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Quantitative validation of deformable image registration (DIR) algorithms is 
extremely difficult because of the complexity involved in constructing a deformable 
phantom that can duplicate various clinical scenarios. The purpose of this study 
is to describe a framework to test the accuracy of DIR based on computational 
modeling and evaluating using inverse consistency and other methods. Three clini-
cally relevant organ deformations were created in prostate (distended rectum and 
rectal gas), head and neck (large neck flexion), and lung (inhale and exhale lung 
volumes with variable contrast enhancement) study sets. DIR was performed using 
both B-spline and diffeomorphic demons algorithms in the forward and inverse 
direction. A compositive accumulation of forward and inverse deformation vector 
fields was done to quantify the inverse consistency error (ICE). The anatomical 
correspondence of tumor and organs at risk was quantified by comparing the 
original RT structures with those obtained after DIR. Further, the physical charac-
teristics of the deformation field, namely the Jacobian and harmonic energy, were 
computed to quantify the preservation of image topology and regularity of spatial 
transformation obtained in DIR. The ICE was comparable in prostate case but the 
B-spline algorithm had significantly better anatomical correspondence for rectum 
and prostate than diffeomorphic demons algorithm. The ICE was 6.5 mm for demons 
algorithm for head and neck case when compared to 0.7 mm for B-spline. Since 
the induced neck flexion was large, the average Dice similarity coefficient between 
both algorithms was only 0.87, 0.52, 0.81, and 0.67 for tumor, cord, parotids, and 
mandible, respectively. The B-spline algorithm accurately estimated deformations 
between images with variable contrast in our lung study, while diffeomorphic 
demons algorithm led to gross errors on structures affected by contrast variation. 
The proposed framework offers the application of known deformations on any 
image datasets, to evaluate the overall accuracy and limitations of a DIR algorithm 
used in radiation oncology. The evaluation based on anatomical correspondence, 
physical characteristics of deformation field, and image characteristics can facilitate 
DIR verification with the ultimate goal of implementing adaptive radiotherapy. 
The suitability of application of a particular evaluation metric in validating DIR is 
dependent on the clinical deformation observed. 
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I.	 Introduction

Image-guided radiation therapy (IGRT) has become a widely used treatment modality in recent 
past with advanced treatment processes. IGRT requires daily or frequent imaging, which can 
lead to treatment planning modification decisions based on patient-specific anatomical varia-
tions as quantified by the imaging. However, routine IGRT in most clinical departments uses 
only the vendor-supplied rigid registration matching between original treatment planning CT 
(kvCT) and the daily imaging study set.  

Deformable image registration (DIR) studies have been advocated to more accurately quan-
tify these anatomical and biological variations.(1) Deformable registration is essential to map 
the position of each voxel to a reference CT image for dose tracking and to ultimately practice 
adaptive radiotherapy.(2,3) The accuracy of deformable registration is particularly important 
in intensity-modulated radiation therapy (IMRT) and adaptive radiotherapy that deliver dif-
ferential doses to different parts of the tumor and organs at risk, which then sum to a uniform 
dose. In addition, DIR has important applications in other categories of image-guided medical 
interventions, as well.(4-10) The existing methods of deformable image registration can be clas-
sified broadly into two categories: parametric or model-based (such as B-spline,(11) thin-plate 
spline,(12) and linear elastic finite element(13)), and nonparametric methods (e.g., optical flow,(14) 
viscous fluid(15)).

There have been many techniques proposed to validate the accuracy of various DIR algo-
rithms.(16-24) All DIR evaluation procedures require the use of evaluation data and validation 
methods. Considering the evaluation data, one can separate the methods into two groups:  
a) those using real patient image data, and b) those using phantom image data. In the first, the 
authors use real patient images that they deform artificially to create the reference and the test 
study. Alternately, multiple imaging acquisitions on different time moments where changes in 
anatomy are clearly visible and anticipated (e.g., replanning scans or cone-beam CT scans) 
are used. The use of deformable phantoms has also been explored to validate the accuracy of 
DIR. However, phantoms as described in the studies by Serban et al., Kashani et al., and Kirby 
et al.(25-27) cannot be routinely used in most busy clinical departments because of the lack of 
resources and time required to build and test these phantoms. Further, it is not practical to build 
a phantom that will be sophisticated enough to simulate all anatomical deformations that can 
occur in a clinical environment. It has also been suggested that the presence of uniform intensity 
regions in the phantom images, as opposed to more intensity gradients in clinical CT images, 
may limit the applicability of phantom tests in DIR verification.(16)

The validation methods often include using landmark points in regions of interest as a sur-
rogate tool in verifying accuracy of DIR. A frequent problem with this technique is locating 
the landmark points, which in a real patient’s anatomy can be time-consuming and difficult to 
identify markers in low-contrast regions. The contour-based evaluation is useful qualitative 
verification in contour propagation and also for inspecting anatomical difference among images. 
Although contour propagation techniques seem to provide a more efficient way of validation 
compared to markers, including changes in shape volume and location of a structure, they often 
do not confirm that the volume within the contour has been properly registered. 

