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Abstract
Objective—We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT
(MPS) by integrating clinical data and quantitative image features with machine learning (ML)
algorithms.

Methods—1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive
cases with correlating invasive coronary angiography (ICA) and suspected coronary artery disease
(CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with stenosis
<70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit (TPD) for
supine/prone data, stress/rest perfusion change, and transient ischemic dilatation were derived by
automated perfusion quantification software and were combined with age, sex, and post-
electrocardiogram CAD probability by a boosted ensemble ML algorithm (Logit-Boost). The
diagnostic accuracy of the model for prediction of obstructive CAD ≥70% was compared to
standard prone/supine quantification and to visual analysis by two experienced readers utilizing all
imaging, quantitative, and clinical data. Tenfold stratified cross-validation was performed.

Results—The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1 (86.0% ±
2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2 (82.1% ± 2.2%)
(P <.01). The receiver operator characteristic areas under curve for ML algorithm (0.94 ± 0.01)
were higher than those for TPD and both visual readers (P <.001). The sensitivity of ML algorithm
(78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1 (76.3% ± 4.3%), but higher
than that of Expert 2 (71.1% ± 4.6%), (P <.01). The specificity of ML algorithm (92.1% ± 2.2%)
was similar to Expert 1 (91.4% ± 2.2%) and Expert 2 (88.3% ± 2.5%), but higher than TPD
(86.8% ± 2.6%), (P <.01).

Conclusion—ML significantly improves diagnostic performance of MPS by computational
integration of quantitative perfusion and clinical data to the level rivaling expert analysis.
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INTRODUCTION
Myocardial perfusion SPECT (MPS) is the most commonly used noninvasive stress imaging
modality for diagnosis of coronary artery disease (CAD).1 Prior studies have evaluated
multiple MPS features, including semi-quantitative and quantitative perfusion and functional
variables, for diagnosis of obstructive CAD.2–6 The American Society of Nuclear
Cardiology (ASNC) recommends that the clinician should approach MPS interpretation in a
systematic fashion, which should include review of raw and perfusion images, incorporation
of quantitative and functional data, as well as consideration of clinical factors.7 However,
manual combination of these data may lead to a significant inter-observer variability due to
different levels of experience.8 Prior studies have demonstrated that quantitative analysis
can be a useful supplement to the visual analysis;9 however, automated algorithms for
combining and integrating perfusion, functional, and clinical variables have not been well
developed.

Recent advances in machine learning (ML) research have resulted in algorithms that allow
efficient combination of multiple input features in order to achieve optimal classification. In
this study, we aimed to improve the diagnostic accuracy of MPS analysis by fully automated
integration of several quantitative perfusion and clinical variables with an ensemble ML
algorithm (LogitBoost). We demonstrate the improved diagnostic accuracy of this method
over standard quantitative analysis, rivaling the accuracy of expert readers.

MATERIALS AND METHODS
Patient Population

The subjects who were referred to the Nuclear Medicine Department of Cedars-Sinai
Medical Center, Los Angeles, California, from November 1, 2001, to June 30, 2005, for rest
and stress electrocardiography (ECG) gating, for whom both supine and prone imaging 10 as
well as informed consent were available, were consecutively selected. All patients with prior
history of CAD or significant valve disease were excluded. Based on these selection criteria,
1,181 sequential studies were identified to form the study group. This population consisted
of two subgroups of patients: 713 patients with correlative angiography and 468 patients
with a low likelihood (LLk) of CAD. In the angiography group, MPS and coronary
angiography had to be performed within 60 days without a significant intervening event.
The majority of the patients in the angiography group underwent MPS prior to cardiac
catheterization (96%). The LLk group consisted of patients who did not have correlating
coronary angiography available, but had a low pretest likelihood of CAD (<5% for exercise
MPS and <10% for adenosine stress MPS) by CADENZA (Advanced Heuristics, Inc,
Bainbridge Island, Wash) analysis.11 The LLk patients were classified as normal for the
purposes of this analysis. The clinical characteristics of the two groups are listed in Table 1.
The data analyzed in this study were selected retrospectively from the existing database at
Cedars-Sinai Medical Center. The retrospective use of clinical data in this study was
approved by the Institutional Review Board and all patients provided written informed
consent for the use of their clinical and imaging data for research purposes.

