the common one 
that is the most similar.  

3. SIMULATION STUDIES 

 We evaluated the performance of the three methods de-
scribed above by using simulation studies. We simulated 
case-control samples in two methods: one using a linkage-
disequilibrium (LD)-based method similar to methods in [10, 
11], and the other using an MS program developed by Hud-
son [12] that is similar to programs developed by Tzeng 
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[13]. Although we will not discuss the LD-based simulation 
method here (see [11]), we describe below the detailed pro-
cess to generate samples by the MS program. 

3.1. MS Program 

 We used the MS program developed by Hudson [12] to 

simulate haplotypes for each individual to form individual 

genotype data. The main parameters under the coalescent 

model for generating haplotypes were set as: the effective 

diploid population size en  is 4101 ; the scaled recombina-

tion rate for the whole region of interest, bpne /4 , is 

3104 , where the parameter g is the probability of crosso-

ver per generation between the ends of the haplotype locus 

being simulated; the scaled mutation rate for the simulated 

haplotype region, bpne /4 μ , is set to be 4106.5  for the 

region of simulated haplotypes; and the length of sequence 

within the region of simulated haplotypes, n sites, is 10 kb. 

Similar parameter settings can be found in other studies [10, 

12, 13]. We set the number of SNP sequences in the simulat-

ed sample to 100 for each gene and run the MS program to 

generate the haplotype sample on the basis of these parame-

ter settings. Then we randomly selected a segment of 10 ad-

jacent SNPs as a haplotype. The two haplotypes are random-

ly drawn from the simulated sample containing 100 10-SNP 

haplotypes and are paired to form an individual genotype. 

3.2. Phenotype Simulation 

 In reality, we do not know the true functional mechanism 
for a given gene, so it is difficult to simulate the true func-
tional variants and the true functional mechanism within a 
gene [13]. Here, we considered three scenarios to mimic the 
situation of a complex disease in which there is one, two, or 
three disease-related SNPs within a given gene. For cases 
with two or three disease-related SNPs, complex interactions 
occur among the SNPs. Here we briefly illustrate how the 
disease phenotypes are simulated. 

 Scenario 1. Let f0, f1, f2 be three penetrances of three geno-
types. Denote 1 = f1/f0, 2 = f2/f1as the genotype-relative risks 
(GRRs). Let p be the disease allele frequency, and denote the 
disease prevalence as k. Then the three penetrances can be 
calculated for an additive, dominant, or recessive disease 
model (Table 1). We omit a multiplicative model, because the 
results of that model are similar to those from the additive 
model. Once f is determined, the case/control status is simulat-
ed according to a Bernoulli distribution, with the probability of 
success f conditional on the observed genotype data. 

Table 1. Single-SNP Disease Model 

Disease Model f0
a f1 f2 

Additive )221/( ppprev +
b 

f0 (2 -1)f0 

Dominant 
))2()1/(( 2 pppprev +

 
f0 f0 

Recessive )1/( 222 ppprev +  f0 f0 

aThe f0, f1, f2 are three penetrances of genotypes. 

bIn additive and dominant models,  = 1, and in a recessive model,  = 2. 

 For a disease model with two or three interactions of dis-
ease-related SNPs within a single gene (Scenarios 2 and 3), 
we follow the cases given in [14]. 

 Scenario 2. For the two-locus-interaction disease model, 

we denote the two-locus genotypes as (GA, GB) (0, 1, 2)2, 

which represents the number of risk alleles at each disease-

related SNP A and B. The two-locus-interaction disease 

model is as follows: 

Model 1: Odds(GA, GB) = (1+ )G
A

+G
B  

Model 2: Odds(GA, GB) = (1+ )G
A

I (G
A

>0)+G
B

I (G
B

>0)  

Model 3: Odds(GA, GB) = (1+ )I (G
A

>0 G
B

>0)  

where  is the baseline effect, and  is the genotypic effect. 

 Scenario 3. For the three-locus-interaction disease model, 

we denote the three-locus genotypes as (GA, GB, GC) (0, 1, 

2)3, which represents the number of risk alleles at each dis-

ease-related SNP A, B, and C. The three-locus-interaction 

disease model is as follows: 

Model 1: Odds(GA, GB, GC) = (1+ )G
A

+G
B

+G
C  

Model 2: Odds(GA, GB, GC) = (1+ )G
A

I (G
A

>0)+G
B

I (G
B

>0)+G
C

I (G
C

>0)  

Model 3: Odds(GA, GB, GC) = (1+ )I (G
A

>0 G
B

>0 G
C

>0)  

where  and  are the same as in Scenario 2. Once the dis-
ease-related SNPs are determined, the case-control status can 
then be simulated according to a multinomial distribution 
conditional on the observed genotype data. 

 We simulated data sets with 400 cases and 400 controls 
or 800 cases and 800 controls. For the evaluation of type one 
error rate, we simulated data sets using both LD-based and 
MS methods but for power, we only used MS method be-
cause it can better mimic the biological data. For each data 
set, we applied the three methods described above. The type-
I error rate was estimated based on 1000 replicates, and the 
power was estimated based on 100 replicates at a signifi-
cance level of 0.05. For the maxT method, the empirical p-
value was obtained based on 10,000 normal samples. 