In this work, we describe a commercial software tool kit, ImSimQA (Oncology Systems 
Limited, Shrewsbury, Shropshire, UK) which can serve as a virtual deformable quality assurance 
(QA) tool by simulating clinically observed organ deformations in routine IGRT. In contrast 
to previous years where deformable registration algorithms where available only in a research 
based setting, today several commercially available products are available. Most of these com-
mercially available products are “black boxes”, in that very little information is known to the 
medical physicist regarding the overall system accuracy of the implemented algorithm and what 
the limitations of the deformable registration algorithm could be for a given clinical situation. 
This is particularly true for IGRT, since different organs exhibit varying levels of deformation 
over the course of radiation therapy. Presumably the algorithm will have different registration 
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settings to accurately register the images over these varying clinical scenarios. Therefore, it is 
critical that some quantitative validation of the system accuracy of the implemented algorithm 
and its potential limitations in the commonly encountered IGRT clinical situations exists.(28) 

This work describes a complete set of metrics and tools and a practical framework to evaluate 
a deformation field that will facilitate introducing a particular DIR algorithm to clinical use. 
The proposed framework also highlights the importance of selecting an appropriate evaluation 
metric which is dependent on a given clinical deformation. This will ensure that a false positive 
conclusion is not reached in validating a particular DIR algorithm. 

 
II.	 Materials and Methods

The workflow and evaluation methods for DIR accuracy used in this paper are summarized in 
the flow chart in Fig. 1. 

Fig. 1.  DIR algorithm analysis workflow.
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A. 	 Deformation process
A brief description of the deformation process used in ImSimQA to warp the images to produce 
clinically observed organ deformation is presented below. In ImSimQA, there are two choices 
for the geometric deformation of the image data. Both implementations are based on the radial 
basis function approach with different kernel functions. For the global deformation of the data, 
the thin-plate spline (TPS)(29) kernel was utilized and the compact support radial basis functions 
(CSRBF)(30) as the local deformation scheme.
 
A.1  Global deformations
In ImSimQA, the algebraic solution of Bookstein(29) is followed which treats the TPS solu-
tion as an interpolation problem. In order to perform the deformation, two sets of landmark 
points must be chosen which will be referred to as the source points (SP) and the target points 
(TP) from so on. In case of a 2D image, the surface of the image is treated as a 2D grid with 
each x, y of the image coordinates being a part of the image grid. The SP and TP are manually 
inserted on the grid. The vectors, with their origin at the SP coordinates and directed at the 
corresponding TP coordinates, show the deformation direction of the grid. In order to solve 
this problem, a mapping function f (x, y) is found that will map the SPs to TPs by deforming 
the underlying grid.

A.2  Local deformations
The TPS deformation affects the whole image and is characterized as a global deformation 
procedure. For applications which need local deformation, the CSRBF model is implemented. 
The locality effect of the CSRBF is adjusted by calibrating a scaling parameter. The algebraic 
solution to the CSRBF is the same as the TPS with the only difference being the RBF kernel 
used. The CSRBF kernel is a Wendland function(31) constructed from piecewise polynomials.  

In both algorithms, anchor markers can be placed inside the dataset in places where the 
restriction of the deformation is needed. If the SP and the TP are identical, then deformation 
around these markers is restricted. By default, in both algorithms there are anchor points at 
the border of the dataset, four in the 2D case and eight in the 3D case. This is done to avoid 
excessive warping of the original dataset. 

 
A.3  DIR verification workflow in ImSimQA
ImSimQA can be used as a virtual quality assurance tool by mimicking a clinically observed 
organ deformation on the treatment planning dataset which can then be used to verify the accu-
racy of DIR algorithm. For more complex deformations, one can combine TPS over CSRBF 
deformations and vice versa. The final deformation field is composed as the addition of both 
deformations which can be applied only once on the original image set. 

The new deformed dataset, including deformed radiotherapy (RT) structures and the defor-
mation field as a 3D binary grid, can then be used to compare with the results of DIR algorithm 
and to facilitate DIR verification. 

The deformation algorithms in ImSimQA are controlled using marker points that are user-
defined and can be freely positioned on the image set. The user defines the source control marker 
points and enables the local (CSRBF) or global (TPS) deformation procedure. The direction 
of the deformation is given by translating and rotating the control points in three dimensions 
individually or as a group of points. For the deformation procedure to start, the source and target 
positions of the control points are used. A deformation field comprising a three-component vector 
value at each voxel is then generated. The source image is then warped using this deformation 
field. Trilinear interpolation is used to correct floating voxel locations during image warping. 

In Figs. 2 to 4, a simulated deformation example is illustrated. Figure 2 shows the axial 
image of quasar phantom(32) with original and target marker points. The global deformation 
(TPS) result is shown in Fig. 3. Figure 4 shows the result of local deformation (CSRBF). For 
both deformations the same source and target points were used.
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Fig. 2.  Axial image of quasar phantom with original and target marker points.