Rest MPS protocol—For rest imaging, weight- adjusted Tl-201(3.0–4.5 mCi) was
injected intravenously and acquisition was performed 10 minutes after injection.

Exercise MPS protocol—Patients performed a symptom-limited exercise treadmill test
with the standard Bruce protocol. At near-maximum exercise, 99mTc-sestamibi (25–40 mCi
based on patient weight) was injected intravenously. Treadmill exercise was continued at
maximum workload for 1 minute and at 1 stage lower for two additional minutes, when
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possible. 99mTc-sestamibi MPS acquisition was started 15–30 minutes after the
radiopharmaceutical injection.

Adenosine MPS protocol—Adenosine MPS was performed as previously described.12

Adenosine was infused at 140 μg kg −1 minute−1 for 5 minutes. At the end of the second
minute, 99mTc-sestamibi (25–40 mCi) was injected, and MPS acquisition was started
approximately 60 minutes later. Whenever possible, during adenosine infusion, patients
performed a low-level treadmill exercise, walking at 0% grade at 1–1.7 mph. With the latter
protocol, imaging began 15–60 minutes after adenosine stress.

Image Acquisition and Reconstruction Protocols
The details of image acquisition and tomographic reconstruction have been previously
described.14 All patients underwent separate acquisition rest 201Tl/stress 99mTc-sestamibi
dual-isotope MPS as previously described.15 Stress scans were acquired with 64 projections
at 25 seconds per projection for supine 99mTc acquisition, followed immediately by 15
seconds per projection for prone 99mTc acquisition. The rest 201Tl acquisition was
performed with 64 projections (32 per each head) and 35 seconds per projection. Images
were acquired on a dual-detector camera [Forte or Vertex (Philips Medical Systems,
Andover, Massachusetts) or e.cam (Siemens Medical Systems, Malvern, Pennsylvania)].
High-resolution collimators were used. No attenuation or scatter correction was applied.
Studies were reconstructed on the respective vendor platforms [Pegasys (Philips Medical
Systems) or e.soft 2000 (Siemens Medical Systems)] by the commercial implementations of
the iterative reconstruction. The reconstruction parameters were 12 iterations with
Butterworth pre-filtering [cutoff, 0.66 cycles per pixel (pixel size = 6.9 mm) for
supine 99mTc and 0.55 cycles per pixel for prone 99mTc; order, 5]. These parameters were
optimized previously to provide optimal image quality for clinical scan reading.16

Short-axis images were automatically generated.17 In cases when the software failed to
detect left ventricular contours as indicated by the quality control flag,18 manual contour
correction was performed by an experienced technologist. In addition, if patient motion was
noted during review of raw projections, motion correction (MoCo) software was applied.19

After reconstruction, the images were transferred for automated processing and
quantification using Cedars-Sinai quantitative perfusion SPECT (QPS) software.20 No
studies were removed from the consecutive series due to image quality issues.

Clinical Analysis
Pre-test probability of obstructive CAD was estimated using Diamond-Forrester criteria
using age, sex, and symptoms.21 We also calculated the probability of obstructive CAD
using ECG Diamond-Forrester criteria based on the degree of ST-depression on stress
ECG.21 The post-ECG parameter as well as gender and age formed clinical input to the ML
system.

Automated Analysis
Several quantitative parameters were obtained in a fully automated mode as described
below. These parameters were used as an input into the ML algorithm.

