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Abstract

Background: Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the
C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon
accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon
stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean
mountains of Colombia.

Results: We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no
significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to
predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other
chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha−1), which provided an opportunity to
explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical
model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree
aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from
previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS.

Conclusions: Our simulations showed that in many situations carbon can be released from regrowing secondary
forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates
used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome
level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean
ages of around 10 years.

Background
Land-use change is a complex phenomenon within the
tropical biome [1-3]. Deforestation, one component of
land-use change, has received a considerable amount of
attention due to important consequences on biological
diversity, carbon, and nutrient cycling. Less studied how-
ever, is the process of forest regrowth, which occurs when
land under a given anthropogenic use is abandoned and a
new forest establishes. In some cases the new forest recov-
ers important ecological attributes of the original one such
as structure, function, and composition [4,5].
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Germany
2Research Center on Ecosystem and Global Change Carbono & Bosques,
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At the continental level, regrowing tropical forests com-
pensate part of the carbon emissions from tropical defor-
estation [6]. After agricultural and pasture land is aban-
doned, new vegetation quickly establishes, with the high-
est rates of aboveground biomass accumulation within the
first 15 years [4], and recovering to levels similar to old-
growth forests in a time frame between 80 to 100 years
[5,7].

Pan et al. [6] recently estimated a global carbon sink
from re-growing tropical forests, on average, on the
order of 1.65 ± 0.71 Pg C yr−1. These authors however,
report that their estimate is subject to large uncertain-
ties. Because it is based on published data on aboveground
biomass accumulation, one important source of uncer-
tainty is the unknown rates of accumulation in other
ecosystem carbon pools.

Estimates of forest carbon accumulation rates seldom
include pools other than aboveground biomass due to the
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difficulties in sampling components such as coarse and
fine roots, fine litter and coarse woody debris, and soil
carbon. Measurement of carbon accumulation in these
different pools would help to reduce bias significantly.

In addition to uncertainties and bias related to the pools
included in estimating tropical forest regrowth, there is
uncertainty in the assumptions of landscape configuration
and legacies from previous land-use [8]. Forest regrowth
varies considerably over forest succession, with high accu-
mulation rates in the first stages and declining over time
[4,9]. Secondary forest landscapes in the tropics are usu-
ally heterogeneous [10,11], so it is therefore uncertain
whether one single average accumulation rate can charac-
terize well this heterogeneity in landscape ages.

An additional source of uncertainty are carbon lega-
cies from previous land use [8]. Depending on the type
and the time since the previous land use, there could
be important effects of carbon legacies as well. A car-
bon legacy is a given amount of dead carbon remaining
from the previous land use that is subject to decomposi-
tion [9,12,13]. Examples of carbon legacies include: dead
organic debris after hurricanes and large tropical storms
[14-16], coarse woody debris after logging operations [17],
or residues left after crop harvesting [18], among others.
Carbon legacies can have important effects on ecosystem
carbon fluxes, switching its behavior from carbon sinks to
sources [13,19].

The main objective of this study was to estimate rates
of total carbon accumulation from a chronosequence
of regrowing tropical forests in the Porce region of
Colombia, derive a predictive empirical model, and com-
pare its predictions with estimations of tropical forest
regrowth used for large-scale carbon budgets. In addi-
tion, we were interested in exploring different assump-
tions often made in predicting continental level carbon
accumulation. In particular, 1) the use of carbon accu-
mulation in tree aboveground biomass as a surrogate for
total carbon accumulation rates, 2) the implicit (versus
explicit) representation of carbon legacies, and 3) the
omission of landscape age in calculating C accumulation
rates.

Results
Carbon accumulation in different pools
Carbon storage increased along the 36 year chronose-
quence for most but not all of the measured pools. Tree
aboveground biomass, coarse roots, fine litter, and coarse
woody debris showed positive trends of accumulation,
while palm aboveground biomass, herbaceous vegetation,
fine root biomass, and soil carbon showed no trend over
time (Figure 1).