Fig. 3.  Axial phantom image after applying the global (TPS) deformation algorithm.

Fig. 4.  Axial phantom image after applying the local (CSRBF) deformation algorithm.
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B. �Clinical rationale and description of applied known deformation in each 
anatomical site

Prostate: In prostate IGRT, deformation of the prostate due to variations in rectal filling is com-
monly observed. The need for adaptive radiation therapy for prostate cancer due to inter- and 
intrafraction motion is well documented in the literature.(33-43) We applied a known deforma-
tion in the ImSimQA to mimic a distended rectum and introduce rectal gas in the synthetically 
deformed image. This, in turn, deforms the prostate, as routinely seen in prostate IGRT. 

The applied deformation was achieved using the following general workflow. Two series of 
datasets (say A & B) were imported into ImSimQA. Series A is the image set to be deformed and 
series B is the anatomy we want to match which contains the desired deformation. Anatomical 
changes that occur in different organs were noted by using the rigid image fusion/blending 
tool. The first step involved placement of markers on the anatomy which is to be deformed 
(Series A). The second step involved moving the markers to desired locations by following 
the borders and internal tissues of the deformed anatomy (Series B). Thus the markers were 
moved accordingly and in approximation to the deformations that need to be achieved. In the 
prostate case, this was achieved by tracking the motion of the rectal wall and prostate. This 
was a trial-and-error procedure that had to be repeated iteratively until one could accurately 
approximate the desired deformations by using the Series B dataset as objective criteria for 
validation. The gas pocket in the rectum was induced by drawing a set of contours on Series A 
and then subtracting the Hounsfeld units (HU) from the existing DICOM images. This resulted 
in the creation of a low-density object without eliminating the underlying tissue structure. The 
advantage of using the synthetically deformed series A as opposed to series B for DIR verifi-
cation is that one now has the deformation vector field (DVF) used to simulate the necessary 
deformation which will be used to warp the RT structures and can be compared with the DVF 
arising from DIR algorithms.

For the CT series of the prostate case (512 × 512 × 74 (median) voxels; 0.86 × 0.86 × 5.0 mm3), 
images were acquired on a SOMATOM Sensation 16 CT scanner (Siemens Medical Solutions, 
Malvern, PA) which included the RT structures used during DIR evaluation. It should be noted 
all the applied deformation in this study is fully three-dimensional, although only a particular 
slice view is shown for illustration. Figure 5 shows axial view of original kvCT image with RT 
structures, Fig. 6 indicates applied deformation from ImSimQA, and Fig. 7 shows the changes 
in RT structures from the applied ImSim DVF when compared to original RT structures.

Fig. 5.  Axial view of the prostate kvCT image with original RT structures: bladder, prostate, rectum, and pelvic bones.
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Head & Neck: There are significant changes in patient anatomy during the course of head and 
neck IGRT treatment that are related to decrease of tumor and nodal volumes, patient weight, 
and alteration in muscle and fat distribution, with an average tumor volume reduction of 70% 
of its initial volume at the end of treatment.(44) Similarly, the parotid glands also undergo 
significant volume reduction with an average reduction of 49.8% and a translation of 8.1 mm 
upon completion of treatment.(45)

The changes occurring due to patient weight loss could have a significant impact on organs 
at risk (OAR) like the parotids, since these structures can now be in the high-dose gradient area 
and tumor could be under dosed. Adaptive radiotherapy has been advocated to mitigate such 

Fig. 6.  Axial view illustrating the local deformations introduced in the prostate and rectal region, and gas pocket in the 
rectum.

Fig. 7.  Contour changes in prostate, bladder, and rectum from the applied ImSim DVF when compared with original 
segmentation of these structures. Solid figures refer to original segmentation done by radiation oncologist on kvCT image 
and dotted figures refer to the deformed volumes due to the applied deformation.
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volume changes.(46-51) We applied a global deformation on the ImSimQA software to change the 
patient neck flexion, and studied the deformable registration algorithm to track these changes. 
The desired deformation was achieved in principle using the same workflow as described before, 
but the TPS algorithm was used for global deformation of the dataset. The anchor and moving 
markers were iteratively adjusted until a large neck flexion deformation was achieved using 
the TPS algorithm. The induced deformation does not correspond to interfraction variation 
that occurs during routine head and neck IGRT, but rather relates to a clinical scenario where 
the patient was treated previously with a completely different neck position and is now being 
evaluated for radiation therapy in the same area in a different treatment position. The induced 
deformation significantly altered the nasal cavity, the alignment of vertebral body, spinal cord, 
and skull in comparison with the original image. 

For the CT series of the head and neck case (512 × 512 × 112 (median) voxels; 0.94 × 0.94 
× 3.0 mm3), images were acquired on a SIEMENS Sensation 16 CT scanner (Siemens Medical 
Solutions) which included the complete set of RT planning structures. Figure 8 shows the sagit-
tal view of original kvCT image with associated RT structures. Figure 9 shows the deformed 
image from ImSimQA after applying the neck flexion and the warped RT structures as result 
of applied ImSim DVF when compared to original RT structures.

