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Abstract
Increasing evidence suggests that enhanced dopamine (DA) neurotransmission in the nucleus
accumbens (NAc) may play a role in mediating the reward and reinforcement produced by
addictive drugs and in the attentional processing of drug-associated environmental cues. The
meso-accumbens DA system is selectively enriched with DA D3 receptors, a DA receptor subtype
increasingly implicated in reward-related brain and behavioural processes. From a variety of
evidence, it has been suggested that selective DA D3 receptor antagonism may be a useful
pharmacotherapeutic approach for treating addiction. The present experiments tested the efficacy
of SB-277011A, a selective DA D3 receptor antagonist, in rat models of nicotine-enhanced
electrical brain-stimulation reward (BSR), nicotine-induced conditioned locomotor activity
(LMA), and nicotine-induced conditioned place preference (CPP). Nicotine was given
subcutaneously within the dose range of 0.25–0.6 mg/kg (nicotine-free base). SB-277011A, given
intraperitoneally within the dose range of 1–12 mg/kg, dose-dependently reduced nicotine-
enhanced BSR, nicotine-induced conditioned LMA, and nicotine-induced CPP. The results
suggest that selective D3 receptor antagonism constitutes a new and promising
pharmacotherapeutic approach to the treatment of nicotine dependence.
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Introduction
Nicotine, like other addictive drugs such as amphetamines, cannabinoids, cocaine, ethanol,
and opiates, enhances brain reward functions in the central meso-accumbens dopamine (DA)
brain reward system (for reviews, see Clarke, 1990; Di Chiara, 2000; Gardner, 2005; Wise
and Gardner, 2002). This nicotine-enhanced meso-accumbens brain reward is mediated by
increased DA in the reward-related nucleus accumbens (NAc) (e.g. Imperato et al., 1986;
Pontieri et al., 1996; Yoshida et al., 1993). The enhanced NAc DA is important to nicotine’s
addictive effect (Di Chiara, 2000; Gardner, 2005; Pontieri et al., 1996; Wise and Gardner,
2002), and appears to result from increased meso-accumbens DA neuronal firing (Calabresi
et al., 1989; Mereu et al., 1987; Nomikos et al., 2000). This most likely occurs via a site of
action within the ventral tegmental area (VTA) (Corrigall et al., 1994; Nomikos et al., 2000;
Wise and Gardner, 2002; Yeomans and Baptista, 1997), and may involve both D1 (Harrison
et al., 2002) and D2 (Huston-Lyons et al., 1993) receptor mechanisms. Congruently,
lesioning the DA-containing neurons that project from the VTA to the NAc through the
meso-accumbens system attenuates nicotine self-administration in animals (Corrigall et al.,
1992, 1994; Di Chiara, 2000; Stolerman and Shoaib, 1991). In humans, pharmacologically
induced DA blockade produces a compensatory increase in cigarette smoking and nicotine
intake (Caskey et al., 1999; 2002) while administration of a DA agonist produces a
compensatory decrease in cigarette smoking and nicotine intake (Caskey et al., 2002; Jarvik
et al., 2000), suggesting that nicotine self-administration is mediated by DA mechanisms in
the same manner as other addictive drugs (e.g. de Wit and Wise, 1977; Gardner, 2000, 2005;
Ikemoto and Wise, 2004; Wise and Rompré, 1989; Wise et al., 1995a,b; Yokel and Wise,
1975, 1976).

Considerable evidence indicates that D1 and D2 receptors play significant roles in drug-
induced reward and incentive motivation (e.g. Baker et al., 1998; de Wit and Wise, 1977;
Ettenberg et al., 1982; Gardner, 2005; Ikemoto et al., 1997; Nakajima, 1989; Nakajima et
al., 1993; Spyraki et al., 1987; Wise and Gardner, 2002; Wise and Rompré, 1989). Recently,
however, the DA D3 receptor has gained attention with respect to the meso-accumbens
VTA–NAc DA system, drug-induced reward, motivation and relapse, and the behavioural
manifestations of addiction (for reviews, see Heidbreder et al., 2004, 2005; Joyce and
Millan, 2005; Newman et al., 2005). This has led to the suggestion that the DA D3 receptor
may be a useful therapeutic target for anti-addiction medications (Caine and Koob, 1993,
1995; Caine et al., 1997; Heidbreder and Hagan, 2005; Levant, 1997; for reviews, see
Heidbreder et al., 2004, 2005; Joyce and Millan, 2005; Le Foll et al., 2005a; Newman et al.,
2005).

To date, studies of the involvement of DA D3 receptors in the neurobiology of drug
addiction have been limited, due to a lack of suitably selective D3 compounds. Recently,
however trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclo-hexyl]-4-
quinolinecarboxamide (SB-277011A), a highly selective and potent D3 receptor antagonist
with good brain-penetrant properties in rodents was synthesized (Reavill et al., 2000; Stemp
et al., 2000). Recent research with SB-277011A suggests that selective DA D3 antagonism
appears to have a promising anti-addiction profile against cocaine, heroin, and ethanol in
animal models (for reviews, see Heidbreder et al., 2004, 2005). With respect to nicotine,
recent studies have shown that nicotine-induced behavioural sensitization (Le Foll et al.,
2003a) and nicotine-induced conditioned locomotion (Le Foll et al., 2003b) are both
associated with significant increases in DA D3 receptor binding and mRNA levels in the
NAc, without significant alteration in D1 or D2 receptor mRNA. The same studies also
showed that nicotine cue-conditioned locomotor activity (LMA) is attenuated both by the D3
receptor antagonist SB-277011A and by BP-897, a partial D3 receptor agonist with D3
antagonist properties (Wicke and Garcia-Ladona, 2001; Wood et al., 2000). In addition, D3
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receptor ligands have recently been shown to block nicotine-induced conditioned place
preference (CPP) (Le Foll et al., 2005b), and we have recently shown that SB-277011A
blocks nicotine-induced relapse to nicotine-seeking behaviour (Andreoli et al., 2003b). We
take such findings to suggest that highly selective DA D3 receptor antagonists may prove
useful as anti-nicotine addiction pharmacotherapeutic agents. Therefore, in the present series
of experiments, we further investigated the effects of several doses of SB-277011A on
nicotine-enhanced brain stimulation reward (BSR), nicotine-associated cue-conditioned
LMA, and the expression of nicotine-induced CPP.

