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Abstract
Recent progress has begun to reveal the often complex and changing roles of phosphotyrosine and
phosphoinositide phosphatases in regulation of immunoreceptor signaling. The resultant confusion
has been further increased by discoveries of new players. Here we provide a review of recent
progress in defining the roles of these enzymes in immunoreceptor-dependent mast cell, T cell and
B cell activation.

Introduction
Cell activation results from the transient perturbation of an active balance between positive
and negative signals that is consequent to engagement of membrane receptors. These include
activating and inhibitory receptors. Prototypic activating receptors such as TCR, BCR and
FcεRI, expressed by T cells, B cells and mast cells, respectively, contain Immunoreceptor
Tyrosine-containing Activation Motifs (ITAMs). Inhibitory receptors, expressed by these
cells, contain Immunoreceptor Tyrosine-containing Inhibition Motifs (ITIMs). ITAM-
containing receptors trigger primarily positive signals, but also negative signals, while
ITIM-containing receptors trigger only negative signals [1]. Some receptors contain both
ITAMs and ITIMs presumably serving a dual role [2]. Classically, kinases and phosphatases
have been viewed as the effectors of positive and negative signals, respectively. However,
kinases can generate negative signals and phosphatases can generate positive signals.

Immunoreceptor signaling can be divided into three steps. Signal transduction is the initial
process that transforms an extracellular mechanical perturbation, for example, receptor
aggregation, into an intracellular chemical perturbation, for instance, ITAM phosphorylation
by src family tyrosine kinases (SFKs). Phosphorylated ITAMs then nucleate signalosomes
into which signaling molecules assemble, while others translocate to the membrane. From
these signalosomes, biochemical pathways are launched which propagate intracellular
signals that drive responses such as gene transcription. These three steps are differentially
regulated by phosphatases.
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Several sets of phosphatases control cell activation. Receptor Tyrosine Phosphatases (RTP)
are transmembrane molecules that contain intracytoplasmic catalytic domains. While Src
Homology 2 (SH2) domain-containing cytosolic phosphatases can be recruited by
phosphorylated ITIMs and ITAMs, phosphatases lacking SH2 domains can be recruited into
signalosomes by various means. Both protein tyrosine and lipid phosphatases operate in
ITAM and ITIM signaling. This review is focused on the functions of these enzymes in
lymphocytes and mast cells. Table 1 summarizes the regulatory functions of the different
phosphatases expressed in these cells. We will use SHP-1/2 and SHIP1/2 as examples to
discuss the different ways phosphatases can regulate cell activation below. Owing to space
limitations, additional recent advances in our understanding of these phosphatases will be
highlighted in the reference section.

SHP-1 and SHP-2
The SH2-containing phosphotyrosine phosphatase-1 SHP-1 is a well-known effector of
negative regulation of cell activation that is employed by the majority of inhibitory
receptors. Its expression is restricted primarily to hematopoietic lineage cells. The
recruitment of SHP-1 by ITIM-containing receptors is well-documented [3-5]. Binding to a
phoshorylated ITIM via their SH2 domains enhances the phosphatase activity of SHP-1 [6],
leading to dephosphorylation of tyrosines in signaling molecules. Interestingly, SHP-1 may
dephosphorylate ITIMs, thus providing feedback regulation of inhibitory signaling.

SHP-1 appears to have distinct functions in different cells. SHP-1-dependent negative
regulation of BCR signaling was first demonstrated by the observation that B cells from
SHP-1-deficient motheaten mice have a hyperactive phenotype [7]. B cell-targeted SHP-1
deficient mice showed a broader range of defects, including increased B cell proliferation,
altered B cell development and develop lupus-like autoimmunity [8]. Conditional deletion
demonstrated that SHP-1 also controls antigen-induced proliferative responses of CD8 T
cells [9]. Unlike the inhibitory effect of SHP-1 on BCR signaling, SHP-1 has both positive
and negative effects on FcεRI-dependent responses of BMMC from motheaten mice.
SLP76, LAT and MAP kinases are hyperphosphorylated and cytokine production is
increased, while PLC-γ is hypophosphorylated and subsequent calcium mobilization and
degranulation are reduced. In addition to its catalytic activity, which accounts for its
suppressive effects, SHP-1 also appears to function as an adaptor that links PLC-γ to
SLP76, thus facilitating its phosphorylation after FcεRI crosslinking [10].