Fig. 8.  Sagittal view of the original head and neck CT image with the associated RT structures brain stem, cord, larynx, 
and mandible.
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Lung: Respiratory motion of the order of 1 cm has been observed for tumors close to the 
diaphragm.(52,53) We introduced a deformation in ImSimQA to mimic dataset from inhale and 
exhale breathing phases of 4D CT. This was achieved by picking an exhale and inhale dataset 
from a patient. Using rigid image fusion tool as guide, anchor and moving markers were placed 
by following the motion of diaphragm and edges of lung tissue. This process was iteratively 
repeated until CSRBF algorithm approximated the deformation of the inhale dataset, which 
was used as the objective criteria for validation of deformation.  

In addition to the lung volume changes, we introduced contrast changes in the image to assess 
the quality of DIR during variable contrast enhancement. The original kvCT images have contrast 
in the scan, while in the synthetically deformed images from ImSimQA, the contrast has been 
taken out without eliminating the underlying tissue structure. This was done by contouring the 
contrast in the deformed dataset and subtracting the HU values from the DICOM dataset. This 
example was chosen to highlight the limitations of diffeomorphic demons algorithm when the 
intensities of identical tissues and organs are different in the two images. 

For the CT series of the lung case (512 ×  512 × 123 (median) voxels; 0.98 × 0.98 × 3.0 mm3), 
images were acquired on a SOMATOM Sensation 64 unit (Siemens Medical Solutions), which 
included the complete set of RT planning structures. 

Figures 10 and 11 show the coronal view of original kvCT image with contrast, and the 
coronal image from ImSimQA without contrast showing diaphragm motion and lung volume 
changes, respectively.

Fig. 9.  Sagittal view of the head and neck image from the applied global deformation mimicking a large neck flexion. 
The skull is rotated counterclockwise. The deformed RT structures due to the applied deformation are displayed as  
dotted figures.
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C. 	 Deformable image registration
The Insight Segmentation and Registration Toolkit (ITK) was used to perform (a) free-form 
parametric deformable registration using a cubic B-spline,(54) and (b) nonparametric registra-
tion using diffeomorphic demons. The DIR and all the analysis tools described in this work 

Fig. 10.  Coronal view of the original lung kvCT image showing the lung contours and contrast in scan.

Fig. 11.  Coronal view of the same lung kvCT image from Fig. 10 illustrating the applied local deformations on the diaphragm 
and the changes in lung contour associated with that. This mimics an inhale and exhale breathing phase of respiratory 
cycle. The contrast is also taken out of this image to validate DIR during variable contrast enhancement.
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were integrated into open source platform, 3D Slicer,(55) via custom-developed modules. We 
used the Mattes mutual information (MI) metric(56) with an evolutionary algorithm followed 
by gradient descent optimizer for optimization.(57) The images are initialized to line up their 
centers. The evolutionary optimizer works by searching for the minimum metric value by gen-
erating random samples about the current location in parametric space and iteratively growing 
or shrinking parameters of previous iteration to hone in on the optimum. This process is fairly 
resilient to noise. After this, a regular step gradient descent optimization is performed, with 
the transformation parameters incremented in the direction of gradient. The increment is deter-
mined in a bipartition manner until it converges on the minimum of the metric. Registration 
is performed in three phases: rigid, followed by affine, followed by deformable registration. 
A control point spacing of 60 (pixels), 50 maximum iterations, and 10% of the image pixels 
for metric evaluation, were used in this study during B-spline registration to achieve optimal 
balance between quality of DIR and run time of registration. Registration was completed in 15 
minutes on a Windows 7, 64 bit operating system running on Intel quad core 2.8 GHz proces-
sor with 8 GB RAM.

The same manually deformed images are also registered using diffeomorphic demons(58) 
to provide a smooth and invertible transformation. In general, for nonparametric registration 
methods such as diffeomorphic demons used in this study, the registration is expressed as an 
objective function comprising of an image term and regularization term. The image term may 
be the difference in intensities of two voxels (optical flow as in demons), while the regulariza-
tion term keeps the deformation field well-behaved. This is usually done by smoothing the 
deformation field with a Gaussian at each iteration to ensure that it is well-behaved.

Details on the implementation of this algorithm and its advantages over Thirion’s demons 
algorithm(14) are discussed in literature.(58) A diffeomorphism by definition preserves the 
topology of objects in the image. In other words, it prevents folding of structures onto itself. 
Therefore the Jacobian is always nonnegative. This is a good property to have for medical 
image registration. The second important property of diffeomorphism is that it is guaranteed 
invertible by definition.

Registration is typically faster and takes about 10 minutes when using diffeomorphic demons 
algorithm using the same hardware platform as previously described.

D. 	 Evaluation scheme
In order for a thorough validation of DIR performance in a clinical environment, the following 
three characteristics were examined in this study.

D.1  Anatomical correspondence
Anatomical correspondence between original and deformed image sets can be identified using 
markers or contours defined by the users.