Materials and methods
Animals

For the nicotine-enhanced BSR experiments, male Long–Evans rats (Charles River
Laboratories, Raleigh, NC, USA) experimentally naive at the start of experiments, and
weighing 300–325 g at time of surgery, were used. They were housed individually in a
climate-controlled environment with food and water freely available with the exception of
the time spent each day in the test chambers. All BSR experiments were approved by the
Animal Care and Use Committee of the National Institute on Drug Abuse of the U.S.
National Institutes of Health, and were carried out in compliance with applicable United
States federal and Maryland state laws and regulations. For the cue-conditioned LMA
experiments, male Wistar rats (Charles River Deutschland, Sulzfeld, Germany)
experimentally naive at the start of experiments, and weighing 250–360 g at the start of
drug-cue pairings, were used. They were housed individually in a climate-controlled
environment with food and water freely available with the exception of the time spent each
day in the test chambers. All cue-conditioned LMA experiments were conducted under a
Project License obtained according to Italian law regulating animal experimentation (Article
7, Legislative Decree 116, 27 January 1992), which acknowledges European Directive
86/609/EEC for the protection of animals used for experimental and other scientific
purposes. For the nicotine-induced CPP experiments, male Sprague–Dawley rats (Taconic
Farms, Germantown, NY, USA) experimentally naive at the start of experiments, and
weighing 200–210 g at the start of drug-cue pairings, were used. They were housed two per
cage in a climate-controlled environment with food and water freely available with the
exception of the time spent each day in the test chambers. All cue-conditioned CPP
experiments were approved by the Animal Care and Use Committee of St John’s University,
and were carried out in compliance with applicable United States federal and New York
state laws and regulations. All experiments – whether conducted in Italy, New York, or
Maryland – were carried out in accordance with the principles of laboratory animal care
stipulated in the Guide for the Care and Use of Laboratory Animals (National Academy of
Sciences, 1996).

Drugs and chemicals
(−)Nicotine (+)bitartrate salt was used in all experiments (Sigma-Aldrich Corporation, St
Louis, MO, USA) and was dissolved in sterile physiological saline and the pH adjusted to
7.4 with NaOH. The doses of nicotine are expressed as free base. SB-277011A was provided
by GlaxoSmithKline Pharmaceuticals (Verona, Italy, and Harlow, Essex, UK) and was
placed into solution using 25% (for the BSR experiments), 10% (for the LMA experiments),
or 20% (for the main CPP experiment testing SB-277011A’s effect on nicotine-induced
CPP; see below) 2-hydroxypropyl-β-cyclodextrin (for the BSR and CPP experiments,
obtained from Fluka Division of Sigma-Aldrich Corporation, St Gallen, Switzerland; for the
LMA experiments, obtained from Wacker-Chemie GmbH, München, Germany). In two
additional CPP experiments carried out to determine whether SB-277011A by itself
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produces appetitive or aversive effects (see below), SB-277011A was placed into solution
using 2% w/v methylcellulose.

Behavioural methods and testing
BSR (nicotine-enhanced brain-stimulation reward) experiments
Surgery: Under an anaesthetic mixture of sodium pentobarbital and chloral hydrate, each rat
was surgically implanted, using standard aseptic stereo-taxic technique, with a unilateral
monopolar stainless-steel stimulating electrode (Plastics One, Roanoke, VA, USA) aimed at
the medial forebrain bundle at the level of the lateral hypothalamus. The target implant
stereotaxic coordinates were, from bregma, AP −2.5 mm, ML +1.7 and DV −8.4 mm, using
the rat brain atlas of Paxinos and Watson (1998). The top of the electrode and the electrode
connector (to which the wires from the brain stimulator connected via a quick-connect
electrical mini-plug) were cemented to the skull with acrylic resin cement. A wire wrapped
around a jeweller’s screw implanted in the skull and connected to a mini-pin in the electrical
connector at the top of the electrode was used to accommodate return electrical current. The
skin was drawn up around the acrylic mound and sutured, prophylactic antibiotics and post-
surgical analgesics given, and each animal was kept warm and under observation until all
anesthesia effects were gone. Rats were given 5 d to recover fully from surgery, under daily
veterinary supervision, before experiments were started.

Apparatus: All training and testing occurred in standard operant chambers, each containing
a retractable wall-mounted lever and a cue light immediately above the lever (MED
Associates, Georgia, VT, USA). The operant chambers were enclosed in ventilated, sound-
attenuating cabinets. Depression of the lever activated a stimulator programmed to deliver
trains of 0.1 ms cathodal pulses, each pulse-train having 500 ms duration.

Procedure: Animals (n=14) were placed once daily into the operant chambers, connected to
the brain stimulator via their skull-mounted electrical connectors, and trained using an
electrical BSR procedure slightly modified from studies that we have previously described
(Lepore et al., 1996; Vorel et al., 2002). To find an animal’s optimal stimulation amperage,
the animals were placed in the apparatus for 1 h per day and allowed to ‘auto-shape’ (i.e.
learn by themselves) lever-pressing, on a FR-1 reinforcement schedule, for BSR at 300 μA
and 124 Hz. The amperage was then increased gradually until the animal produced moderate
rates of responding (45–60 responses/30 s). Our experience was that 300 μA was optimal
for most animals; in no case did the amperage need to be increased to >350 μA to achieve
the desired behavioural output of 45–60 responses/30 s. Once this training was complete, the
rats were then transferred to a rate frequency procedure (Campbell et al., 1985) in which
animals were allowed to lever press, on a FR-1 reinforcement schedule (which continued for
the duration of experimentation), for a series of 16 different pulse frequencies, ranging from
141 to 25 Hz, presented to the animals in descending order. Each pulse frequency was
preceded by a 500 ms priming stimulation to ‘inform’ the animal as to the frequency of the
immediately following BSR, and then the rat was allowed to lever press for BSR during a
30-s period. Each pulse frequency was offered for two 30-s periods (time bins) before
descending to the next frequency. We have, therefore, labelled such sweeps of pulse
frequencies from 141 to 25 Hz as ‘twinned time-bin sweeps’. When one such ‘twinned time-
bin sweep’ of pulse frequencies from 141 to 25 Hz was completed, the procedure was
repeated – what we call a ‘double-sweep’. This double-sweep procedure then repeated itself
twice more, for a total of three double-sweeps per day. The first double-sweep of each day
was a ‘warm-up’ session and discarded from the data. The second double-sweep was taken
as the baseline BSR session while the third was taken as the test BSR session. The four
response rate measures at each stimulation frequency of the baseline BSR session were
averaged, as were the four of the test BSR session, yielding an average baseline and an
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average test lever press rate at each frequency for the baseline BSR and test BSR sessions.
Reward threshold, θ0(the frequency at which the animal failed to respond for rewarding
stimulation), was then determined for the baseline BSR session and the test BSR session.
This was done by mathematically fitting each rate-frequency curve (one for the baseline
BSR session; one for the test BSR session) by iterative computer programs derived from the
Gauss – Newton algorithm for nonlinear regression to three different sigmoidal curve-fitting
mathematical growth models that appear to accurately fit rate-frequency electrical brain
reward functions (Coulombe and Miliaressis, 1987): the Gompertz model (γ′=ae−e(b–cX)),
the logistic model (γ′=a/[1+e(b–cX)]), and the Weibull function (γ′=a[1–e−(bX)c]). From
each curve-fitting model, a θ0 solution was obtained. The three solutions for θ0 were
averaged to produce a mean θ0 for each rate-frequency BSR function generated by a given
animal over a given descending series of pulse frequencies. When mean θ0 was stable (three
successive days with each θ0 value within 10% of overall mean θ0), animals were injected,
between the baseline and test BSR session with subcutaneous (s.c.) nicotine (0.25 mg/kg)
and intra-peritoneal (i.p.) SB-277011A (0, 3, 6, or 12 mg/kg). SB-277011A or its vehicle
was given 30 min, and nicotine 30 s before test sessions, 30 min being the time interval
between the baseline and test BSR sessions (during which interval the animals remained in
their operant test chambers). The sequence of the SB-277011A doses was counterbalanced.