The role of the ubiquitously expressed SH2-containing phosphotyrosine phosphatase-2
SHP-2 in the regulation of lymphoid and mast cell activation is less clear. SHP-2 can inhibit
cell activation. Using molecular imaging, Yokosuka et al. showed that PD-1 recruits SHP-2
via its Immunoreceptor Tyrosine-based Switch Motif (ITSM) after it is recruited to ligand-
engaged TCR molecules [11]. SHP-2 then inhibits T cell activation by dephosphorylating
TCR-proximal signaling molecules. By contrast, SHP-2 appears to have a dominant positive
regulatory role in mast cells. SHP-2 can promote SFK activation by dephosphorylating PAG
and Cbp, restricting Csk access to target SFKs, thereby preventing phosphorylation of the
inhibitory tyrosine [12]. In mast cells SHP-2 regulates Fyn activity by dephosphorylation its
inhibitory tyrosine directly [13] Supporting a physiologic significance of this observation,
SHP-2 deficient BMMC and SHP-2 knockdown RBL-2H3 cells have decreased Fyn
activation following FcεRI crosslinking, and this lead to decreased PLC-γ and MAP kinase
activation, affecting cytokine production and degranulation [13,14]. SHP-2 also signals
downstream of Kit in mast cells, promoting Erk activation and cell survival by
downregulating the pro-apoptotic molecule Bim. In fact, mice in which SHP-2 was deleted
in mast cells have decreased numbers of skin mast cells [15].
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SHIP1 and SHIP2
By generating phosphatidylinostol 3,4,5-trisphosphate [PI(3,4,5)P3], Phosphatidylinositol 3-
Kinase (PI3K) causes the membrane recruitment of important signaling effectors that
contain Plekstrin homology (PH) domains, including SOS, Vav, PLC-γ, Btk, PDK1 and
Akt. The PI3K pathway is critical for immunoreceptor signaling, controlling both cell
activation and cell survival. The SH2-containing inositol 5-phosphatases SHIP1 and SHIP2
regulate this pathway by hydrolyzing PI(3,4,5)P3 to PI(3,4)P2.

SHIP1 is best known as the effector of inhibitory signaling by FcγRIIB. It also negatively
regulates BCR [16], FcεRI [17] and TCR signaling [18] in the absence of FcγRIIB
engagement. SHIP1-mediated inhibition of signaling occurs by two mechanisms. SHIP1 is
well known to hydrolyse PI(3,4,5)P3. It also recruits the adapter Dok-1 that activates
RasGAP, inhibiting Ras and activation of MAP kinases such as Erk1/2 [20].

T cell-specific SHIP1 deletion had only minor effects in vivo [19]. By contrast, SHIP1-
deficient mice have reduced antibody responses, but elevated basal immunoglobulin levels.
They also develop autoantibodies and severe lupus-like disease. [22•,24,25••]. B cells
lacking SHIP1 display enhanced BCR-signaling and proliferation [21,22•] and altered BCR
clustering [23].

Germinal center (GC) B cells are subject to potent negative regulation by both SHP-1 and
SHIP1 [26••]. Hyporesponsiveness is relieved transiently during G2-M cell cycle
progression. This dynamic regulation of BCR signaling by phosphatases may be important
in selection in GC of B cells expressing high affinity antibodies. Induced deletion of SHP-1
in an ongoing germinal center reaction strongly reduced the number of B cells selected.
Furthermore, mice in which B cells lack SHIP1 develop fewer antigen-specific GC B cells
upon immunization, and their antigen receptors have fewer mutations. Finally, affinity-based
selection appears to fail in these mice [22•]. The need for both increased SHP-1 and SHIP1
activity may reflect the inherent difference in specificity and reach. While SHP-1 only
inhibits molecules in its direct proximity [27], SHIP1-mediated inhibition of the PI3K
pathway affects all cellular receptors which utilize this pathway, for example chemokine
receptor signaling [28].