This validation is important because in radiotherapy clinical applications, the tumor and 
organs at risk (OAR) volume changes and, consequently, the partial volume dose received 
by these structures. The magnitude and location of these changes dictate the need for adap-
tive radiotherapy. Hence, the accuracy of DIR in relation to this is evaluated in this paper by 
quantitatively comparing the original tumor and OAR segmentation with those obtained from 
warping the RT structures with the deformation vector field (DVF) derived from registration. 
The ImSimQA DVF was used to warp the original RT structures in addition to CT images. The 
registration DVF from both algorithms was then applied to these RT structures. If the results of 
DIR were perfect, then the RT structures before and after DIR would be the same. The degree 
of mismatch indicates the quality of DIR from an anatomical correspondence perspective. Dice 
similarity coefficient, Hausdorff distance, and average surface distance were used as three met-
rics to evaluate the accuracy of tumor and OAR segmentation and spatial overlap index. These 
metrics have been previously used to compare segmentations in radiotherapy applications(59-62) 
and are described below. 
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D.1.1  Dice similarity coefficient
The metric computes the number of pixels that overlap between the two volumes and normal-
izes it by the half the sum of the number of nonzero pixels in the two volumes. The result is a 
value between 0 (no overlap) and 1 (perfect overlap):

		  (1)
	

2 X   A     B  
 A      B 

where A is the gold standard segmentation which in our case refers to segmentation in kvCT fixed 
image, and B is the segmentation mapped from the deformably registered image. The metric is 
symmetric and is sensitive to both differences in scale and position. While volume overlap is 
a good indicator of mismatch, it is a poor indicator of shape since is not a measure of distance 
and, hence, the following metrics are also evaluated to assess the overall accuracy.

D.1.2  Hausdorff distance
The Hausdorff distance(63) is defined as the maximum of the closest distance between two 
volumes where the closest distance is computed for each vertex of the two volumes.

The metric is very sensitive to outliers since the most mismatched point is the sole determin-
ing criteria of the distance. 

D.1.3  Average surface distance
This metric mitigates the outlier problem exhibited by the Hausdorff distance. The metric is 
the average of the absolute distance from each surface pixel in one image to its closest point 
on the other image. 

D.2  Deformation field
The physical characteristics of the deformation fields should be investigated. This is because 
recent applications in adaptive radiation therapy (ART) have used the deformation fields arising 
from image registration process to warp the RT dose and display a deformed dose.(64-67) Hence, 
some quantitative information on the physical characteristic of deformation fields is necessary for 
clinical implementation of ART. It is known that matching of structures based on their intensities 
alone is not a sufficient condition to produce physically achievable deformations.(68) 

In this work we used a number of methods to evaluate the characteristics of the DVF. One 
of the key methods reported in the literature is the concept of inverse consistency.(69-71) Inverse 
consistency between two images A and B are evaluated as follows in this paper. Image A is 
deformed to match image B, and image B is separately deformed to match image A using two 
different algorithms. A perfect inverse consistent algorithm will produce a true inverse DVF 
when the roles of source and target images are switched. However, in practice this is not the 
case. The inverse consistency error (ICE) between forward and inverse registration is calculated 
by compositive accumulation of forward and inverse deformation fields. The details of com-
positive accumulation are discussed elsewhere.(69,72) If D1 and D2 are two deformation fields, 
a single warping by compositive addition of D1 and D2 is equivalent to successive deformation 
of an image by D1 and then followed by D2.  

For the warp, we use a linear interpolator (i.e., we add the right field to the interpolated left 
field for that pixel as the resulting point x will not land exactly in the grid).

If the deformation maps are true inverses, this composition will yield zero. The L2 norm 
(absolute magnitude) of the composed fields is used to quantify the magnitude of inverse 
consistency error.

Further, ICE between the DVF arising from DIR and the synthetic DVF generated from 
ImSimQA software that was used to produce clinically relevant organ deformation was evalu-
ated. The ImSimQA can also output inverse DVF of the applied deformation. This DVF was 
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compared with the DVF generated from the inverse registration process where the roles of 
source and target images were switched. A compositive accumulation of the ImSimQA DVF 
and the DVF from registration (B-spline and diffeomorphic demons) was done to quantify the 
ICE between DVFs. If the results of DIR produced a DVF which is the exact inverse of applied 
synthetic DVF in ImSimQA, then this composition of DVFs will be zero. The L2 norm of the 
composed DVFs is computed to quantify the ICE between DVFs. 

Diffeomorphism is a necessary condition for deformation fields to be physically feasible.(73) 
This property is related to the Jacobian of the deformation field. Negative Jacobians indicate 
unrealistic physically unachievable organ deformations, as organs can only be compressed and 
deformed but cannot undergo noninvertible spatial transformations like folding of structures.
(74,75) This is the primary advantage of diffeomorphic demons over the B-spline algorithm, as 
the Jacobian is always nonnegative in the former. 

In this study, we computed the determinant of the Jacobian of the deformation field as a 
criterion for validating physical behavior of deformation. The Jacobian of the deformation field 
gives information about the image transformation consistency.(75,76) A determinant greater than 
1 indicates expansion at that location, while a value less than 1 indicates contractions.