A second group of animals (n=9) was also run in the BSR paradigm, and tested at a higher
dose of nicotine (0.5 mg/kg s.c.). These animals were run using an inter-day, rather than an
intra-day, testing protocol, with baseline and test BSR sessions on separate days. In this
group, when mean θ0 was stable (5 successive days with each θ0 value within 10% of
overall mean θ0), animals were given, on the same day, a ‘warm-up’ BSR session followed
by a baseline BSR session. Then, when daily BSR sessions were again stable (3 more
successive days with each θ0 value within 10% of overall mean θ0), animals were given, on
the same day, a warm-up BSR session followed by a test BSR session. Successive warm-up
and baseline BSR sessions then followed, with at least 3 days during which each θ0 value
fell within 10% of overall mean θ0 being required before the next warm-up and test BSR
session was run. Nicotine (0.5 mg/kg s.c.) and SB-277011A (0, 3, 6, or 12 mg/ kg i.p.) were
administered 30 s and 30 min, respectively, before test sessions. Since warm-up BSR results
were discarded (by definition, see above), drug effects on BSR were computed by
comparing test BSR sessions against the immediately previous baseline BSR sessions. The
sequence of the SB-277011A doses was counterbalanced.

Histology: Upon completion of experiments, animals were killed by anaesthetic overdose
(sodium pentobarbital). The rats were then decapitated and their brains removed and stored
in 10% buffered formalin solution. Brains were transferred to a 20% sucrose solution at least
24 h before sectioning. Coronal sections (50 µm thick) were made on a vibratome and
stained with Cresyl Violet. Reconstructions of electrode tracks were made using a
microscope and the rat brain atlas of Paxinos and Watson (1998).

Statistical analysis: Shifts in mean θ0 values produced by nicotine, nicotine+vehicle, or
nicotine+ SB-277011A were analysed using Student’s t test where appropriate and also by
one-way analysis of variance (ANOVA) for repeated measures followed by multiple
comparison testing using the Newman– Keuls post-hoc test (Kirk, 1982; Winer, 1962).
Minimally acceptable statistical significance was set at a probability level of p<0.05 for all
tests.

LMA (nicotine cue-conditioned locomotor activity) experiments
Apparatus: Locomotor activity was recorded by 16 computerized AccuScan Versamax
units (AccuScan Instruments Inc., Columbus, OH, USA). Each unit consisted of a clear
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Plexiglas cage (40 cm wide × 40 cm deep × 32 cm high) equipped with 32 infrared light
beam sensors located 1.3 cm above the floor. Photo beam interruptions were monitored in 5-
min periods (time bins) from each monitor and were analysed by AccuScan Analyzer
computer software.

Procedure: The AccuScan Versamax activity monitoring units described immediately
above were also used as cue-conditioning chambers following acute nicotine or saline
administration. The conditioning phase consisted of 30-min conditioning (cue-pairing)
sessions. There were four groups of animals (n=16 per group). Groups 1 and 2 were the
saline- and nicotine-paired groups. Each rat in these two groups was injected with saline in
the home cage and 3 h later with either saline (1 ml/kg s.c.) or nicotine (0.5 mg/kg s.c. in a
volume of 1 ml/kg) and then immediately placed into a locomotor activity chamber (drug-
paired environment) for 30 min. Groups 3 and 4 were control, unconditioned animals. Each
rat in these two groups was injected with either saline (1 ml/kg s.c.) or nicotine (0.5 mg/kg
s.c. in a volume of 1 ml/kg) in its home cage, and then 3 h later was injected with saline and
immediately placed into a locomotor activity chamber (drug-unpaired environment) for 30
min. Groups 3 and 4 were, therefore, the saline- and nicotine-unpaired groups. This
procedure was performed once a day for 4 d. The test phase occurred on the following day
(day 5), and was conducted identically to the conditioning phase days, except that each
animal was given an injection of saline and then immediately placed into a locomotor
activity chamber. Thus, during the test phase, locomotor activity was induced only by the
saline- or nicotine-associated environmental cues of the locomotor activity chambers. To
assess the effects of D3 receptor antagonism on nicotine-cue-induced locomotor activity, on
the test day animals were divided into two pharmacological treatment groups: 0 mg/kg i.p.
SB-277011A (i.e. the β-cyclodextrin vehicle) or 10 mg/ kg i.p. SB-277011A (n=8 per
group). In a further experiment, an additional 36 animals were trained as a nicotine-paired
group only, as described above. On the test day these animals were divided into three
pharmacological treatment groups: 0 (i.e. vehicle), 1, or 3 mg/kg i.p. SB-277011A. All
pharmacological treatments were given 30 min prior to LMA testing.

Statistical analysis: Raw LMA data counts were converted to Area Under the Curve for the
first 20 min of testing (AUC 0–20 min), using Simpson’s Rule for AUC calculation

[(MaxTime − MinTime)/3 * n] × [γ1+4 * (γ2+γ4+ … )+2 * (γ3+γ5+ … )+ γn],

where n represents the total number of time bins and γ represents the absolute value of each
time bin in sequential order (see Epperson, 2001 for the theory and derivation of AUC
calculations). Simpson’s Rule for AUC calculation was chosen over the Trapezoidal Rule
for AUC calculation because it yields a more accurate numerical integration (Epperson,
2001). The data were then analysed by ANOVA followed by multiple comparison testing
(Kirk, 1982; Winer, 1962). The effects of SB-277011A on LMA were analysed by three-
way ANOVA with main factors of environment (paired vs. unpaired), conditioning drug
(saline vs. nicotine), and treatment (vehicle or SB-277011A, 10 mg/kg), taking into account
the following interactions: (1) drug × environment; (2) drug × treatment; (3) environment ×
treatment, and (4) drug × environment × treatment. Differences within each interaction were
further analysed by performing planned comparisons using the ‘a priori t test’ (Kirk, 1982,
pp. 95–97).

