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We explore the similarities and differences between the energy landscapes of proteins that have been
selected by nature and those of some proteins designed by humans. Natural proteins have evolved
to function as well as fold, and this is a source of energetic frustration. The sequence of Top7, on
the other hand, was designed with architecture alone in mind using only native state stability as the
optimization criterion. Its topology had not previously been observed in nature. Experimental studies
show that the folding kinetics of Top7 is more complex than the kinetics of folding of otherwise
comparable naturally occurring proteins. In this paper, we use structure prediction tools, frustration
analysis, and free energy profiles to illustrate the folding landscapes of Top7 and two other proteins
designed by Takada. We use both perfectly funneled (structure-based) and predictive (transferable)
models to gain insight into the role of topological versus energetic frustration in these systems and
show how they differ from those found for natural proteins. We also study how robust the folding
of these designs would be to the simplification of the sequences using fewer amino acid types. Sim-
plification using a five amino acid type code results in comparable quality of structure prediction to
the full sequence in some cases, while the two-letter simplification scheme dramatically reduces the
quality of structure prediction. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813504]

I. INTRODUCTION

There is considerable evidence that natural proteins have
evolved to have minimally frustrated energy landscapes that
are funneled towards the native state by native interactions
that are stronger than alternative possibilities.1–6 Natural pro-
tein folding is thus under thermodynamic not kinetic control.
Residual frustration exists, and localized frustrated regions
have been shown to be correlated with functional regions of
proteins such as binding sites7 and regions that undergo par-
tial local unfolding or reconfiguration during conformational
changes necessary for allosteric regulation.8, 9 The overall low
degree of frustration however distinguishes natural proteins
from random heteropolymers, which have many globally un-
related low energy states. What about proteins that have been
designed rationally by people with the aid of computers? Such
designed sequences have also undergone a selection process,
but one guided by humans and their preconceptions rather
than nature and its harsh functional constraints. With the hope
of controlling protein structure and functions, many methods
have emerged for designing a sequence that folds reliably to
a target structure. Some important and successful protein de-
signs have focused on either stabilizing the target folded state
alone, as in the Baker group’s system of Top7,10 or on funnel-
ing the global landscape, as in Takada’s design.11 Both design
strategies can be consistent with the “principle of minimal
frustration”1 if the pre-conceived ideas about the energetic
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force field employed in the design stage are good enough. In
accord with the minimal frustration idea, robust protein de-
sign will generally also require destabilizing non-native states
(explicit negative design)12 as well as ensuring native stabil-
ity. Disfavoring the vast number of non-native states remains
a challenge for making protein design routinely successful.

Top7 was designed in 2003 in the Baker laboratory at
the University of Washington by minimizing a model free
energy of a targeted single folded monomeric structure that
was specifically chosen to be unlike any that had previously
been observed for a natural protein.10 The design scheme
started with a “sketch” of the topology and the initial se-
quences were generated by taking fragments from proteins
with resolved structures such that the secondary structure
agreed with the desired secondary structure elements of the
design. They then iterated between Monte Carlo based se-
quence design and gradient based backbone optimization for
multiple rounds, each time reoptimizing the lowest energy se-
quence/structure pairs found in the last round. The energy
function used was a pairwise additive, implicit solvent fully
atomistic model that contains hydrogen bonding and Lennard
Jones terms, and gave special attention to tight packing of
side chains. During the sequence optimization, most of the
positions in the sequence were allowed to be mutated to any
residue except for cysteine; only the surface residues of the β-
strands were restricted to being polar residues. The resulting
sequence had no significant homology to any known protein
sequence. Despite having a novel topology and sequence, it
was able to fold in the laboratory, and was found to be highly
soluble and monomeric. The x-ray crystal structure of the
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synthesized Top7 is very similar to the targeted goal, with a
root mean square deviation (RMSD) of 1.2 Å. It was noted
that the crystal structure was more ordered on the C-terminal
half. It was also found to be unusually stable, being still ap-
parently folded at 98 ◦C. The equilibrium chemical denatura-
tion showed a cooperative unfolding event with a midpoint
around 6M Gu-HCl. At the time this was understood by some
as demonstrating that extensive negative design and/or the ex-
plicit consideration of the kinetic process of folding was not
necessary in order to design protein sequences that fold to
unique structures.