The harmonic energy of the deformation field arising from B-spline and diffeomorphic 
demons algorithms was calculated in this study to quantify the regularity of the spatial trans-
formation obtained by the deformable registration process.(77) The harmonic energy captures 
the nonlinearity of the warp (i.e., deviation from an affine transformation) and is inversely 
proportional to smoothness of the deformation field.(77) 

D.3  Image characteristics
Comparison between original and deformably registered images to provide a measure of how 
well the deformation is recovered in the entire image voxel space.

We used mean squared error (MSE) as the metric to define the extent of mismatch between 
the original image A and the deformably registered image B, which is the normalized square 
difference between the two images A and B.(78) For a perfect image match between images A 
and B, the MSE error is zero. The error is reported as Root MSE in the Results section below, 
where Root MSE = √MSE

Three clinically relevant examples from prostate, head and neck, and lung cases are presented, 
and the accuracy of DIR is evaluated using various methods described above and the relative 
merits of these are discussed.

 
III.	 Results 

The results of the accuracy of DIR evaluation in three anatomical sites namely prostate, head 
and neck, and lung are presented below

A. 	 Inverse consistency error
Figure 12 lists inverse consistency error (ICE) between various DVFs used in DIR and ICE 
between applied ImSimQA DVF and DVF from DIR for the three anatomical sites studied.

As an example for the prostate case, the DVF from diffeomorphic demons algorithm is over-
laid on the original kvCT image for forward, inverse, and compositive addition of forward and 
inverse DVFs is shown in Figs. 13, 14, and 15, respectively. Figure 15 relates to the quantitative 
ICE described above (1.45 mm) for diffeomorphic demons algorithm for the prostate case.
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Fig. 12.  Inverse consistency error comparison.

Fig. 13.  Forward diffeomorphic demons DVF from the registration overlaid on the original prostate kvCT image illustrat-
ing the local changes due to the DVF. The field vectors are pointing outward.
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Fig. 14.  Inverse diffeomorphic demons DVF when the roles of source and target images were switched from previous 
example, overlaid on the original kvCT image. The field vectors are pointing inward.

Fig. 15.  Compositive addition of forward and inverse demons DVF overlaid on the original kvCT image. If the algorithm 
were truly inverse-consistent, this composition would yield zero. The magnitude of this compositive addition is 1.45 mm 
in this example (as discussed in Figure 12).
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B. 	 RMSE, Jacobian, and harmonic energy of DVF
Table 1 lists root mean square error, minimum Jacobian, and harmonic energy of deformation 
field for registration algorithms both in forward and inverse directions for all three anatomical 
sites. The MSE and (hence) RMSE in lung case for diffeomorphic demons algorithm is large 
due to the improper estimation of displacement fields arising due to variable contrast enhance-
ment and, hence, Jacobian is not calculated for demons algorithm.

C.	 Accuracy of RT structures
Table 2 evaluates the accuracy of RT structures for the prostate case, after DIR, when compared 
to original segmentation done by the radiation oncologist in kvCT (used as the gold standard) 
for both diffeomorphic demons and B-spline algorithms. This was done by applying the reg-
istration DVF to RT structures deformed by ImSimQA DVF. All the evaluation is done on the 
original fixed image (kvCT) coordinate system.

Table 3 evaluates the accuracy of RT structures for head & neck case. Although by visual 
inspection of the images the registration seems to agree qualitatively (the skull and vertebral 
bodies matched after DIR), the contour comparison statistics are not clinically acceptable, 
especially for organ-at-risk structures. This is primarily due to large neck flexion introduced as 
a known deformation in ImSimQA. Based on this analysis, auto-registration of images when 
there is significant neck flexion should be evaluated with caution, especially when there is a 
retreatment being considered. 

Table 4 computes the accuracy of RT structures for the lung example involving variable 
contrast enhancement. The diffeomorphic demons algorithm produced improper displacement 
estimation in this case because of the difference in intensities of two images due to the variable 
contrast enhancement. The mismatch in RT structures is particularly relevant in heart, lung, 
bronchial tree, and vertebral bodies as the Hausdorff distance exceeds 10 mm and the average 
surface distance is as large as 11.8 mm for heart. This is because diffeomorphic demons algorithm 
tries to match structures of same intensity which, in our case, does not correspond to identical 
anatomical structures due to the differences in contrast between two images.

 

Table 1.  RMSE, Jacobian, and harmonic energy of DVF.