Total perfusion deficit (TPD)—Supine and prone images were quantified separately
using their respective supine and prone normal limits and a previously developed simplified
approach.22 Briefly, an ellipsoidal model and contours derived by the quantitative gated
SPECT (QGS) algorithm20 were used to extract polar map samples. An optimal
normalization factor between the database cases and a test case was established by an
iterative search and an abnormality threshold of 3.0 average (mean absolute) deviations was
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applied (approximately equivalent to 2.5 SD) to estimate the extent of hypoperfusion.22 This
value is similar to the threshold used in other MPS quantification methods. The TPD
measure was computed as the integral of polar map severities below the abnormality
threshold, reflecting both extent and severity of the defect.

In addition to deriving separate TPD measures for supine and prone MPS, we computed the
combined supine/prone TPD parameter, based on the findings of abnormality on both supine
and prone images as previously described.14 Briefly, combined supine/prone TPD is
calculated by limiting the TPD computation from the supine polar map to pixels, which have
been quantified as abnormal on prone images. The same average deviation threshold (3.0) is
used for supine and prone images (as in the analysis of separate images).14 Additionally, two
exceptions for concomitant defect locations (anterior/apical supine defects and for inferior
wall prone defects) have been built into the quantification process for males as previously
established.14 The combined supine/prone parameter was expressed in the same units
(percentage of the myocardium) as in the separate supine and prone TPD measures.

Stress/rest perfusion change—Stress-rest change was evaluated by the direct
quantification of ischemia.3 The stress-rest count difference was assessed considering the
voxels contained within only the stress contour volume since the rest scans were spatially
aligned to stress scans. Following the spatial alignment and stress-rest image count
normalization, we calculated stress/rest perfusion change based on the normal limits of
changes as recently described.23

Transient ischemic dilation (TID)—Standard MPS processing was performed by the
QPS/QGS software.20,24 The TID ratio was derived from stress/rest supine MPS as
previously defined.25

Visual Analysis
Visual interpretation of MPS images was based on short-axis, horizontal, and vertical long-
axis tomograms divided into 17-segments using QPS interactive 17-segment graph.20,26

MPS images were scored independently by two expert readers (Expert 1 with 30 years and
Expert 2 with more than 10 years of clinical experience in nuclear cardiology as attending
physicians) using a five-point scoring system (0, normal; 1, mildly decreased; 2, moderately
decreased; 3, severely decreased; and 4, absence of segmental uptake). Visual reading was
performed in two consecutive steps with the following information revealed to the expert
readers at each step: Step 1: supine plus prone data, including stress and rest perfusion data,
raw projection data, and gated functional data including gated images and stress plus rest
ejection fraction (EF); and Step 2: all information provided in Step 1 as well as quantitative
computer results and all clinical information including age, cardiac risk factors, type of
stress, and clinical and ECG responses to stress. During the second step, readers could
modify the stress and rest scores using the additional information that had been revealed to
them. Subsequently, summed stress scores (SSS) and summed rest scores were calculated by
summing the 17-segment stress and rest scores, respectively.

ML Algorithm
We have employed an ensemble-boosting ML algorithm, which is a meta-algorithm
technique. A high performance of classification is obtained by the combination of weak
learners (simple classification schemes), which produce a strong ensemble classification
scheme by iteratively adjusting appropriate weights for each of the base-level classifiers. For
the current analysis, we utilized a LogitBoost procedure27 with decision stumps as the base
classifiers utilizing Waikato Environment for Knowledge Analysis (WEKA).28 This method
has been shown to be superior to the originally proposed AdaBoost method29 and has been
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successfully applied to tumor classification with gene expression data.30 We utilized the
following quantitative parameters—TID, combined supine/prone TPD, supine TPD, and
optimized stress/rest change analysis as described previously.23 We also provided patient
age, gender, and post-ECG probability of CAD computed as described in the previous
section (seven features in total). Standard ten-fold stratified cross-validation was applied,
and therefore no training data were used during testing of the model, but 10 different models
were used to derive the final test results.31 No automated feature selection was performed
and the same 7 features were used in the training and testing phase. Both LLk and
angiography groups were included in the model to provide a balanced dataset for the ML
with similar representation of normal and abnormal cases. The output in the form of
continuous probability estimates was used to construct the receiver operator characteristic
(ROC) curves. To assess the incremental diagnostic benefit of combining the clinical
information and the quantitative features, the ML algorithm performance was compared to
expert visual readings and to the combined supine/prone quantitative analysis. Furthermore,
ML was used to combine only the 4 quantitative data features (without clinical features),
which were compared to ML probability estimates combining all seven features to assess
how clinical information influenced ML. In addition, we also combined quantitative
perfusion with quantitative functional data including EF and segmental motion and
thickening scores, as well as clinical data.