The highest amount of carbon was accumulated in tree
aboveground biomass, followed by coarse root biomass,
and coarse woody debris. Palm aboveground biomass and

herbaceous vegetation contributed the smallest amount of
carbon (Figure 1).

When aggregated in major ecosystem carbon pools,
total aboveground biomass was consistently the highest
contribution to total carbon stocks compared to all other
pools (∼ 50%), but the relative contribution of above-
ground biomass changed significantly during the succes-
sional sequence (Figure 2). During the first 5 to 7 years of
forest succession, total aboveground biomass contributes
less than 20% to TCS, but this contribution changes fast
and reaches a maximum at about 40 years.

Soil carbon in the first 30 cm represents the second
most important ecosystem carbon pool, with an average of
66.5 ± 28.1 Mg C ha−1, but in this landscape it does
not present any accumulation trend. In fact, the stocks
of carbon in these secondary forest soils are significantly
lower than in soils of primary forests and showed no sign
of recovery (Figure 2).

Model fits to aggregated pools
The von Bertalanffy model (equation 4) provided the
best statistical fits for total aboveground biomass and
total belowground biomass, while the logistic equation
(equation 5) provided the best fit to total dead mass
(Table 1, Figure 2). However, the addition of the parameter
β0 in the von Bertalanffy model did not improve the sta-
tistical fits, and for this reason it was not included in the
final models.

A model for total carbon stocks was then obtained ana-
lytically, summing each pool algebraically as in equation
(2), which results in

TCS =66.452 + 111.51(1 − exp(−0.064∗t))1.964

+ 37.665(1 − exp(−0.022∗t))0.897 (1)

+ 6.615
(1 + 2.363 exp(−0.062t))

.

The first term of this equation is the average soil car-
bon measured in the secondary forests, which in this case,
does not accumulate over time.

Simulations
The empirical model of total carbon accumulation derived
for the forests of the Porce region (equation 1), performed
surprisingly well predicting carbon accumulation in other
chronosequences of total carbon accumulation in the
Amazon basin [20,21] and in lowland forest of Costa Rica
[22]. The root mean squared error (RMSE) estimated an
average deviation between model predictions and obser-
vations as 35.1 and 40.5 Mg C ha−1 for the Amazon and
Costa Rican datasets, respectively. The model was able
to predict the trend of rapid carbon accumulation during
the initial years of forest succession and the subsequent
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Figure 1 Carbon accumulation with successional age in total tree aboveground biomass, palms, herbaceous vegetation, coarse roots,
fine roots, fine litter, coarse woody debris, and soil carbon between 0-15 and 15-30 cm depth. All units in Mg DW ha−1, except soil carbon in
Mg C ha−1.

decline of accumulation rates at later ages that have been
observed in other forests [4,9,13,19,23] (Figure 3). The
maximum rate of carbon accumulation, 4.4 Mg C ha−1

yr−1, was reached at an average age of 9 years.

Effects of carbon legacies
The effects of carbon legacies on TCS were assessed
by performing simulations in which different levels of C
legacies were left in situ at the beginning of the succes-
sional sequence. Carbon legacies decomposed over time
following an exponential model using a dataset of decom-
position rates for tropical trees [24,25].

Our simulations showed that carbon legacies from pre-
vious land use can persist in regrowing tropical forests,
on average, for up to 30 years (Figure 4a). The higher the
amount of legacy carbon from the previous land use, the
more persistent its effect over time.

In the presence of carbon legacies, the total amount of
carbon in an ecosystem declines during the first years of
secondary succession. This trend contrasts with ecosys-
tems with no legacies, where carbon always accumulates
during the early years (Figure 4b).