	 Prostate	 Head & Neck	 Lung
	 RMSE	 RMSE	 Har-	 Mini-	 RMSE	 RMSE	 Har-	 Mini-	 RMSE	 RMSE	 Har-	 Mini-
	 Before	 After	 monic	 mum	 Before	 After	 monic	 mum	 Before	 After	 monic	 mum
Algorithm	 DIR	 DIR	 Energy	 Jacobian	 DIR	 DIR	 Energy	 Jacobian	 DIR	 DIR	 Energy	 Jacobian

Diffeo- 
morphic
Demons	 25.99	 11.82	 0.05	 0.12	 187	 51.9	 0.32	 0.0005	 91.33	 853.6	 0.53	 N/A 
Forward	
Diffeo- 
morphic
Demons	 25.99	 11.64	 0.09	 0.003	 187	 66.1	 0.43	 0.003	 91.33	 223.3	 0.19	 N/A 
Inverse	
B-spline 
Forward	 25.99	 11.03	 0.0006	 0.88	 187	 80.8	 0.014	 0.53	 91.33	 68.1	 0.0005	 0.82
B-spline 
Inverse	 25.99	 10.9	 0.0005	 0.87	 187	 51.2	 0.005	 0.58	 91.33	 69.2	 0.0004	 0.87
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Table 2.  Accuracy of RT structures after DIR (prostate).

Algorithm: Diffeomorphic Demons
		  Dice Similarity	 Hausdorff	 Average Surface
	 Anatomy	 Coefficient	 Distance (mm)	 Distance (mm)

	 Prostate	 0.85	 15.9	 2.3
	 Bladder	 0.93	 11.1	 0.78
	 Rectum	 0.79	 12.6	 1.2
	Femoral Heads	 0.99	 1.7	 0.1
	 Mean values	 0.89	 10.3	 1.1

Algorithm: B-spline
		  Dice Similarity	 Hausdorff	 Average Surface
	 Anatomy	 Coefficient	 Distance (mm)	 Distance (mm)

	 Prostate	 0.91	 9.8	 1.03
	 Bladder	 0.95	 7.7	 0.42
	 Rectum	 0.89	 10.3	 0.8
	Femoral Heads	 0.99	 1.2	 0.1
	 Mean values	 0.94	 7.3	 0.59

Table 3.  Accuracy of RT structures after DIR (head and neck).

Algorithm: Diffeomorphic Demons
		  Dice Similarity	 Hausdorff	 Average Surface
	 Anatomy	 Coefficient	 Distance (mm)	 Distance (mm)

	 PTV Primary	 0.85	 8.9	 1.8
	PTV Secondary	 0.86	 9.1	 1.5
	 Spinal Cord	 0.51	 12.2	 2.4
	 Right Parotid	 0.84	 4.7	 0.8
	 Left Parotid	 0.77	 6.6	 1.4
	 Brainstem	 0.64	 11.9	 2.7
	 Mandible	 0.63	 40.5	 4.6
	 Larynx	 0.86	 5.7	 1.1
	 Right Eye	 0.74	 7.5	 1.8
	 Left Eye	 0.79	 4.9	 1.3
	 Mean values	 0.75	 11.2	 1.9

Algorithm: B-spline
		  Dice Similarity	 Hausdorff	 Average Surface
	 Anatomy	 Coefficient	 Distance (mm)	 Distance (mm)

	 PTV Primary	 0.88	 8.2	 1.5
	PTV Secondary	 0.87	 8.6	 1.4
	 Spinal Cord	 0.52	 10.5	 2.2
	 Right Parotid	 0.84	 3.7	 0.8
	 Left Parotid	 0.79	 5.9	 1.3
	 Brainstem	 0.52	 9.7	 3.9
	 Mandible	 0.7	 13.6	 1.9
	 Larynx	 0.86	 5.7	 1.1
	 Right Eye	 0.59	 8.7	 2.6
	 Left Eye	 0.83	 4.7	 0.93
	 Mean values	 0.74	 7.9	 1.7
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IV.	 DISCUSSION

Deformable image registration will continue to be a key component in the implementation of 
adaptive radiotherapy with the ultimate goal of dose tracking and dose accumulation based on 
daily image feedback.(41,66,67) Verification of DIR accuracy is an important task in implementa-
tion of adaptive radiotherapy. We have presented a framework to test and evaluate the accuracy 
of DIR using known deformations, which are clinically relevant, that can be applied to any 
CT images. The accuracy of DIR was evaluated by comparing anatomical correspondence, 
physical characteristics of deformation field, and image characteristics. The relative merits of 
these methods in the final decision-making on DIR accuracy for the anatomical sites studied 
is discussed below.

Prostate: Our results on prostate case indicate that the ICE was comparable to both algorithms. 
Also, the MSE values were very similar for both methods. However the B-spline algorithm had 
significantly better anatomical correspondence for rectum and prostate than the diffeomorphic 
demons algorithm. So, considering the anatomical correspondence of the RT structures, one 
can conclude that the B-spline algorithm performed better. In this example, the MSE and ICE 
evaluation parameters provide no criteria to determine which method performs better.

Head and Neck: For the head and neck case, the ICE was much larger for the demons algorithm 
(6.5 mm) as compared to B-spline (0.7 mm). The MSE was comparable for both algorithms. 
However, since the induced neck flexion was large, neither algorithm had a desired anatomical 
correspondence for PTV and organs at risk that could make the result clinically acceptable. 
Similar to the prostate case, this example also indicates that considering only the ICE and MSE 
methods could lead to false positive conclusions. 