Conventional Coronary Angiography
Conventional invasive coronary angiography (ICA) was performed according to standard
clinical protocols, within 60 days of the myocardial perfusion examination. All coronary
angiograms were analyzed using quantitative coronary arteriography (QCA) by an
experienced cardiologist. A stenosis of 50% or greater narrowing of luminal diameter of the
left main or 70% or greater narrowing of the other coronary arteries by ICA was considered
significant and was used as the gold standard for the detection of obstructive CAD.

Statistical Analysis
Continuous variables were expressed as the mean ± standard deviation, and categorical
variables were expressed as percentages (%). The inter-observer agreement between visual
and automated reads was assessed by kappa-test. Z-test for comparison of proportions was
performed to compare the sensitivity, specificity, and accuracy. The normalcy was
calculated based on the LLk population, and the normalcy rates were also compared using z-
test. For all analyses, P values <.05 were considered statistically significant. ROC curves
were analyzed to evaluate the ability of ML software vs visual scoring for forecasting
obstructive CAD by QCA. The differences between the ROC areas under the curves (AUC)
were compared using the Delong method.32

RESULTS
Contours were manually adjusted in 12% of the supine cases and 14% of the prone cases,
with majority of these adjustments (9% for supine and 11% for prone) involving alteration
of the mitral valve plane only.

Agreement Between Automated and Visual Analysis
Figure 1 demonstrates the number of times the diagnosis was changed between the visual
analysis without clinical and quantitative data (Step 1) and with all the data (Step 2) as well
as between quantitative analysis and ML results. A supine/prone TPD value of ≥3%14 and
SSS score of ≥4 were considered abnormal16,33 for the quantitative TPD and visual analysis.
TPD threshold was not used by the ML method. The ML method combining quantitative
and clinical data changed diagnosis in ~10% of cases as compared to combined supine/prone
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TPD parameter alone, while Expert 1 and Expert 2 changed the diagnosis in 4% and 3% of
the cases between Step 1 and 2, respectively. The inter-observer agreement between the two
expert readers, combined supine/prone, and ML is shown in Table 2. The overall inter-
observer agreement between the two expert readers, quantitative, and ML was good (0.72–
0.81).

ML vs Quantitative Perfusion Analysis
Figure 2 compares the sensitivity, specificity, and accuracy of the combined supine/prone
TPD vs ML for the entire population cohort including angiography and LLK cases (N =
1,181). The specificity (92.1%) and accuracy (87.3%) of ML combining quantitative and
clinical data was significantly higher than combined supine/prone TPD quantification
(specificity: 86.8%, accuracy: 82.8%) (P<.01). The sensitivities of the two methods were
similar. The ROC curves for TPD analysis (combined supine/prone), ML with quantitative
features only, and ML combining quantitative and clinical data are shown in Figure 3A. The
AUC for ML combining quantitative and clinical measurements (0.94 ± 0.01) was
significantly better (P<.0001) than TPD (0.88 ± 0.01) and ML using quantitative data alone
(0.90 ± 0.01). The ML using quantitative data alone was also significantly better than
combined supine/prone TPD (P<.001). Furthermore, the AUC for ML combining
quantitative perfusion and functional image features plus clinical information was 0.94 ±
0.01, which is similar to the result obtained without functional information; and also
significantly better than TPD or ML using quantitative perfusion data only.