In terms of carbon fluxes, net ecosystem carbon balance
(NECB) is always negative in the early stages of succession
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Figure 2 Best fit models (continuous lines) based on measured (circles) ecosystem carbon pools: total aboveground biomass (TAGB),
total belowground biomass (TBB), total dead mass (TDM), soil carbon to 30 cm depth (SOC), and total carbon stocks (TCS). Mean and
variance of carbon stocks in undisturbed forests of the region are represented with a dotted line and with a boxplot on the right side of each panel.

when carbon legacies are present, until forest regrowth
compensate C release (Figure 4c).

Carbon legacies also introduce time-lags in the age
of maximum carbon accumulation rates. Without car-
bon legacies, the maximum rates occurred at year 9 in
our empirical model with no legacies. As carbon legacies
increased to 30, 70, and 100%, maximum accumulation
rates occurred at years 14, 18, and 19, respectively. Sim-
ilarly, maximum accumulation rates declined as carbon
legacies increased (Figure 4d).

Effects of landscape age-structure
Hypothetical landscapes produced by randomly sampling
exponential probability distributions with different mean

age, produced in all cases a large number of young land-
scape units (Figure 5). For all mean landscape ages, the
amount of landscape units in early successional stages was
always higher than the amount of units in late successional
stages. Maximum age of landscape units increased with
mean landscape age.

In the presence of carbon legacies, carbon was predom-
inantly released in landscapes with a higher proportion of
young forests. Landscapes with mean ages below 10 years,
can be important sources of carbon to the atmosphere
depending on the degree of carbon legacies. However, the
release of carbon generated by the legacies can be offset
by carbon uptake in older landscape units if the amount
of legacies is relatively small (< 30%) and the mean age of
the landscape is relatively high (> 10 years old) (Figure 6).
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Table 1 Best parameter estimates of non-linear regression
models applied to total aboveground biomass (TAGB),
total belowground biomass (TBB) and total dead mass
(TDM)

Equation Parameter estimate Standard error p-value

TAGB =
111.51(1 − exp
(−β1∗t))β2

β1 = 0.064 0.021 0.004

β2 = 1.964 0.851 0.028

TBB =
37.665(1 − exp
(−β1∗t))β2

β1 = 0.022 0.005 < 0.001

β2 = 0.897 0.149 < 0.001

TDM =
6.615

(1+β1 exp(β2t))

β1 = 2.363 0.594 < 0.001

β2 = −0.062 0.014 < 0.001

t represents the forest age since land-use abandonment.

Without the presence of carbon legacies, carbon accu-
mulation rates are always positive in landscapes of any
given age (Figure 6). On average, the maximum accumu-
lation rates occur in landscapes with mean ages around 10
years. When the mean age of the landscape surpasses this
maximum rates, the rates of carbon accumulation decline.

The rates of carbon accumulation used to calculated
tropical forest regrowth in the Americas [6] were always
above the rates we found with our empirical model for
different levels of carbon legacies and mean landscape
age; except, for the situation of no legacies and a mean
landscape age of 10 years (Figure 6).

Discussion
Although the data and the empirical model we present
here were derived for one single location from the enor-
mous area of tropical regrowing forests, the good agree-
ment of our estimates with other sites suggests that
general trends of total carbon accumulation may exists for
regrowing tropical forests at larger scales. Aboveground
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Figure 3 Total carbon stocks (TCS, top) and net ecosystem carbon balance (NECB, bottom) with successional age. Open circles in top panel
represent measurements obtained in this study, filled circles represent independent data reported by [21] for an Amazon tropical forest, and
squares independent data from a lowland forest in Costa Rica [22]. Lines represent predictions by the fitted model (equation 1).
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biomass accumulation in global and tropical secondary
forests appears to be highly predictable [7,26,27], so total
carbon accumulation may also be possible to predict from
large-scale environmental variables as more information
becomes available.

Despite the limitation of our data for large-scale infer-
ences, our empirical model can be used to explore possible
effects of different assumptions in the calculation of car-
bon accumulation rates at the biome level. Three main
assumptions are discussed below: 1) the use of tree above-
ground biomass as a surrogate for total accumulation
rates, 2) the explicit inclusion of carbon legacies, and 3)
the landscape age structure of regrowing forests.