For the effects of SB-277011A (0, 1, 3 mg/kg i.p.) on the nicotine-paired group only, a one-
way ANOVA was performed. Minimally acceptable statistical significance was set at a
probability level of p<0.05 for all tests.
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CPP (nicotine-induced conditioned place preference) experiments
Apparatus: An automated, three-chambered, Plexiglas CPP apparatus was used as
previously described (Dewey et al., 1999; Horan et al., 2000), with modifications. The two
pairing chambers of the apparatus were identical in dimensions (25 × 14 × 36 cm) and were
separated by removable Plexiglas guillotine doors. The pairing chambers were composed of
distinct visual and tactile cues. The walls of one of the pairing chambers were white with
cage bedding on the floor and the walls of the second chamber consisted of alternating white
and black boxes (1.2 × 1.8 cm) in a chessboard pattern and a Plexiglas floor. The two
pairing chambers were separated by a third, connecting tunnel (7.5 × 7.5 × 36 cm). This
third connecting tunnel was equipped with the same distinct visual and tactile cues as the
two pairing chambers; the half of the connecting tunnel adjacent to the white-walled pairing
chamber was similarly white-walled, while the half of the connecting tunnel adjacent to the
chessboard-patterned wall was similarly chessboard patterned, and so forth. Thus, while
strictly speaking a third chamber existed, a third set of visual and tactile cues did not.

Procedure: CPP expression was assessed as previously described (Horan et al., 2000; Vorel
et al., 2002). Expression studies with acute SB-277011A or vehicle were divided into four
phases: acclimation, handling, conditioning, and testing. The animals were not exposed to
the chambers prior to the start of the pairings. During days 1–3, animals were acclimated to
the animal facility. During handling (days 4–6), animals were transported to the laboratory
and handled for 5 min each. During conditioning (days 7–22), animals were exposed to
once-daily conditioning sessions. For each conditioning session, animals (n=40) were
injected with nicotine (0.6 mg/kg s.c. in a volume of 1 ml/kg) or vehicle (1 ml/kg s.c.) and
then immediately confined for 30 min in an appropriate cue-specific chamber. During
conditioning, nicotine was always paired with one cue-specific environment, and vehicle
was paired with the other; nicotine or vehicle exposure (and appropriate environmental
pairing) alternated from day to day. This was done over a 16-d period, i.e. animals were
given eight pairings with nicotine and there was a 24-h separation between exposure to
vehicle and nicotine. The animals in each group were randomly assigned to a 2 × 2 factorial
design with one factor being the pairing chamber and the other factor being the order of
conditioning. In this counterbalanced procedure, the animals were randomly assigned to one
of the two pairing chambers, so that half of the subjects received the drug in one
compartment (white walls, with bedding on the floor) and the other half in the other
compartment (alternating black and white squares on the walls, with a smooth chamber
floor). This procedure resulted in the animals receiving equal exposure to the two
compartments and due to random assignment, controlled for side preference. An additional
group of 10 animals was paired with vehicle in both chambers of the apparatus during the
conditioning phase.

On the test day (day 23), the 40 animals that had been paired in the CPP apparatus
alternating with nicotine and vehicle during the conditioning phase were randomly divided
into four groups of 10 and received either SB-277011A (1, 3, or 10 mg/kg i.p.) or vehicle in
the home cage 30 min before they were placed in the CPP apparatus. Then, the guillotine
doors were removed and the animals were allowed to move freely within the apparatus for
15 min. The amount of time spent in each chamber was determined using an automated
timing system. Each of the pairing chambers contained infrared micro-beams (two per
chamber) that were wired to an automated timer. When an animal entered a chamber, the
beam was broken and a timer began recording. Once the animal left the chamber, the timer
stopped. In addition, the circuitry had an internal timer that shut off after 15 min. The third
small connecting chamber was so small that it was not possible for an animal to stay totally
within it. Thus, the sum of the times spent in the two pairing chambers was always found to
equal 15 min. On the test day, the 10 animals that had been paired in the CPP apparatus
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alternatingly with vehicle and vehicle during the conditioning phase were tested in identical
manner to the 40 animals that had been paired in the CPP apparatus alternatingly with
nicotine and vehicle during the conditioning phase.

To test for the possibility that SB-277011A alone might produce place preference or
aversion, an additional CPP experiment was carried out with four separate groups of new
animals (n=10 per group). In this additional experiment, injections of vehicle (1 ml/kg 2%
w/v methylcellulose solution) or 1, 3, or 10 mg/kg SB-277011A were paired with one of the
distinctive CPP cue chambers during CPP conditioning. These animals received four
pairings of distinctive cue chamber and the appropriate dose of SB-277011A or vehicle,
with each pairing separated by 24 h. On the test day, these animals received an i.p. injection
of vehicle in the home cage 30 min before being placed into the CPP apparatus. Time spent
in each cue-distinctive chamber was recorded. In all other methodological respects, this
additional CPP experiment was carried out as detailed above for the main CPP experiment.

To test for the possibility that SB-277011A alone might produce behavioural effects on the
CPP test day, a second additional CPP experiment was carried out with four separate groups
of new animals (n=10 per group). In this second additional CPP experiment, the effects on
CPP expression of vehicle or 1, 3, or 10 mg/kg of SB-277011A administered on the test day
were assessed. For each CPP conditioning session, animals were injected with vehicle (1 ml/
kg s.c. of deionized distilled water) and then immediately confined for 30 min in one of the
cue-specific chambers. Twenty-four hours later, the animals were paired with vehicle in the
other cue-specific chamber. This pairing cycle was repeated eight times over a 16-d period.
Thus all animals received vehicle injection in both chambers. On the test day, animals
received SB-277011A (1, 3, or 10 mg/kg i.p.) or vehicle in the home cage 30 min before
being placed in the CPP apparatus. Time spent in each cue-distinctive chamber was
recorded. In all other methodological respects, this additional CPP experiment was carried
out as detailed above for the main CPP experiment.

Statistical analysis: Data were analysed using Student’s t test where appropriate
(orthogonal observations, independent samples) (Ferguson, 1981) and also by one-way
ANOVA (Kirk, 1982; Winer, 1962) followed by multiple comparison testing using the
Newman– Keuls test (Kirk, 1982; Winer, 1962). Specifically, the times spent in each
chamber by the different experimental groups of animals (i.e. vehicle/vehicle paired during
training vs. vehicle/nicotine paired during training; vehicle/nicotine paired during training
and SB-277011A 0 mg/kg on test day, vehicle/ nicotine paired during training and
SB-277011A 1 mg/kg on test day, vehicle/nicotine paired during training and SB-277011A
3 mg/kg on test day, vehicle/nicotine paired during training and SB-277011A 10 mg/kg on
test day) on test day (i.e. CPP expression) were analysed using the above-specified statistical
tests. To analyse the data generated in the first additional CPP experiment (to study the
possibility that SB-277011A alone might produce appetitive or aversive effects when paired
with cue-distinctive chambers during CPP conditioning), ANOVA was used. To analyse the
data generated in the second additional CPP experiment (to study the possibility that
SB-277011A might by itself produce behavioural effects during CPP expression on the test
day), ANOVA was used. In addition, to test even further for the possibility that
SB-277011A might, on the test day, produce some form of ‘negative contrast’ between the
positive CPP expected to be observed in the nicotine-paired compartment and the behaviour
actually observed in the nicotine-paired compartment, the time spent in the nicotine-paired
compartment by SB-277011A–treated rats was compared to the 7.5 min theoretical CPP
‘indifference level’ for each of the four tested groups of rats (vehicle, 1 mg/kg SB-277011A,
3 mg/kg SB-277011A, 10 mg/kg SB-277011A) using ‘one-sample t tests’ (Rosner, 2006).
Minimally acceptable statistical significance was set at p<0.05 for all tests.
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Results
BSR (nicotine-enhanced brain-stimulation reward) experiments