We also compared the diagnostic performance of the automated TPD analysis (combined
supine/prone) vs quantitative/clinical ML analysis, separately in the angiographic population
(N = 713) and LLK cases (N = 468) (Figure 4). The diagnostic accuracy of quantitative/
clinical ML (79.4%) was significantly better than TPD (75.7%) (P<.05), while the
specificities of the two methods were similar. The normalcy rate for the combined
quantitative/clinical ML (99.6%) was significantly higher than combined supine/prone TPD
(93.6%) (P<.01). In addition, the AUC for the quantitative/clinical ML (0.85 ± 0.01) was
significantly better than combined supine/prone TPD (0.82 ± 0.01) (P<.001) in the separate
angiographic population. Sensitivity comparisons were the same as in the overall population.

We compared the LogitBoost ML algorithm vs standard logistic regression using the same
input variables and the same ten-fold stratified cross-validation process. The diagnostic
performance of logistic regression resulted in sensitivity, specificity, and accuracy of 72.7%,
90.5%, and 84.2%, respectively. The sensitivity and accuracy of the logistic regression
method was significantly lower than the LogitBoost method combining clinical and
quantitative data (P<.05).

ML vs Visual Analysis
The sensitivity for visual read increased to 76.3% ± 4.5% vs 70.6% ± 4.5% in Step 2 vs Step
1, while specificity was unchanged (91.4% ± 2.2% vs 92.1% ± 2.2%) for Expert 1. Both
sensitivity (71.1% ± 4.6% vs 73.7% ± 4.5%) and specificity (88.3% ± 2.5% vs 87.6% ±
2.6%) were unchanged for Expert 2 between Step 1 and Step 2. Figure 2 also compares the
sensitivity, specificity, and accuracy of the quantitative/clinical ML algorithm vs the second
reading step for each expert (with all clinical and quantitative information available) for the
entire population cohort (N = 1,181). The diagnostic accuracy and sensitivity were
comparable to Expert 1, but superior to Expert 2 (P<.01). The specificity of quantitative/
clinical ML was similar in comparison to both experts. The ROC curves for detection of
obstructive disease, comparing quantitative/clinical ML and visual reads for two experts, are
shown in Figure 3B. The AUCs for ML were significantly better when compared to the
visual analysis for both expert readers (P<.0001).
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We also compared the diagnostic performance of the ML vs visual analysis (Step 2)
separately in the angiographic population (N = 713) and LLK population for normalcy rate
(Figure 4). The diagnostic accuracy of quantitative/clinical ML were similar to that of
Expert 1 and superior to that of Expert 2 (P<.05) in the angiographic population. The
normalcy rate (computed in the LLK population) for the ML (99.6%) was significantly
higher than for both expert readers (P<.01). The AUC for ML (0.85 ± 0.01) was similar to
the AUC for Expert 1 (0.84 ± 0.01) and was superior to the AUC for Expert 2 (0.79 ± 0.01)
(P<.0001). Sensitivity comparisons were the same as in the overall population.

In order to verify the validity of the visual scoring threshold, we also assessed the diagnostic
performance of ML vs visual analysis when SSS ≥3 was considered abnormal in the overall
population.33 The sensitivity, specificity, and accuracy of the Step 2 score for the two
experts were 79.4%, 89.1%, 85.6% and 76.5%, 85.9%, 82.6%, respectively. Analogous to
the results obtained for the SSS ≥4 threshold, the sensitivity and accuracy of ML were
superior when compared to Expert 2 (P<.01), but similar to Expert 1.

DISCUSSION
We were able to show significant improvements in the diagnostic accuracy for the detection
of obstructive CAD utilizing ML algorithm, which combined multiple quantitative perfusion
and clinical variables. The improvement of the overall diagnostic accuracy of MPS has a
significant impact because it may allow better selection of interventions for the individuals
who are at increased risk of events as well as avoiding unnecessary procedures.34 To our
knowledge, this is the first large study to combine multiple clinical and quantitative features
using ML algorithms. We were able to demonstrate that the diagnostic performance of ML
algorithms combining clinical and perfusion data is significantly better than quantitative
perfusion analysis alone. Furthermore, we compared the diagnostic accuracy of ML
algorithm vs two experienced visual readers from high volume centers. In our study, the ML
algorithms were at least as accurate or superior to the visual analysis (as compared to one
expert). It has been demonstrated that the degree of variability in MPS interpretation is
dependent on the reader’s experience.35,36 Therefore, it is feasible that these algorithms will
also be superior when compared to less experienced readers. These algorithms can be easily
incorporated with currently available standard nuclear cardiology software. In the future,
this method could provide fundamental assistance in evaluation of MPS studies.