Tree aboveground biomass as surrogate for total carbon
accumulation
A considerable number of studies have calculated accu-
mulation rates of aboveground biomass in regrowing

tropical forests (e.g., [28-37]). Less common however, is
the estimation of total carbon accumulation rates that
also include belowground and soil pools (however see,
[7,21,22]). In this study we report total carbon accumula-
tion rates that can help to reduce uncertainties associated
with the carbon balance of tropical regrowing forests [6].

Our results suggest that the contribution of tree above-
ground biomass to total carbon accumulation is very
important in the late stages of succession. In early stages
however, the contribution of fine roots and total dead
mass can be important (Figures 1 and 2). Because most
of the carbon in aboveground tree biomass accumulates
in the trunk, the contribution of aboveground biomass
to total carbon accumulation is only significant until the
trees reach a stage in which trunk biomass is considerably
larger than the carbon accumulation in leaves and roots.
In fact, fine root biomass does not increase over time in
our study site, in agreement with previous studies which
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Figure 5 Histograms of the hypothetical landscapes produced by randomly sampling exponential distributions with mean age E[t] = 3, 5,
10, and 20 years.

suggests that the amount of fine roots at the ecosystem
level recovers quickly after disturbances [4,38].

Other components of aboveground biomass such as
palms and herbaceous vegetation contribute a very small
fraction compared to the contributions of tree above-
ground biomass. Given the difficulties and costs associ-
ated with measuring these components in the field, it
would be possible to exclude them from estimations of
total carbon accumulation without incurring in important
underestimation.

However, the exclusion of other ecosystem carbon pools
such as coarse- and fine-root biomass as well as fine litter
and coarse woody debris, can lead to important underes-
timation of total carbon accumulation. These pools can
contribute between 50 and 5% of the total mass (TM) or
between 20 and 1% of total carbon stocks (TCS), depend-
ing on succession age (Figure 2).

In particular, total dead mass can be an important com-
ponent of the carbon flux in regrowing forests. Although
dead material decomposes and emit carbon to the atmo-
sphere, it also accumulates carbon over time (Figure 2),
being an important component of total carbon accumula-
tion in regrowing forests [13].

After total aboveground biomass, the second largest car-
bon pool in the secondary forests we studied was soil

carbon. However, in the studied plots we were not able
to observe carbon accumulation trends in the soil com-
ponent. This suggests that, as a carbon pool, soils are an
important component of these regrowing forests, but in
terms of carbon accumulation rates the contribution of
the soils is negligible.

Lack of carbon accumulation in bulk soils during sec-
ondary succession has been reported previously [39-41].
However, a significant number of studies show positive
carbon accumulation rates in soils after conversion from
pasture or grassland to forest [42,43]. Isotope analyses
have revealed that soil carbon in secondary forests is the
net result of inputs from the newly stablished forest minus
losses of carbon from the previous land use [7,41]. The
amount of inputs in the secondary forests of the study area
are significantly lower than inputs in undisturbed forests,
while the amount of outputs through soil respiration are
relatively high. This situation creates a net carbon balance
in the soil close to zero [44].

In other ecosystems, the transition from grassland and
cropland to secondary forest may result in a gain of soil
carbon of up to 50 Mg C ha−1 [42]. Assuming this recov-
ery occurs between the first 50 to 100 years of succession,
the annual rates of carbon accumulation could be between
0.5 to 1.0 Mg C ha−1 yr−1, and could be even larger than
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Figure 6 Net ecosystem carbon balance (NECB) predicted under different assumptions of carbon legacies after land-use change and
mean age of the landscape. The horizontal red line in each panel represents the carbon accumulation rate used by [6] to predict carbon
accumulation rates in tropical America.

accumulation rates in TBB and TDM. However, rates of
carbon accumulation in soil vary widely across the tropics
and depend on multiple factors such as precipitation and
soil texture and minerology [43].