Histological verification of electrode implant locations revealed that all electrode tips were
within 0.5 mm of the desired target locus in the brain, and (congruently) no animals had to
be excluded from the experiment because of failure to reach satisfactory BSR levels and
stability.

As shown in Figure 1, nicotine at a dose of 0.25 mg/kg significantly enhanced brain reward
(i.e. lowered electrical BSR thresholds) compared to baseline (Figure 1a) (t=9.96, d.f.=13,
p<0.001), and pretreatment with SB-277011A (3, 6, or 12 mg/kg) dose-dependently
attenuated nicotine-enhanced BSR (Figure 1b). This effect of SB-277011A was confirmed
by one-way ANOVA, which revealed a statistically significant SB-277011A main treatment
effect (F3,39= 18.6, p<0.001). Follow-up individual pairwise comparisons using the
Newman–Keuls post-hoc test confirmed that SB-277011A (3, 6, or 12 mg/kg i.p.) given
prior to nicotine on the test day produced a statistically significant dose-dependent inhibition
of nicotine-enhanced BSR relative to 0 mg/kg SB-277011A (Figure 1b).

Figure 2 shows that nicotine at a dose of 0.5 mg/kg significantly enhanced brain reward (i.e.
lowered electrical BSR thresholds) compared to baseline (Figure 2a) (t=9.35, d.f.=8,
p<0.001), and that pretreatment with SB-277011A (3, 6, 12 mg/kg) attenuated nicotine-
enhanced BSR (Figure 2b). This effect of SB-277011A was confirmed by one-way
ANOVA, which revealed a statistically significant SB-277011A main treatment effect
(F3,24=4.5, p<0.025). Follow-up individual pairwise comparisons using the Newman–Keuls
post-hoc test showed that SB-277011A given prior to nicotine on the test day produced a
statistically significant inhibition of nicotine-enhanced BSR, but only at a dose of 12 mg/kg
SB-277011A (Figure 2b).

LMA (nicotine cue-conditioned locomotor activity) experiments
Effect of SB-277011A on LMA—Rats that had received injections of nicotine in the
locomotor activity chambers during conditioning sessions showed enhanced locomotor
response, measured by horizontal activity counts, with respect to all other groups (Figure 3).
To determine the role of each of the conditioning groups in the overall effects reported
above, AUC 0–20 min data were analysed as detailed above (see ‘Behavioural methods and
testing’).

SB-277011A decreased nicotine cue-induced conditioned LMA (Figure 3). An ANOVA
with main factors of environment, conditioning drug, and treatment revealed significant
main effects of conditioning drug (F1,54 = 16.22, p<0.001) and treatment (F1,54 = 21.19,
p<0.001), but no significant effect of environment: (F1,54 = 1.85, p=n.s.). Although the
ANOVA showed no significant environment × conditioning drug interaction (F1,54 = 2.38, p
= n.s.), a planned comparison showed that, in vehicle-treated animals, there was a
statistically significant difference between the nicotine-paired and the nicotine-unpaired
groups (p<0.05) as well as between the nicotine-paired and the saline-paired groups
(p<0.001). There was no significant difference between the nicotine-unpaired and the saline-
unpaired groups (p = 0.08) or between the saline-paired and saline-unpaired groups (p =
0.37). The ANOVA also showed no significant environment × conditioning drug ×
treatment interaction (F154 = 0.45, p=n.s.), but again, a planned comparison showed that
pretreatment with SB-277011A (10 mg/kg) in the nicotine-paired group significantly
reduced locomotor activity vs. the nicotine-paired group pretreated with vehicle (p<0.0001).
Thus, treatment with SB-277011A abolished the difference between the nicotine-paired and
the saline-paired groups, reducing an impressive degree of statistically significant difference
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(p< 0.001) to statistical insignificance (p = 0.26). Treatment with SB-277011A also
produced a slight but significant effect in the unpaired groups (nicotine-unpaired vehicle-
pretreated vs. nicotine-unpaired SB-277011A–pretreated, p = 0.04).

When lower doses of SB-277011A (1, 3 mg/kg i.p.) were tested for their effects on nicotine
cue-conditioned LMA in a separate experiment, SB-277011A had no effect on cue-
conditioned LMA (data not shown). Statistically, this was confirmed by an ANOVA of the
AUC of horizontal activity counts (F2,33=1.2, p=n.s.).

CPP (nicotine-induced conditioned place preference) experiments
In the animals given vehicle/vehicle exposure (i.e. vehicle in both CPP compartments) on
the training days, testing for CPP expression after exposure to vehicle on the test day
produced no place preference (7.4 ± 0.3 min vs. 7.6 ± 0.3 min spent in the two CPP
compartments respectively). This confirms that the CPP procedure used here was non-biased
(i.e. no a-priori preferences among the animals for either chamber of the CPP apparatus
prior to CPP training, and no a posteriori preferences for either chamber after vehicle
exposure in both CPP compartments on the CPP training days). The unbiased CPP
procedure is generally considered to be the preferred methodology, as the biased CPP
procedure can yield false-positive results due to ceiling effects (Cunningham et al., 2003) or
unconditioned motivational responses to the initially non-preferred environment (e.g.
anxiety) (Tzschentke, 1998). As shown in Figure 4a, nicotine (0.6 mg/kg s.c.) produced a
significant CPP (9.7 ± 0.4 min in the nicotine-paired cue-distinctive compartment) compared
to vehicle (7.4 ± 0.3 min in the vehicle-paired cue-distinctive compartment), measured as
CPP expression on the test day. This was confirmed by Student’s t test for the difference
between the means (of time spent in the nicotine-paired CPP chamber on the test day) of the
vehicle/ vehicle-paired group given vehicle on the test day vs. the vehicle/nicotine-paired
group given vehicle on the test day (t=4.44, d.f.=18, p<0.001) (Figure 4a). Thus, the dose of
nicotine used in the present experiments produced a statistically significant CPP.