Recently, we showed that SHIP1 is important for maintaining tolerance in anergic B cells.
Anergic B cells are autoreactive B cells which are present in the periphery in an antigen
unresponsiveness state [29]. Their unresponsiveness is the consequence of chronic BCR
signaling and it is rapidly reversed by removal of the autoantigen from receptors [30].
Anergic B cells have an elevated basal level of SHIP1 and Dok-1 phosphorylation,
indicative of increased inhibitory signaling, and upon deletion of SHIP anergic B cells
regain responsiveness [25••]. The driver of SHIP1 and Dok-1 activation in anergic B cells
appears to be BCR ITAM monophosphorylation. ITAMs of Igα and Igβ are
monophosphorylated in anergic B cells and additional monophosphorylation but not
biphosphorylation is induced by additional stimulation. Biased SHIP activation is a direct
consequence of this monophosphorylation. How the BCR ITAMs become
monophosphorylated and how this results in SHIP1 activation is still unclear. Studies of
TCR and Fc receptor signaling suggest that weak ligand binding favors
monophosphorylation [31,32], although monophosphorylation could also be a consequence
of differential dephosphorylation [33].

In addition to deletion of SHIP1 [25••], deletion of PTEN [34], another phosphatase which
hydrolyzes PI(3,4,5)P3, can also result in the loss of tolerance. This strongly suggests that
suppression of the PI3K pathway is key to the maintenance of B cell anergy. It is
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noteworthy, however, that while SHIP1 activity is increased in both Ars/A1 and MD4/ML5
transgenic models of B cell anergy, increased PTEN expression and phosphorylation are
seen only in the MD4/ML5 model [25••]. This distinction may reflect quantitative
differences in the effects of these phosphatases on PI(3,4,5)P3 levels. SHIP1, however,
uniquely generates PI(3,4)P2, which functions as allosteric activator of SHIP1 [35] and also
recruits the adaptors TAPP1/2, which were recently shown to restrain B cell activation by
reducing Akt activation [36•]. Female knock-in mice expressing TAPP1 and TAPP2 PH
domain mutants that were unable to bind PI(3,4)P2 developed lupus-like autoimmunity,
suggesting that besides reducing PI(3,4,5)P3 levels, SHIP1 may reinforce tolerance via
TAPP proteins.

SHIP1 is also a major negative regulator of FcεRI signaling [17,37•]. The mechanism by
which FcεRI recruits SHIP1 to accomplish this feedback-regulation is unclear, although
SHIP1 has been shown to bind directly to the phosphorylated ITAM of the FcRβ subunit
[38•] and to two phosphorylated tyrosines of LAT [76]. Using BMMC, connective tissue
mast cells and mucosal mast cells from SHIP1−/− mice, SHIP1 was found to inhibit FcεRI-
dependent secretory responses through its enzymatic activity, but unexpectedly, to promote
TLR-dependent cytokine secretion through its adapter activity [39]. SHIP1−/− mice
displayed systemic mast cell hyperplasia, increased cytokine levels and enhanced
anaphylaxis [40]. Accordingly, small molecules that are specific SHIP1 agonists have been
found to protect from anaphylaxis [35].

The role of the ubiquitously expressed SH2-containing inositol 5-phosphatase-2 SHIP2 in
regulating lymphocyte and mast cell activation is less clear. SHIP2 excecutes FcγRIIB-
mediated inhibitory signaling in activated B cells [41]. siRNA knock-down of SHIP2 in
BMMC enhanced IgE-induced degranulation and cytokine secretion, but had no effect on
Ca2+ responses, MAP kinase activation or actin depolarization, while enhancing Rac-1
activation and microtubule polymerization. Thus, like SHIP1, SHIP2 negatively regulates
FcεRI signaling but apparently by a distinct mechanism [42•]. Interestingly, SHIP2
expression is reduced in mast cells of idiopathic urticaria patients, and this is associated with
spontaneous degranulation upon IgE sensitization [43].