We note that the overall best visual accuracy obtained in this study was slightly lower (86%)
than in the similar visual expert analysis recently reported by our group for the attenuation-
corrected data (89%);37 however, in the current study, none of the data were removed due to
poor image quality or motion artifacts. These studies were also performed in different
populations, possibly reflecting differences in the referral patterns and different prevalence
of the disease; therefore, further comparison of the supine-prone technique to attenuation-
correction techniques is warranted.

Previous studies had examined the use of neural networks and rule-based analysis, older ML
tools compared to the one used in this study, in the assessment of MPS.38–40 One study
evaluated 135 patients who had undergone both 99mTc-sestamibi MPS and cardiac
catheterization38 and showed an improvement in diagnostic performance by expert
physicians when utilizing neural networks (decision support) in a small population. In
another study, the diagnostic performance of a computer-assisted interpretation of MPS39

was compared to visual analysis in 655 patients undergoing MPS and coronary angiography
where polar map characteristics were analyzed by a rule-based system. The diagnostic
specificity of the automated system was noted to be higher than visual analysis (although
only ~40%); however, the sensitivity of the visual analysis was higher. These methods
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focused on the interpretation of polar maps by automated rules or neural networks. In
contrast, our approach was to integrate a small number of clinical and high-level quantitative
parameters (which could be used for standalone diagnosis). One study40 reported the ability
of a computer-based neural network to enhance the diagnostic accuracy of MPS in a small
group of patients (N = 102) by combining interpretation of treadmill exercise tests and
image analysis. Similar to our study, incorporation of clinical and exercise data significantly
improved the predictive accuracy of the network compared to a network based on image
data alone (P<.05). More recent ML algorithms have been applied in cardiovascular
medicine to predict increased risk of decompensated heart failure41 and onset of atrial
fibrillation.42 These techniques have also been used in gene mapping and cellular
biology.43,44 However, they are not yet routinely used in cardiovascular imaging.

In our current study, we used boosting ML techniques. Boosting ML techniques combine
multiple models, explicitly seeking models, which complement one another. Voting
weighted by confidence is then used for classification to combine the output of multiple
models. Boosting finds the models iteratively; it encourages new models to classify correctly
the cases handled incorrectly by earlier models by assigning greater weights to these
instances. In general, any type of ML could be used with boosting. The LogitBoost learning
technique utilizes logistic regression as a base learner. Thus, a combination of different
competing logistic regression models is used for the final prediction. We have demonstrated
that such a technique is superior to the standard logistic regression approach.

We used a stratified ten-fold cross-validation for the evaluation of the ML algorithm which
is a standard procedure in ML research. Cross-validation is often used to optimize the fitting
process to create a stable model using a number of unknown parameters.31 In k-fold cross-
validation (in this case ten-fold), the sample is divided into k-segments and k-1 segments are
used as the training set and the remaining segment is used for validation.45 This process is
repeated until all k-segments are tested. The average performance for the ten models is then
reported, insuring that for a given model, no training data are used during the testing phase.
The large amount of cases (1,181) and small amount of features (in this case 7) insure there
is no over-fitting of the model. The split-sample technique would result in a smaller training
and smaller evaluation set resulting in lower stability of the model and less certainty in the
test results.46 Although the visual scoring threshold for disease detection was not trained on
the current data, we have previously used established thresholds for abnormality. We also
evaluated the alternative threshold for abnormality (SSS ≥3) for the visual experts, which
did not change the results significantly. Furthermore, we reported the AUC comparisons,
which are not dependent on the optimal threshold selection.