In addition, and referring directly to the effect of D3 receptor antagonism on nicotine-
induced CPP, SB-277011A dose-dependently attenuated this statistically significant
expression of nicotine-induced CPP (Figure 4b). Statistically this effect of SB-277011A was
confirmed by one-way ANOVA over the four groups of animals shown in Figure 4b, which
revealed a statistically significant main effect over all four groups (F3,36=18.3, p<0.0001).
Follow-up individual pairwise group comparisons using the Newman– Keuls test showed
that the vehicle/nicotine paired groups given SB-277011A (1, 3, or 10 mg/kg i.p.) on the test
day each differed significantly from the vehicle/ nicotine paired group given vehicle (i.e. 0
mg/kg SB-277011A) on the test day (p<0.01 for all three pairwise comparisons). Newman–
Keuls tests also revealed that the vehicle/nicotine paired group given SB-277011A at 1 mg/
kg i.p. on the test day differed significantly from the vehicle/nicotine paired group given
SB-277011A at 10 mg/kg i.p. on the test day (p<0.05) (Figure 4b). Thus, SB-277011A at all
doses tested produced a statistically significant inhibition of nicotine-induced CPP, but
SB-277011A at 10 mg/kg produced a significantly greater inhibition of nicotine-induced
CPP than did SB-277011A at 1 mg/kg, indicating that SB-277011A’s attenuation of
nicotine-induced CPP showed a significant dose-dependency.

Finally, SB-277011A by itself appeared not to produce aversion, ‘negative contrast’, or
indeed any negative behavioural effects at all. In the first additional CPP experiment carried
out to test this possibility (vehicle or SB-277011A given during CPP conditioning), the
effects of vehicle or 1, 3, or 10 mg/kg SB-277011A on CPP acquisition in animals given
vehicle on the test day were assessed. CPP expression on test day in these animals is shown
in Table 1. Animals given SB-277011A in a cue-distinct environment developed neither a
preference nor an aversion to that environment. Statistical analysis by ANOVA of the data
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shown in Table 1 indicate that repeated pairing of SB-277011A with a given cue-distinctive
chamber of the CPP apparatus did not significantly alter the amount of time spent, on test
day, in the SB-277011A–paired chambers compared to the vehicle-paired chamber
(F3,34=1.88, p=0.15). In the second additional CPP experiment carried out to test this
possibility (vehicle or SB-277011A given during CPP expression), the effects of vehicle or
1, 3, or 10 mg/kg SB-277011A on CPP expression in animals given vehicle on conditioning
days were assessed. CPP expression on test day in these animals is shown in Table 2.
Animals given SB-277011A 30 min prior to CPP expression-testing on the test day
displayed no alterations in their behaviour. Statistical analysis by ANOVA of the data
shown in Table 2 indicate that SB-277011A produced no statistically significant alterations
in behaviour on the test day (F3,36=0.34, p=0.8). This was further confirmed by the results of
the one-sample t tests (Rosner, 2006) carried out on times spent in the nicotine-paired
compartment by SB-277011A–treated rats on the test day as compared to the 7.5 min
theoretical CPP ‘indifference level’ for each of the four tested groups of rats (vehicle, 1 mg/
kg SB-277011A, 3 mg/kg SB-277011A, 10 mg/kg SB-277011A). From those one-sample t
tests, it was clear that SB-277011A did not produce any negative behavioural effect on the
test day (Vehicle group: t=0.26, d.f.=9, p=n.s.; 1 mg/kg SB-277011A group: t=1.19, d.f.=9,
p=n.s.; 3 mg/ kg SB-277011A group: t=0.85, d.f.=9, p=n.s.; 10 mg/ kg SB-277011A group:
t=0.17, d.f.=9, p=n.s.).

Discussion
The present experiments demonstrate that pre-treatment with the potent and selective D3
receptor antagonist SB-277011A significantly reduces nicotine’s effects on BSR and
significantly attenuates nicotine-associated environmental-cue effects on LMA and CPP.
The observed effects of SB-277011A support the hypothesis that D3 receptors play an
important role in mediating nicotine-induced enhancement of brain reward and nicotine-
associated cue-induced incentive motivational effects.

The present finding that nicotine significantly enhances the rewarding efficacy of BSR is
consistent with previous reports (e.g. Bauco and Wise, 1994; Bozarth et al., 1998; Huston-
Lyons and Kornetsky, 1992; Ivanová and Greenshaw, 1997; Panagis et al., 2000; Wise et al.,
1992, 1998). Some of those previous reports have gone further than merely demonstrating
that nicotine enhances BSR, and have implicated DA mechanisms in such enhancement.
Thus, nicotine’s enhancement of BSR has been shown to be attenuated by DA receptor
antagonists (Huston-Lyons et al., 1993; Ivanová and Greenshaw, 1997) and nicotinic
receptors expressed on DA neurons have been shown to be essential to nicotine’s
augmentation of BSR (Wise et al., 1998). However, no previous work has implicated D3
receptor mechanisms in nicotine’s effects on brain-reward substrates. Thus, the present
findings with SB-277011A constitute the first demonstration that DA D3 receptor
mechanisms are involved in nicotine’s effects on brain reward and that selective D3 receptor
antagonism attenuates nicotine-enhanced BSR.

The present finding that nicotine-associated environmental cues come to elicit LMA is
consistent with previous findings (Bevins et al., 2001; Bevins and Palmatier, 2003; Le Foll
et al., 2003b; Palmatier and Bevins, 2002; Palmatier et al., 2003; Walter and Kuschinsky,
1989). In some of those previous studies, it was reported that the expression of nicotine-
paired cue-induced LMA was blocked by DA receptor antagonists (Bevins et al., 2001), by
the D3 receptor partial agonist BP-897 (Le Foll et al., 2003b), and by SB-277011A (Le Foll
et al., 2003b). However, in those previous studies, the effects of the various DA-active
compounds were not assessed in appropriate unpaired control groups (i.e. animals that
received vehicle or nicotine in their home cages rather than in the cue-specific locomotor
activity chambers). Thus, it is not established that the pharmacological effects reported in
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those studies were due to specific action on nicotine-paired cue-induced LMA, since
pharmacological effects on nicotine-unpaired cue-induced LMA were not tested. The
present data show that SB-277011A–induced D3 receptor antagonism appears to robustly
attenuate nicotine-paired cue-induced LMA (p<0.0001), although SB-277011A treatment
also slightly but significantly affected locomotor activity in the unpaired group (p=0.04).