4. REAL DATA ANALYSIS 

 To compare the three methods, we applied them to a 
large-scale, candidate-gene study. The data set contains 225 
cases and 585 controls on 190 candidate genes in a genetic 
association study of preeclampsia [15]. We removed SNPs 
with minor allele frequencies less than 0.05 and focused on 
the remaining 819 SNPs. We also removed 27 genes carry-
ing only one SNP. Similar to [11], we used a nominal level 
of 0.005 for the gene-based method and 0.005 dividing the 
number of SNPs within each gene for SNP-based method.  

 (Table 2) lists the p-values of significant genes and SNPs 
for the three methods. The genes and SNPs that showed sig-
nificant effects are formatted in bold. The entropy-based 
method identified seven significant genes among the 190 
genes evaluated. The single SNP-based method identified 
three significant genes, and the maxT method identified one 
significant gene. Thus, the gene-based entropy method iden-
tified the most number of significant genes. 
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5. SIMULATION RESULTS 

 (Table 3) presents the empirical type-I error rates of the 
single-SNP, maxT, and entropy-based methods based on the 
MS program and LD-based method. From (Table 3), we see 
that the maxT and entropy-based methods control the type-I 
error rate quite well. The latter also controls as the sample size 
increases. However, the single-SNP method has a much lower 
type-I error rate, which means that this method may have low-
er power. We also simulated 10 SNPs with r2=0.9, 0.5, and 0 
within one gene by using the LD-based method and found that 
all three methods control the type-I error rate well. 

 (Table 4) presents the estimated power of the SNP-based, 
maxT, and entropy-based methods for one disease-related 
SNP within a single gene. The maxT method appeared to be 
the most powerful among the three methods. The entropy-
based method had lower power than the maxT method, be-
cause when one disease-related SNP occurs within a gene, 
the cluster number in the entropy-based method will be 
large, so that the degree of freedom of the test statistic in 
equation (1) is high. This will affect the power of the entro-
py-based method.  

 (Tables 5 and 6) present the estimated power of the 
three methods for situations in which two or three disease-
related SNPs occur within a single gene. The entropy-based 
method appeared to be the most powerful method, and the 
single SNP–based method was the least powerful. This 
makes sense because when there are two or three interact-
ing-disease-related SNPs within one gene, the cluster num-
ber of the observed joint genotypes will be small. Thus, the 
degrees of freedom of the test statistic in equation (1) will 
be small, which will improve the power of the entropy-
based method. 

6. DISCUSSION 

 We have compared three gene-based association ap-
proaches by conducting simulation studies and one real data 

set analysis. Simulation results show that 1) all three meth-
ods effectively control the type-I error rate; 2) the single 
SNP–based method is very conservative; 3) when there is 
one disease-related SNP within a gene, the maxT method is 
the most powerful; 4) when there are two or three disease-
related SNPs within a gene, the entropy-based method is the 
most powerful. Real data analysis shows that the entropy-
based method identifies more significant genes than do the 
other two methods. In addition, we have compared the com-
puting time used by the three methods and found that the 
entropy-based method is computationally more efficient than 
the maxT method.  

 Given the unknown number of causal SNPs as well as the 
complex structure among/between causal and non-causal 
SNPs within the gene, and the complex underlying disease 
gene actions, the relative performance of different approach-
es for gene-based association tests strongly depends on dif-
ferent realistic scenarios. Considering genes as testing units, 
sometimes we have to move forward to pursue gene-based 
interactions to get better biological insights into the etiology 
of complex diseases [16]. As new approaches are increasing-
ly developed, we believe that no single approach is univer-
sally superb to others [4]. We suggest that users explore as 
many different approaches as possible and choose the best 
one based on their biological experience.  

 Rare variants may play an important role to explain the 
missing heritability of complex disease in post-GWAS re-
search. The correlations between rare and common SNPs and 
among rare variants are generally weak [17], and the number 
of causal rare SNPs each with moderate or large effect sizes 
may be large [18]. The novel statistical or computational 
methodologies for analyzing rare variants focusing on genes 
are urgently needed with the availability of large scale exo-
me or wholegenome sequencing data [19]. The relative per-
formance of these approaches for gene-based association 
tests is worthy of further investigation. 