Conclusion
Phosphatases are critical in the control of immunoreceptor signaling in lymphoid and
myeloid cells. While the regulatory effects of phosphatases depend primarily on their
catalytic activity, their adaptor functions are also important. Furthermore, they sometimes
display distinct functions in different tissues. A better knowledge of these molecules is
crucial for understanding the physiopathology of immune disorders, and may reveal utility
as therapeutic targets.
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Table 1
Phosphatases and their role in B cells, T cells and mast cells

Phosphatases B cells T cells Mast cells

Tyrosine phosphatases

Receptor protein tyrosine phosphatase

CD45: Receptor-type
 tyrosine-protein
 phosphatase C

Positively regulates BCR
signaling by
dephosphorylating the inhibitory
tyrosine of Lyn [45•]
B cell activation is only partially
impaired in CD45−/− B
cells due to expression of CD148
[48]

Dual positive and negative
regulatory role by being
able to dephosphorylate both the
inhibitory
tyrosine and the activating loop
tyrosine of Lck
[44,45•]
T cell activation is impaired in
CD45−/− T cells

Dephosphorylates the inhibitory
tyrosine (Y570) of Lyn
[49]
Degranulation and IL6 secretion
are decreased while
IL3 and SF dependent-
proliferation are enhanced in
CD45−/− BMMC [49]

CD148: Receptor-type
 tyrosine-protein
 phosphatase eta

Positively regulates BCR
signaling by
dephosphorylating the inhibitory
tyrosine of Lyn [48]
B cell activation is partially
impaired in CD148−/− B
cells due to expression of CD45
[48]

Dual positive and negative
regulatory role by being
able to dephosphorylate both the
inhibitory
tyrosine and the activating loop
tyrosine of Lck
[46,47]
Not expressed in all T cells [46]

Not reported

PTPα: Receptor-type
 tyrosine-protein
 phosphatase alpha

Not reported Lipid raft associated phosphatase
that negatively
regulates Fyn activity in
unstimulated cells by
preferentially dephosphorylating
the activating
loop tyrosine [58]

Lyn, Fyn, Hck, Syk, SHIP, PI3K
and MAPK activations
are impaired in PTPα−/− BMMC
[50•]
IgE- induced degranulation,
cytokine and cysteinyl
leukotriene secretion are enhaced
in PTPα−/− [50•]
PTPa−/−mice display enhanced
IgE-dependent
anaphylaxis [50•]

Non-receptor Protein Tyrosine Phosphatase

PTNP22 (PEP/LYP):
 Tyrosine-protein
 phosphatase non-receptor
 type 2

Negatively regulates BCR
signaling by directly
dephosphorylating Syk. Also
reduces PLCγ2, p38 and
Akt phosphorylation [54]
Autoimmune-associated
Lyp620W is a gain of function
variant [54]
Pep619W knockin mice have
hyperresponsive B cells
[56••,57•]

LYP (human)/Pep (mouse)
dampens TCR signaling
by dephosphorylating activating
tyrosine of Lck
and Fyn and their substrates such as
Zap70
[51,52,55]
Autoimmune-associated Lyp620W
is a gain of
function variant [55]
Pep619W knockin mice have
hyperresponsive T
cells [56••,57•]

IgE-dependent degranulation and
Ca2+ reponses are
reduced in PEP−/− BMMC [53]
PLCγ1 Phosphorylation is
reduced in PEP−/− BMMC
[53]
PEP−/− mice display decreased
passive anaphylaxis
[53]

PTPN2: Tyrosine-protein
 phosphatase non-receptor
 type 2

Not reported Negatively regulates TCR signaling
by
dephosphorylating the activating
loop tyrosine of
Lck and Fyn [59•]

Not reported

SH2 domain-containing Tyrosine phosphatases

SHP-1: Tyrosine-protein
 phosphatase non-receptor
 type 6

Negatively regulates BCR
signaling by
dephosphorylating Igab ITAMs,
Lyn, Syk, SLP-65/
BLNK, Vav1 [7,8]

Negatively regulates TCR signaling
by
dephosphorylating CD3 ITAMs,
Lck, Zap70, LAT,
SLP-76, Vav1 [61,62•]

Positive and negative regulation of
mast cell functions
[10,60]

SHP-2: Tyrosine-protein
 phosphatase non-receptor
 type 11

SHP-2 negatively regulates B
cell activation by
inhibiting phosphorylation of Igb
ITAM, Syk, PLCγ2
and Erk [63]