Lung: In the lung case, the B-spline algorithm accurately estimated the deformations between 
images with variable contrast and was clearly superior in all the metrics that were evaluated. 

Table 4.  Accuracy of RT structures after DIR (lung).

Algorithm: Diffeomorphic Demons
		  Dice Similarity	 Hausdorff	 Average Surface
	 Anatomy	 Coefficient	 Distance (mm)	 Distance (mm)

	 PTV	 0.83	 8.8	 1.4
	 Cord	 0.95	 4.6	 0.2
	 Heart	 0.37	 56.7	 11.8
	 Lung	 0.99	 17.7	 0.4
	Bronchial Tree	 0.49	 18	 4.2
	 Trachea	 0.91	 15	 1.3
	Vertebral Body	 0.92	 10.3	 0.2
	 Mean Value	 0.78	 19.3	 2.8

Algorithm: B-spline
		  Dice Similarity	 Hausdorff	 Average Surface
	 Anatomy	 Coefficient	 Distance (mm)	 Distance (mm)

	 PTV	 0.88	 6.9	 2.1
	 Cord	 0.94	 8.3	 0.3
	 Heart	 0.99	 4.1	 0.2
	 Lung	 0.99	 6.3	 0.3
	Bronchial Tree	 0.96	 1.4	 0.1
	 Trachea	 0.97	 1.4	 0.2
	Vertebral Body	 0.93	 10.3	 0.2
	 Mean Value	 0.95	 5.5	 0.4
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The demons algorithm had gross errors in areas of contrast differences between images. This 
was the only example where all metrics used for the DIR evaluation were in full agreement on 
the decision-making of the DIR algorithm performance.

Verification of absolute accuracy of DIR is a challenging problem, as each of the methods 
studied has its own drawback. In the case of inverse consistency, a zero value for ICE is a nec-
essary, but not sufficient, condition for an accurate algorithm as errors in one DVF may cancel 
out errors in the other to yield a net zero value during composition of two deformation maps. 

The determinant of the Jacobian and the harmonic energy of the deformation field was used 
to classify the registration strategies based on invertibility and smoothness, although it does 
not give information on the accuracy of DIR. However, one needs to confirm the nonnegative 
value of Jacobian of the deformation field to ensure that a given DVF is physically achievable 
by an organ.(72,74,75) The harmonic energy captures the nonlinearity of the warp. 

The harmonic energy of B-spline was consistently lower in all our examples, and was gener-
ally small since it was physically constrained. The parameters that control it are the maximum 
deviation the user allows (step length) during registration and the number of nodes specified 
in the command line. The harmonic energy of the diffeomorphic demons is controlled by the 
parameter “sigma” used to smooth the deformation field. Increasing sigma will reduce the 
harmonic energy, but will come at the expense of reduced registration accuracy. The harmonic 
energy from B-spline registration was consistently lower on all our cases, indicating that the 
deformation field from B-spline was smoother. An abnormally large value of harmonic energy 
may indicate problems with DVF, as was the case for demons algorithm during registration of 
images with variable contrast enhancement. However, there is nothing in the B-spline algo-
rithm that prevents negative Jacobians, which is physically unrealistic. Deformation fields 
from diffeomorphic demons, on the other hand, are guaranteed invertible and the Jacobian is 
always nonnegative. 

The image quality of a deformed image set and product of a DIR method is significant for 
the daily clinical routine when used to define OARs and target volumes. However, the use of 
the MSE as image quality metric is proven to be inadequate for drawing a useful and consis-
tent conclusion. A small value of MSE indicates an overall good accuracy in the entire image 
voxel space, but does not guarantee good accuracy of DVF inside the organs. Another option 
to address this issue is to make a selective MSE calculation within regions of interest (e.g., 
OARs) and investigating other image quality metrics. If unsure about the DIR image outcome, 
the images should be reviewed by a clinical expert.  

Ultimately the accuracy of DIR also needs to be validated with contour comparison methods, 
as outlined in this study, because the registration accuracy of RT structures and, hence, the par-
tial volume doses received by these structures dictate the need for adaptive radiotherapy. This 
evaluation proved to be the most consistent and reliable method in validating DIR accuracy 
in our study.

DIR results in a daily clinical environment might be very variable and affected by various 
factors such as patient anatomy, image quality, and registration parameters of the particular 
algorithm. It should be well-appreciated that the evaluation of a DIR algorithm for use in a 
clinical routine should be conducted in a long-term study that includes a large number of clini-
cal cases. 

 
V.	 Conclusions

We conclude that the proposed framework offers the application of known deformations on any 
patient or phantom image sets that provide clinical medical physicist tools to test, understand, 
and quantify limitations of each algorithm before implementing deformable image registration 
in the clinic. The evaluation based on anatomical correspondence, physical characteristics of 
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deformation field, and image characteristics can facilitate DIR verification with the ultimate goal 
of implementing adaptive radiotherapy. The suitability of application of a particular evaluation 
metric in validating DIR is dependent on the clinical deformation observed.
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