In summary, accumulation rates in tree aboveground
biomass can only give good approximations to total car-
bon accumulation rates in late stages of forest succession
and where soil carbon does not recover to the levels
of primary forests. In all other cases, carbon accumu-
lation in tree aboveground biomass probably underes-
timates total carbon accumulation rates in considerable
proportions.

Carbon legacies
Although in the secondary forest landscape we studied
there was no evidence of C legacies due to its long history
of land use, we were interested in exploring the C con-
sequences of such legacies in the hypothetical case they
had been present. In addition, large-scale carbon budgets

calculate the net C balance between deforestation and
regrowth implicitly including these C legacies; however,
it is difficult to assess the effects of different changes in
land use on the temporal trend of C recovery without the
explicit account of these legacies.

Carbon legacies can vary in importance depending on
the type of disturbance or previous land use. Extreme
weather events such as hurricanes [15] or storms [16]
can cause significant tree mortality over large areas. After
these events, a large percentage of carbon is transferred
from live to dead pools, with 100% of the dead material
remaining in situ. In these cases, the regrowing forests
after disturbance will likely behave as carbon sources
during the first years of forest recovery [45].

The type and amount of carbon legacies after the aban-
donment of agricultural or pasture lands is more complex.
After harvesting, crop residues remain in situ acting as a
carbon legacy. However, the amount of this carbon legacy
varies substantially depending on the type of crop; cereals
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and sugar crops producing the highest amount of residue
in comparison to legumes and oil crops [18].

In forests recovering after pastures, other biological
legacies may have more important effects on carbon accu-
mulation than just carbon legacies. Pastures can signif-
icantly delay the recovery process due to a number of
biological factors such as the rapid growth of herbs and
ferns [28]. In our study area, where pasture was the domi-
nant previous land use, we did not observe significant lags
in the recovery of carbon stocks. Similarly, other studies
have not found differences in carbon accumulation rates
after pasture compared to agriculture [27]. Carbon accu-
mulation rates after pastures can be complex, resulting
from the interaction of many factors such as species com-
position, seed source and dispersers, and degradation of
soil properties [28].

Small and large-scale timber extraction can also have
important impacts on the amount and type of carbon
legacies. Forestry activities rarely extract 100% of the har-
vested trees, leaving in situ a considerable amount of
slash that acts as carbon legacy. Keller et al. [17] report
that conventional logging systems in the Amazon can
increase the amount of coarse woody debris by 95% above
the background levels in undisturbed forests. In addi-
tion to this increase, other slash and fine debris represent
an important amount of legacy carbon that can signif-
icantly delay positive accumulation rates in regrowing
vegetation.

Landscape age structure
Our simulations showed that depending on succession
age and amount of carbon legacies, the magnitude and
direction of ecosystem carbon fluxes can differ signifi-
cantly. Landscapes are usually mosaics of patches with
different ages and land-use/disturbance histories [9].
Therefore, it is very important to study carbon sources
and sinks accounting for this heterogeneity in landscape
structure.

Previous studies have found that the age of secondary
forest patches in the Amazon can be well represented
by exponential density functions with mean age between
4 and 5 years [11]. Although age distributions can vary
geographically across secondary tropical forests due to
different economic, social and political factors, it is likely
that mean ages are low as reported for the Brazilian Ama-
zon. This relatively high proportion of forests in very early
stages of succession has two important implications: 1)
carbon legacies probably dominate the behavior of carbon
fluxes in these early stages, 2) tree aboveground biomass
does not contribute as much to total carbon accumulation
as in later succession stages.

In the presence of carbon legacies, these relatively high
proportion of forests in early successional stages suggests
that important portions of anthropogenic landscapes in

the Amazon may be actually acting as carbon sources
rather than carbon sinks.