The present finding that nicotine produces a robust CPP in male rats is consistent with
previous findings from both our laboratory (Ashby et al., 2002; Dewey et al., 1999; Horan et
al., 1997, 2001) and other groups (for review, see Le Foll and Goldberg, 2005).
Interestingly, most previous reports of nicotine-induced CPP have used the biased CPP
methodology, rather than the unbiased procedure used in the present experiments (for
review, see Le Foll and Goldberg, 2005). The present findings suggest that nicotine-induced
CPP is not dependent upon the biased methodology. The present findings also show that
SB-277011A dose-dependently attenuated the expression of nicotine-induced CPP. In
previous studies, it has been reported that the D3 receptor partial agonist BP-897 and the
putative D3 receptor antagonist ST-198 significantly attenuated nicotine-induced CPP (Le
Foll et al., 2005b). However, it should be noted that BP-897 alone has been reported to
produce conditioned place aversion (Duarte et al., 2003; Gyertyán and Ga´l, 2003) and,
congruently, to inhibit electrical BSR, an aversive-like effect (Campos et al., 2004).
Aversive-like effects produced by BP-897 could easily confound the interpretation of
experiments (e.g. Le Foll et al., 2005b) in which BP-897 was used as a putative D3 receptor
antagonist. In contrast, SB-277011A in the present experiments did not by itself produce a
significant place preference or aversion, and SB-277011A administered on the test day
following repeated vehicle/vehicle pairings on acquisition days did not produce any
significant alteration in the rats’ behaviour. Also, BP-897 has been shown to have affinity
for neurotransmitter receptors other than D3 (e.g. D2, a1 adrenergic, a2 adrenergic, 5-HT1A,
5-HT2A) (Cussac et al., 2000; Heidbreder et al., 2005; Pilla et al., 1999; Xi et al., 2005), and
data obtained using cloned human receptors show that BP-897 has potent partial agonist
effects at 5-HT1A receptors and potent antagonist effects at a1 and a2 receptors (Cussac et
al., 2000). Thus, action at one or more of those sites may be responsible for BP-897’s effects
in the CPP paradigm. ST-198 may also possess D2 antagonist action, as (like BP-897) it
significantly attenuates L-dopa-induced dyskinesias in monkeys (Bézard et al., 2003).
Therefore, the present findings with SB-277011A appear to constitute the first clear
demonstration that selective DA D3 receptor antagonism attenuates nicotine-induced CPP.

Non-selective D1- or D2-like receptor antagonists inhibit addictive-drug-induced
enhancement of brain reward (e.g. Nakajima, 1989; Ranaldi and Wise, 2001; Wise, 1994;
Wise and Bozarth, 1985; Wise and Rompré, 1989) as well as addictive-drug-associated cue-
induced behavioural effects (e.g. Cervo et al., 2003; Ciccocioppo et al., 2001; Weiss et al.,
2000). Such findings raise the issue of whether the presently observed inhibitory effects of
SB-277011A on nicotine-enhanced BSR and nicotine-associated cue-induced LMA and CPP
might be attributable to D1 or D2 receptor-selective antagonism rather than D3 receptor-
selective antagonism. However, accumulating evidence does not support this notion: (1)
SB-277011A is a highly potent and highly selective D3 receptor antagonist with 80- to 100-
fold selectivity for D3 over other DA receptors; high affinity for the human (pKi=7.95) and
rat (pKi=7.97) cloned DA D3 receptor; and 100-fold selectivity over 66 other receptors,
enzymes, ion channels, and transporters in the central nervous system (Reavill et al., 2000;
Stemp et al., 2000); (2) the effects of SB-277011A in various animal models relating to
addiction are significantly different from those produced by D1- or D2-preferring antagonists
(Heidbreder et al., 2005); for example, D1 and D2 antagonists significantly elevate electrical
BSR thresholds (Baldo et al., 1999; Harrison et al., 2002; Hunt et al., 1994; Nakajima and
O’Regan, 1991; Panagis and Spyraki, 1996; Stein, 1962; Stein and Ray, 1960), while
SB-277011A does not alter BSR thresholds (Vorel et al., 2002); similarly, D1- and D2-

Pak et al. Page 12

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2013 August 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



preferring antagonists produce aversion in the CPP paradigm (e.g. Shippenberg and Herz,
1988; for review, see Tzschentke, 1998), while SB-277011A produces neither reward nor
aversion in the CPP paradigm (Gyertyán and Gál, 2003; Vorel et al., 2002; Xi et al., 2005);
(3) SB-277011A does not significantly alter locomotor activity (Reavill et al., 2000; Xi et
al., 2005), whereas locomotor inhibition is a classic property of D2 antagonists; (4) at doses
of many-fold those used in the present experiments, SB-277011A does not block
quinelorane-induced decreases in DA in the dorsal striatum where a high density of D2
receptors are located, and (5) SB-277011A does not significantly alter prolactin levels
(Reavill et al., 2000), whereas alteration of prolactin levels is a classic property of D2
antagonists. SB-277011A, but not D2 antagonists, significantly increases acetylcholine
levels in the rat frontal cortex (Lacroix et al., 2003).

If the presently observed inhibitory effects of SB-277011A on nicotine-enhanced BSR and
on nicotine-associated cue-induced LMA and CPP cannot be attributed to D1 or D2
antagonism, might they be attributable to non-specific behavioural inhibition? Again, the
evidence seems against such a possibility. SB-277011A, within the dose range used in the
present experiments, has been demonstrated to have no effect on locomotor activity or on
food- or sucrose-taking behaviour (Heidbreder et al., 2005; Reavill et al., 2000; Vorel et al.,
2002) and to not induce sedation or catalepsy (Vorel et al., 2002; Xi et al., 2005). Since
expression of nicotine-associated cue-induced LMA or CPP may be presumed to involve
encoding and storage of cue-induced associations, plus memory retrieval of such cue-
induced associations, the possibility arises that SB-277011A’s inhibition of cue-induced
LMA or CPP might be mediated by interference with general aspects of memory storage and
retrieval. However, this again seems unlikely, as SB-277011A reverses scopolamine-
induced memory deficits as assessed by a three-choice-point water labyrinth test (Laszy et
al., 2005) and significantly increases extracellular levels of acetylcholine in the anterior
cingulate cortex (Lacroix et al., 2003). Both of these effects would be expected to improve
rather than to interfere with memory. Indeed, a comprehensive review of the scientific
literature shows that SB-277011A appears to be singularly devoid of nonspecific
behavioural effects (Heidbreder et al., 2005), and it is, therefore, unlikely that
SB-277011A’s effects in the present study were due to non-specific effects.