This study has several limitations. Coronary angiography was used as the gold standard for
this study with its known limitations. In addition, patients with LLk of CAD were included
in our analysis and were considered to have a normal angiogram. However, we also report
the results for the angiography cases separately. Furthermore, we studied a population with
suspected but not known CAD; however, the detection of CAD is typically useful only in
this group. Attenuation correction was not used in this study; however, we used combined
supine/prone analysis to guard against image artifacts. Additionally, the MPS protocol was
dual-isotope imaging, which is limited by the difficulties in comparing rest and stress
images due to differences in image resolution. Recently, this protocol has been employed
less frequently due to the high amount radiation to the patient. Future studies using single-
isotope protocols or low-dose MPS may be required to analyze the ML algorithms. The ML
model was based on the presence of obstructive disease in any territory and did not
distinguish per-vessel obstruction. In the future, we plan to apply these findings to individual
coronary territories for assessment of localization of disease using ML. Furthermore, the
clinical information provided to the physician did not result in as many changes in diagnosis
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as ML, possibly related to evaluation in a blinded fashion. Based on current
recommendations and guidelines, the clinician was less likely to change the diagnosis
drastically from definitely normal to definitely abnormal, while the ML did not operate with
these constraints. Future studies are required to assess these differences further. Finally,
although we had a large patient population, the results were obtained in only one center.
Further multicenter evaluations will be required to confirm these results.

CONCLUSION
Computational integration of quantitative image measures and clinical data by ML improves
diagnostic performance of automatic MPS analysis to the level rivaling expert analysis.
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Figure 1.
Comparison of the number of patients in whom the diagnosis was changed when all
information including clinical variables was provided.
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Figure 2.
Sensitivity, specificity, and accuracy of ML algorithm vs combined supine/prone TPD and
visual expert analysis for detection of obstructive CAD for the entire cohort (N = 1,181).
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Figure 3.
The ROC curves comparing the ML algorithm vs combined supine/prone TPD (A) and
expert visual analysis (B) for the detection of obstructive coronary artery disease.
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Figure 4.
Sensitivity, specificity, accuracy, and normalcy (based on LLk groups) of ML algorithms vs
combined supine/prone TPD and visual analysis for obstructive CAD separately in the
angiographic group (N = 713).
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Table 1

Baseline characteristics of the patients.

Angiography Group LLk Group P - Value

Number 713 468 N/A

Age (Years) 64 ± 12 48 ± 11 <.01

Male % 64 % 41 % <.01

Female % 36 % 59 % <.01

Diabetes Mellitus % 22 % 10 % <.01

Hypertension % 61 % 36 % <.01

Hyperlipidemia % 52 % 38 % <.01

Smoking % 6 % 5 % 0.46

Exercise SPECT 33 % 56 % <.01

Adenosine SPECT 67 % 44 % <.01

Ejection Fraction (%) 61.7 ± 13.2 65.7 ± 11.3 0.16

Cath: 0-Vessel Disease 291 (41%) N/A N/A

Cath: 1-Vessel Disease 204 (29%) N/A N/A

Cath: 2-Vessel Disease 149 (21%) N/A N/A

Cath: 3-Vessel Disease 63 (9%) N/A N/A

Pre-Test Likelihood CAD

Low 11% 100 <.01

Intermediate 80% 0 <.01

High 9% 0 <.01

Abbreviations: LLk- Low Likelihood, SPECT- Single Photon Emission Computed Tomography, N/A = Not applicable.
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Table 2

Agreements between the two expert readers, combined supine/prone TPD, and ML algorithm utilizing Kappa-
test

Kappa-Statistics Total % Agreement

Expert 1 vs. Expert 2 0.78 90%

Expert 1 vs. TPD 0.80 91%

Expert 2 vs. TPD 0.81 91%

Expert 1 vs. ML 0.80 91%

Expert 2 vs. ML 0.72 87%
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