This relative small mean age of tropical forest land-
scapes and the results from our simulations also sug-
gest that the contribution of tree aboveground biomass
to total accumulation rates is not as high as it could
be in other landscapes with higher mean ages. There-
fore, the inclusion of belowground, dead, and soil carbon
pools in calculations of carbon accumulation rates should
give more priority to carbon accumulation in these other
pools.

Implications for large-scale carbon budgets
Tropical forest regrowth has been included implicitly in
large scale estimations of land-use change [8], but there
is renewed interested in separating it from deforesta-
tion emissions [6]. To reduce uncertainties and biases,
and produce more accurate estimations, it is important
to specifically account for carbon accumulation rates in
belowground biomass, dead material, and soil carbon, in
addition to aboveground biomass. This can potentially
reduce underestimations of carbon accumulation between
20 and 50%. In addition, large scale budgets should also
consider with detail the amount of carbon legacies after
different land uses, and the age-structure of different
landscapes.

Estimations of carbon emissions from tropical land-use
change implicitly account for carbon legacies, forest age,
and belowground carbon stocks (e.g., [46-50]). However,
more detailed representations of these processes can help
to understand key processes related to previous land use
and carbon accumulation over time. For example, our sim-
ulations showed that carbon legacies control the period of
time in which secondary forests act as carbon sources, the
maximum accumulation rate that can be achieved during
the entire successional process, and the time required to
reach this maximum accumulation rate. Whether regrow-
ing forests after different land uses with different carbon
legacies may behave as carbon sources or sinks, is a
question that cannot be answered with previous carbon
accounting schemes. These type of questions are impor-
tant for forest management and should help not only to
produce estimates of the carbon consequences of land
use, but also to devise possible management strategies to
reduce carbon emissions.

The carbon accumulation rate of 3.8 Mg C ha−1 yr−1

recently used to estimate tropical forest regrowth in the
Americas [6], agrees well with our estimations of carbon
accumulation in landscapes with mean age of ∼10 years
and without the influence of carbon legacies (Figure 6).
Whether these assumptions hold for all regrowing trop-
ical forests in the Americas is uncertain, therefore new
research efforts to quantify secondary forest age-structure
would help to produce more accurate carbon budgets.
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Conclusions
A chronosequence of total carbon accumulation in a sec-
ondary forest landscape where pasture was the dominant
previous land use, showed that carbon accumulates over
time following a sigmoidal curve, reaching the maximum
carbon levels between 80 and 100 years. Soil carbon stocks
did not recover to levels of the undisturbed forests how-
ever, suggesting that previous land use severely modified
the capacity to recover after anthropogenic disturbance.

A statistical fit to the data showed that this carbon
accumulation is highly predictable, with maximum accu-
mulation rates at around 9 years after the start of the
successional process. The contribution of different pools
varied over time, with aboveground biomass representing
a small proportion in early stages but being the dominant
carbon pool in late stages of forest succession.

The empirical model derived from the observations
in this andean tropical forest landscape, performed
remarkably well predicting carbon accumulation in other
chronosequences in the Amazon basin and Costa Rica.
This suggests that the process of total carbon accumu-
lation is highly predictable and better models can be
developed in the future as more data becomes available
to predict carbon accumulation at the continental scale.
In addition, this model can be used to explore different
assumptions in calculating carbon accumulation rates at
larger scales.

Simulation results using our empirical model allowed us
to reach three important conclusions: 1) tree aboveground
biomass is only a good surrogate for total carbon accumu-
lation in late stages of forest succession. In the Brazilian
Amazon, secondary forest landscapes have a mean age
between 4 and 5 years [11] and young landscapes may
also occur frequently in the tropics, therefore estimates
based only on aboveground biomass probably underesti-
mate total carbon accumulation. 2) Carbon legacies from
previous land use can have important effects on the mag-
nitude and direction of carbon fluxes in secondary forests.
In the presence of legacies, secondary forests can act as
carbon sources to the atmosphere, can decrease the max-
imum accumulation rate, and delay the time at which this
maximum rate is reached. 3) Mean landscape age deter-
mines the magnitude and the direction of carbon fluxes.
Without the presence of legacies, landscape age deter-
mines the strength of the carbon sink. In the presence
of legacies, landscape age determines whether a tropical
forest landscape is acting as a carbon source or a sink.