Table 2. Analysis of the Preeclampsia Data Set Using the SNP-Based, Gene-based Entropy, and MaxT Methods 

Gene (No. of SNPs) maxTa Entropyb SNPc SNP-based Method 

APOB (9) 0.0379 0.0015d rs5456814 0.0165 

F13B (4) 0.0282 0.0029 rs28787657 0.0010 

F2 (7) 0.5812 0.0020 rs28886771 0.0021 

FGF4 (3) 0.0047 0.0039 rs634043464 0.0067 

IGF2R (14) 0.7919 0.0005 rs41410456 0.0330 

MMP10 (8) 0.1150 0.0006 rs634850223 0.0280 

PDGFC (2) 0.0527 0.0036 rs634820282 0.032 

IGF1R (7) 0.1312 0.1902 rs40893937 0.0006 

NOS2A (10) 0.3695 0.0547 rs9678181 0.0001 

aData were obtained using the maximum test statistic method.  

bData were obtained using the entropy-based method.  

cOnly SNPs with the smallest P-values within the corresponding genes are listed. 

dBold formatting of data indicates significant p-values. 
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Table 3. The Estimated Type I Error Rate Under the Null Hypothesis of No Association by Using MS Program 

 

 

 

 

SS 

 

 

MS Program 

LD-based Programs 

r2 = 0.9 r2 = 0.5 r2 = 0.0 

maxTa Entropyb SNPc maxT Entropy SNP maxT Entropy SNP maxT Entropy SNP 

400 0.05 0.06 0.03 0.05 0.06 0.027 0.06 0.06 0.06 0.04 0.04 0.04 

800 0.05 0.05 0.02 0.04 0.06 0.019 0.05 0.06 0.04 0.06 0.05 0.05 

aSS, sample size. 

bData were obtained using the maximum test statistic method.  

cData were obtained using the entropy-based method. 

dData were obtained using the single-SNP–based method. 
 

Table 4. The Estimated Power of Gene-based Association Tests, Assuming One Disease-related SNP Occurs Within the Gene, Un-

der Different Sample Sizes and Different Disease Models 

Disease Model  

 

GRRa 

N=400 N=800 

maxTb Entropyc SNPd maxT Entropy SNP 

Additive 1.4 1 0.56 0.60 0.95 0.92 0.94 

1.6 1 0.91 0.955 1 1 1 

1.8 1 0.975 0.990 1 1 1 

Dominant 1.4 0.47 0.39 0.36 0.65 0.62 0.74 

1.6 0.75 0.65 0.73 0.94 0.90 0.95 

1.8 0.88 0.89 0.90 0.99 0.99 0.99 

Recessive 1.4 0.22 0.26 0.20 0.29 0.29 0.37 

1.6 0.32 0.34 0.34 0.64 0.74 0.77 

1.8 0.54 0.63 0.59 0.86 0.92 0.98 

aGRR, genotype relative risks. 

bData were obtained using the maximum test statistic method.  

cData were obtained using the entropy-based method.  

dData were obtained using the single-SNP–based method. 
 

Table 5. The Estimated Power of Gene-based Association Tests, Assuming that Two Disease-related SNPs Occur Within a Gene, 

Under Different Sample Sizes and Different Disease Models 

Disease Model  

 

(BL,GE) a 

N=400 N=800 

maxTb Entropyc SNPd maxT Entropy SNP 

Model 1 (1,0.5) 0.31 0.42 0.19 0.61 0.76 0.37 

(1,0.7) 0.54 0.71 0.35 0.87 0.93 0.72 

(1,0.9) 0.78 0.89 0.61 0.99 1 0.96 

Model 2 (1,0.5) 0.20 0.29 0.19 0.52 0.54 0.49 

(1,0.7) 0.34 0.45 0.38 0.66 0.77 0.79 

(1,0.9) 0.52 0.65 0.59 0.90 0.96 0.97 

Model 3 (1,0.5) 0.17 0.25 0.10 0.51 0.49 0.54 

(1,0.7) 0.43 0.56 0.43 0.66 0.77 0.76 

(1,0.9) 0.41 0.59 0.50 0.84 0.91 0.92 

aBL, the baseline effect; GE, is the genotypic effect.   

bData were obtained using the maximum test statistic method.  

cData were obtained using the entropy-based method.  

dData were obtained using the single-SNP–based method. 
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Table 6. The Estimated Power of Gene-based Association Tests, Assuming Three Disease-related SNPs Occur Within a Gene, Under 

Different Sample Sizes and Different Disease Models 

Disease Model  

 

(BL,GE)a 

N=400 N=800 

maxTb Entropyc SNPd maxT Entropy SNP 

Model 1 (1,0.5) 0.54 0.56 0.42 0.92 0.88 0.81 

(1,0.7) 0.87 0.77 0.63 1 1 1 

(1,0.9) 0.95 0.94 0.87 1 1 1 

Model 2 (1,0.5) 0.56 0.50 0.33 0.94 0.91 0.81 

(1,0.7) 0.87 0.76 0.73 1 0.99 0.99 

(1,0.9) 0.96 0.96 0.91 1 1 1 

Model 3 (1,0.5) 0.06 0.05 0 0.01 0.08 0.03 

(1,0.7) 0.08 0.13 0.05 0.06 0.16 0.02 

(1,0.9) 0.04 0.19 0.03 0.05 0.20 0.05 

a BL, the baseline effect; GE, is the genotypic effect.  

bData were obtained using the maximum test statistic method.  

cData were obtained using the entropy-based method.  

dData were obtained using the single-SNP–based method. 
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