The present findings with nicotine should be understood within the context of accumulating
evidence that D3 receptor antagonism may be a useful addition to the pharmacotherapeutic
armamentarium against addiction. We and others have shown that SB-277011A attenuates:
(1) cocaine-enhanced electrical BSR (Vorel et al., 2002); (2) acquisition and expression of
cocaine-seeking under second-order reinforcement (Di Ciano et al., 2003); (3) cocaine- or
heroin-induced CPP (Ashby et al., 2003; Vorel et al., 2002); (4) cocaine self-administration
under progressive ratio and variable-cost/variable-payoff fixed-ratio reinforcement (Gilbert
et al., 2003; Xi et al., 2005); (5) cocaine- or nicotine-triggered relapse to drug-seeking
behaviour as assessed by the reinstatement model (Vorel et al., 2002; Andreoli et al.,
2003b); (6) stress-triggered relapse to cocaine-seeking behaviour as assessed by the
reinstatement model (Xi et al., 2004); (7) drug-associated environmental cue-triggered
relapse to cocaine-seeking behaviour as assessed by the reinstatement model (Gilbert et al.,
2005); (8) oral ethanol intake (Andreoli et al., 2003a; Thanos et al., 2005); and (9) relapse to
ethanol-seeking behaviour in animals extinguished from ethanol-taking behaviour (Marcon
et al., 2003). Consistent with such findings, the present study shows that SB-277011A,
within the same dose range as in those prior experiments, inhibits nicotine-enhanced BSR
and two forms of nicotine-induced Pavlovian cue-association learning (LMA, CPP) that may
underlie nicotine-associated cue-induced drug-seeking behaviour. It is of note that
SB-277011A by itself, within the same dose range, has no effect on BSR (Vorel et al.,
2002), does not produce preference or aversion in the CPP paradigm (present data), and does
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not sustain intravenous self-administration behaviour in rats (Xi et al., 2005). Thus, it may
be inferred to lack addictive potential.

In conclusion, the present study demonstrates that selective blockade of DA D3 receptors by
SB-277011A inhibits nicotine-enhanced BSR and nicotine-paired cue-induced LMA and
CPP. Overall, the present findings suggest that DA D3 receptors play an important role in
the neural and behavioural substrates of nicotine addiction, and that selective DA D3
receptor antagonists merit further investigation as anti-nicotine pharmacotherapies,
especially as current therapeutic interventions for smoking cessation are inadequate (Vaszar
et al., 2002).
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Figure 1.
Effect of nicotine (0.25 mg/kg s.c.) and various doses of the DA D3 receptor antagonist
SB-277011A (0, 3, 6, 12 mg/ kg i.p.) on electrical brain reward thresholds (θ0) in laboratory
rats. Changes in brain reward threshold are plotted as percent enhancement or inhibition of
brain reward ± S E M. Statistical significance levels for specific inter-treatment comparisons,
wherein nicotine is compared to baseline by the paired Student’s t test (a) and other inter-
treatment comparisons are made by post-ANOVA Newman–Keuls tests (b), are as shown
directly on the figure.
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Figure 2.
Effect of nicotine (0.5 mg/kg s.c.) and various doses of the DA D3 receptor antagonist
SB-277011A (0, 3, 6, 12 mg/kg i.p.) on electrical brain reward thresholds (θ0) in laboratory
rats. Changes in brain reward threshold are plotted as percent enhancement or inhibition
brain reward ± S E M. Statistical significance levels for specific inter-treatment comparisons,
wherein nicotine is compared to baseline by the paired Student’s t test (a) and other inter-
treatment comparisons are made by post-ANOVA Newman–Keuls tests (b), are as shown
directly on the figure.
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Figure 3.
Nicotine (0.5 mg/kg s.c.) cue-conditioned locomotion in laboratory rats, shown as the area
under the curve (AUC - see text) of horizontal activity counts for the first 20 min of
locomotion in the four groups of animals treated with vehicle or with SB-277011A (10 mg/
kg i.p.). Rats that received nicotine in the cue-specific test environment for 4 consecutive
days (nicotine-paired) showed enhanced locomotor response compared to rats that received
saline in the test environment (saline-paired), while there was no difference between the
nicotine and the saline unpaired groups. SB-277011A produced an attenuation of nicotine-
associated cue-induced locomotor activity and slightly reduced the nicotine unpaired
response. * p < 0.05 vs. nicotine unpaired; †p <0.001 vs. vehicle saline paired; ‡p < 0.0001
vs. vehicle nicotine paired; §p = 0.04 vs. vehicle nicotine unpaired. Data are expressed as
means ±S.E.M.
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Figure 4.
Effect of nicotine (0.6 mg/kg s.c.) and various doses of the DA D3 receptor antagonist
SB-277011A (0, 1, 3, 10 mg/kg i.p.) on the expression of conditioned place preference in
laboratory rats. Times spent in the nicotine-paired chamber on test day are shown as means
± S E M. Statistical significance levels for specific inter-group comparisons, as determined by
Student’s t test for independent samples (a) and by post-ANOVA Newman–Keuls tests (b),
are as shown directly on the figure (also see text).
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Table 1

Place conditioning response to SB-277011A (SB) in male Sprague–Dawley rats

Treatment pairings

Treatment
given on the
test day

Time spent in the
chambers (min)

No. of
crossingsPaired Unpaired

Vehicle/SB, 1 mg/kg Vehiclea 8.3±1.4b 6.7±1.4 28.0±3.2

Vehicle/SB, 3 mg/kg Vehicle 9.4±1.0 5.6±1.0 29.9±1.8

Vehicle/SB, 10 mg/kg Vehicle 9.8±0.9 5.2±0.9 32.8±3.5

Vehicle/vehicle Vehicle 7.5±0.4 7.5±0.4 27.0±2.6

a
Vehicle was 1 ml/kg of a 2% methylcellulose solution (w/v).

b
Each value represents the mean number of minutes spent in each chamber ± S.E.M. A total of 9–10 rats were examined for each treatment pairing.

All animals received four pairings with the appropriate dose of SB/vehicle with each pairing being separated by a 24-h period. On the test day,
animals received vehicle 30 min before being placed into the CPP apparatus.
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Table 2

Effect of vehicle or SB-277011A (SB) on expression of the conditioned place preference response to vehicle
in male Sprague–Dawley rats

Time spent in
chambers (min)

Treatment pairings

Treatment
given on the
test day

Vehicle
chamber 1

Vehicle
chamber 2

Vehicle/vehicle Vehiclea 7.6 ± 0.3b 7.4 ± 0.3

Vehicle/vehicle SB, 1 mg/kg 7.8 ± 0.3 7.2 ± 0.3

Vehicle/vehicle SB, 3 mg/kg 7.8 ± 0.3 7.2 ± 0.3

Vehicle/vehicle SB, 10 mg/kg 7.5 ± 0.3 7.5 ± 0.3

a
The vehicle used during treatment pairings was 1 ml/kg s.c. of distilled water. The vehicle used on the test day was 1 ml/kg i.p. of 2%

methylcellulose.

b
Each value represents the mean number of minutes spent in each chamber ± S.E.M. A total of 10 rats were examined for each treatment pairing. On

the test day, animals received either 1 ml/kg i.p. vehicle (2 % methylcellulose) or SB-277011A (1, 3 or 10 mg/kg i.p.) 30 min before being placed
into the CPP apparatus. The ‘Time spent in chambers’ represents the times spent, on the test day, in the two different chambers that were each
paired with vehicle on the CPP acquisition days (‘Treatment pairings’).
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