Methods
Data collection and study site
In this study, we used data collected in secondary and
primary forests of the Porce region of Colombia (6°45’
37” N, 75°06’ 28” W). Mean annual temperature and pre-
cipitation in this region are reported as 22.7°C and 2078

mm, respectively. The main soil orders are Entisols and
Inceptisols, with an average bulk density of 1.3 Mg m−3.

Secondary forests in the region were established in the
late 1980s and 1990s after the design and construction of a
series of hydroelectric projects that required the abandon-
ment of pasture land to create a buffer zone surrounding
the dams. Original deforestation of the area dates back to
the mid 20th century when the majority of the area was
converted to cattle pastures and a minor proportion to
agriculture [51].

Previously, we had reported for this area total carbon
stocks for primary and secondary forests [52], rates of
carbon uptake and release in primary forests [53], rates
of above- and below-ground carbon accumulation in sec-
ondary forests [51], soil carbon balance [44], and changes
in forest structure and composition along the successional
sequence [54]. Here, we compile these previous results,
add new data, and present estimates of total carbon accu-
mulation rates across all carbon pools in the secondary
forests.

Between 1999 and 2001 we established 110 permanent
plots in primary and secondary forests where we mea-
sured all trees and palms with diameter at breast height
D > 1 cm. Between 2005 and 2006, 33 additional plots
were established in secondary forests [51]. Local above-
ground biomass equations were developed for trees in the
two forest types as well as allometric equations for palms
and coarse roots [52]. We also harvested total above and
belowground biomass in recently (3-5 years) abandoned
pastures.

Soil carbon was measured in all plots at two depths
0-15 and 15-30 cm by taking samples for bulk density and
composite samples at each plot for percent carbon content
determination [52]. Fine root biomass (< 0.5 cm in diam-
eter) was sampled at the same depths in all plots extracting
3 soil cores (8 cm in diameter x 15 cm long) per plot.

For a subset of 33 plots in the secondary forests, we
estimated the age since land abandonment using a combi-
nation of techniques: 1) interviews with local inhabitants,
2) tree-ring analysis in species with known annual rings, 3)
radiocarbon dating of trees with average diameter, and 4)
land-cover sequences from aerial photography and satel-
lite images. With these ages we were able to ensemble a set
of plots that form a chronosequence that spans 36 years,
from recently abandoned pastures to well developed suc-
cessional forests. Additional details about the calculation
of plot age in this chronosequence are presented in [51].

For each plot we determined total aboveground biomass
(TAGB) as the sum of aboveground tree biomass, above-
ground palm biomass, and herbaceous vegetation (D < 1
cm). Total belowground biomass (TBB) was calculated
as the sum of fine and coarse roots for each plot. Total
dead mass (TDM) as the sum of fine litter and coarse
woody debris. Soil organic carbon (SOC) as the sum of the
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estimates at 0-15 and 15-30 cm depth. Total carbon stocks
(TCS) are then the sum of all these components for each
plot as

TCS = pc(TAGB + TBB + TDM) + SOC, (2)

where pc is the proportion of carbon in dry organic matter
(DW). In our case, we used pc = 0.45, estimated from
measurements of different pools at the site [52].

Ecosystem carbon fluxes were calculated as the annual
difference in TCS, which corresponds to the concept of
Net Ecosystem Carbon Balance [55]

NECB = �TCS
�t

. (3)

Model fits
We used common empirical models [19,51,56] for pre-
dicting biomass and carbon accumulation in all pools
along the successional sequence. Relationships between
the dependent variable Y and age t were fit using the von
Bertalanffy growth model [57]

Y = Ymax(1 − β0 exp(−β1 t))β2 , (4)

and the logistic equation

Y = Ymax
(1 + β1 exp(β2 t))

, (5)

where β0, β1, and β2 are empirical coefficients, and Ymax
the maximum average value of the dependent variable.