Indirect evidence suggest that
SHP-2 negatively
regulates TCR signaling by directly
dephosphorylating or indirectly
causing reduced

Positively regulates FcεRI-
dependent degranulation
and TNF-α secretion [13,14]
Negatively regulates Kit signaling
[15]

Curr Opin Immunol. Author manuscript; available in PMC 2014 June 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bounab et al. Page 11

Phosphatases B cells T cells Mast cells

phosphorylation of Zap70, Vav,
PLCγ1 and Erk [11]

Cytosolic Tyrosine Phosphatases lacking SH2 domains

PTP-PEST: Tyrosine-protein
 phosphatase non-receptor
 type 12

Negatively regulats B cell
activation by
dephosphorylation of Shc, Pyk2,
Fak and Cas, and
inactivating the Ras pathway
[65]

PTP-PEST can dephosphorylate the
activating
tyrosine of Lck, reduce Zap70
phosphorylation and
inhibit the MAP pathway [66]. It
has also been
reported to have positive effects by
dephosphorylating Pyk2, promoting
secondary
responses [64•]

Not reported

PTPε Receptor-type
 tyrosine-protein
 phosphatase epsilon

Not reported Not reported IgE-dependent degranulation,
cytokine secretion are
enhanced in PEPε−/− BMMC
[67•]
LAT, SLP76 phosphorylation and
MAP kinase
activation are incresead in PEPε−/
− BMMC [67•]
PEPε−/− mice undergo increased
IgE-induced
passive anaphylaxis [67•]

TULA-2: Tyrosine-protein
 phosphatase STS1/TULA2

Not reported Not reported Negatively regulates FcεRI-
dependent degranulation
by dephosphorylating Syk and
PLCγ2 [68•]
Upon FcεRI engagement,
TULA-2 forms complex that
contains Nck, SHIP1, SLP76 and
Grb2 [68•]

Phosphatidate phosphatases

LIPIN-1: Phosphatidate
 phosphatase LPIN1

Not reported Not reported IgE-dependent degranulation and
prostaglandin D2
production are enhanced in
Lipin-1 −/− BMMC [69]
PKC and SNPA-23
phosphorylation are increased in
Lipin-1−/− BMMC [69]
Lipin1 deficiency exacerbated
passive anaphylaxis
reaction in vivo [69]

Lipid Phosphatases

SH2 domain-containing lipid phosphatases

SHIP1: Phosphatidylinositol
 3,4,5-trisphosphate
 5-phosphatase 1

Negatively regulates BCR
signaling by hydrolyzing
PI(3,4,5)P3, counteracting the
PI3K pathway, resulting
in reduced activity of SOS, Vav,
PLC-γ, Btk, Akt
[16,21,22•]. Inhibits Ras and
activation of MAP kinases
by recruiting Dok-1 [20]

Negatively regulates TCR signaling
by recruiting
Dok-1 and Dok-2 to LAT, which in
their turn inhibit
Akt and Zap70 activity [18]. In
vivo T cell specific
SHIP-1 mice have relatively normal
signaling [19]

Negatively regulates FcεRI-
dependent degranulation
[17,39,40]

SHIP2: Phosphatidylinositol
 3,4,5-trisphosphate
 5-phosphatase 2

Negatively regulates BCR
signaling by hydrolyzing
PI(3,4,5)P3, counteracting the
PI3K pathway, resulting
in reduced PLCγ, Btk and Akt
activity [41]

Not reported Negatively regulates FcεRI-
dependent degranulation
and cytokine secretion [42•]

Lipid phosphatase lacking SH2 domains

PTEN: Phosphatase
 and tensin homolog

Negatively regulates BCR
signaling by hydrolyzing

Negatively regulates TCR signaling
by hydrolyzing

Negatively regulates human mast
cells activation
[70,71]
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Phosphatases B cells T cells Mast cells

PI(3,4,5)P3, counteracting the
PI3K pathway, resulting
in reduced Akt activity [72]
Suppressor of B cell lymphoma
[75•]

PI(3,4,5)P3, counteracting the PI3K
pathway,
resulting in reduced Akt and Erk
activity [73]
Suppressor of T lymphoma [74]

PTEN deficiency causes mast cell
hyperplasia and
mastocytosis [71]
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