The values of Ymax for the three models were set as con-
stants in fitting the regression models, using the average
values for these pools measured in the primary forests of
the region: TAGBmax = 111.51, TBBmax = 37.665, and
TDMmax = 6.615 Mg C ha−1 [52].

Simulations
We explored the effects of carbon legacies and landscape
age-structure using simulations of carbon accumulation
from the fitted models. Before running the simulations, we
evaluated the performance of the model using an indepen-
dent dataset of total carbon accumulation for an Amazon
tropical forest [20,21], and a lowland tropical forest from
Costa Rica [22].

We tested the effects of different levels of carbon lega-
cies on TCS and NECB by performing simulations in
which different amounts of C were present at the initiation
of forest succession and decomposed over time. In partic-
ular, we tested the effects of leaving in situ 100, 70, 30 and
0% of the total mass (TM = TAGB+TBB+TDM) present
under primary forest using the equation

TCS(t) =TM(t = 0) e(−k t) + TAGB(t) + TBB(t)
+ TDM(t) + SOC(t).

(6)

Decomposition of the legacy C (TM(t = 0)) was repre-
sented with a simple exponential model using the median

decomposition rate k of 155 logs measured in Central
Amazonia [24]. We used here the complete data set
from [24], which is publicly available from the Oak Ridge
National Laboratory Distributed Active Archive Center
(ORNL DAAC) [25].

The effects of landscape age-structure on carbon fluxes
were tested by producing hypothetical landscape config-
urations following an exponential probability distribution
[11]

p(t) = λe−λt (7)

where t is the age of a landscape unit and its probability is
given by p(t) with an expected age given by E[ t] = 1/λ.

We produced hypothetical landscapes by sampling sets
of 1000 random numbers from an exponential distribu-
tion with mean ages E[ t] = 3, 5, 10, 20, and 50 years . To
each set of 1000 landscape units, we calculated the values
of NECB predicted by the empirical model under different
assumptions of carbon legacies. To assess the uncertainty
introduced by the value of the decomposition rate, we
applied different values of k sampled randomly from the
set of 155 logs using a Monte Carlo procedure.

The code and data to reproduce all results from this
analysis are provided in the supplementary material for
verification and reuse (see Additional files 1, 2, and 3).

Additional files

Additional file 1: PorcedB2012.csv. Biomass (Mg DW ha−1 yr−1) and soil
carbon stocks (Mg C ha−1 yr−1) of 33 permanent plots with their
corresponding age. AGB: tree aboveground biomass (D > 1 cm), Palm:
aboveground biomass of palms, HV: biomass of herbaceous and
non-woody vegetation (D < 1 cm), CR: coarse root biomass (> 5 mm
diameter), FR: fine root biomass (< 5 mm diameter), FL: fine litter, CWD:
coarse woody debris, SC15: soil organic carbon to 15 cm depth, SC30: soil
organic carbon to 30 cm depth.

Additional file 2: TCA Porce.R. R code to reproduce all graphics and
simulations in the manuscript.

Additional file 3: Chambers k.csv. Database on coarse wood
decomposition rates obtained from [25]. This is a short version of the
dataset, included here only for the purpose to run the code provided as
Additional file 2.
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Germany. 2Research Center on Ecosystem and Global Change Carbono &

http://www.biomedcentral.com/content/supplementary/1750-0680-7-12-S1.csv
http://www.biomedcentral.com/content/supplementary/1750-0680-7-12-S2.r
http://www.biomedcentral.com/content/supplementary/1750-0680-7-12-S3.csv


Sierra et al. Carbon Balance and Management 2012, 7:12 Page 12 of 13
http://www.cbmjournal.com/content/7/1/12
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