In 2004, a study of the kinetics of several designed pro-
teins, including Top7, was carried out.13 Besides Top7, the
other proteins in the study were designed using a similar pro-
cedure to that which produced Top7, but were all designed to
fold into topologies of particular natural proteins. Most of the
redesigned proteins were found to fold faster than their nat-
ural counterparts. Top7 also folds quickly compared to many
natural proteins of its size, but it was unusual in that, unlike
most natural proteins and unlike the redesigned proteins with
natural topologies, its folding exhibits complex multiphase ki-
netics that are essentially denaturant concentration indepen-
dent under a range of folding conditions. To explain the dif-
ference in folding rates between the natural and redesigned
proteins, it was suggested that perhaps natural selection fa-
vors high barriers to unfolding in order to disfavor aggrega-
tion in vivo. Three possible sources for the unique behavior of
Top7 were noted: highly populated intermediates with buried
hydrophobic residues, a shift of the transition state towards
the unfolded state, or an increase in internal friction. Further
experimental characterization in 200714 led to the conclusion
that some non-native states of Top7 as well as native-like frag-
ments of Top7 were stable at equilibrium. The kinetics were
also further resolved, leading to the conclusion that one of
the slow rearrangements corresponds to a transition between
two collapsed states. One possible reason for the presence
of multiple collapsed states was suggested, namely, that the
optimization process leads to an expanded hydrophobic core.
They also mention the possibility that the extreme regularity
of Top7’s β strands may make it easier for strand rearrange-
ments to occur. Mutation studies helped to identify a subset
of residues that are involved in a non-native intermediate as
well as a different subset that was thought to be important to
the transition state. In summary, this work demonstrated that
not all protein sequences that can be crystallized have energy
landscapes as smooth as those of most natural proteins.

Clearly then Top7 represents an interesting testing
ground for protein folding theorists; some of the first seri-
ous simulation studies on this system were carried out in
the Chan laboratory.15, 16 Using several variations on an es-
sentially native-centric model, they were able to observe a
stable intermediate with a folded C-terminal fragment, con-
sistent with the previous experimental work. They initially
concluded that the non-natural topology of Top7 was the dom-
inant determining factor in its noncooperative folding, and
speculated that perhaps some topologies were fundamentally
uncooperative or that the artificial design procedure was not
equal to that of natural evolution or selected for different
traits. This initial study was followed up with a more thorough

study of the simulated thermodynamics and kinetics of Top7
and S6 using a native-centric model that was perturbed by
adding sequence-dependent hydrophobic interactions. They
found that despite only having minor effects on the free en-
ergy profile, non-native hydrophobic interactions were ab-
solutely essential to recreating something like the observed
rollover in the folding arm of the chevron of Top7. In particu-
lar, they noted that 6 of the 7 residues mentioned as being im-
portant for non-native interactions in the experimental work
of Baker et al.10, 12, 13, 23 and Watters et al.14 were indeed found
to make significant non-native interactions in their simula-
tions, with the exception being V81. They concluded that the
long stretch of hydrophobic residues in the C-terminal helix
of Top7 is an important contributor to its strange folding be-
havior. They reiterate the suggestion of Baker et al.10, 12, 13, 23

and Watters et al.14 that the regularity of the β-strands might
favor incorrect pairings, but note that this would not be cap-
tured in their essentially native-centric model.

By comparing results from a structure-based model
(SBM) and the Associative memory, Water mediated, Struc-
ture and Energy Model (AWSEM, an optimized predictive
model), we have been able to investigate both topological and
energetic factors to see about their relative impact using a
fairly realistic energy function distinct from that used in the
original design.

In early 2003, the Takada laboratory used a fully auto-
mated procedure inspired by energy landscape theory prin-
ciples to design sequences for a target 3 helix bundle
structure.11 The focus in this case was on crafting the global
landscape into a funnel shape by explicit negative design
against the vast number of unfolded configurations. This com-
putationally daunting task necessitated the use of a coarse-
grained model that did not emphasize tight side chain pack-
ing. The model is similar to AWSEM in that it uses a 3 atom
per residue representation and explicit hydrogen bonds, but
differs from AWSEM in its relatively simple hydrophobic
interactions and context-dependent electrostatic interactions.
Like AWSEM, Takada’s model was originally developed for
folding studies.17 This allowed the Takada group to base the
design procedure on a set of structures coming from folding
simulations. These structures were generated before the final
sequence was fixed. The unfolded structures, below a certain
threshold value of the number of native contacts, were used
as the denatured ensemble, and a truncated and relaxed ver-
sion of the protein G-related albumin binding domain (PDB
ID: 1PRB) was used as the targeted structure. The sequence
that corresponds to the natural protein 1PRB will be referred
to as TakadaN in this paper, to emphasize the structural sim-
ilarity to the designs. A Monte Carlo with simulated anneal-
ing search for optimal sequences was then performed with
the Z-score as the function to be optimized. The putative se-
quences were then tested with folding simulations. When it
was found that these sequences did not fold in simulation,
a variant on the Z-score that, in addition to accounting for
the gap between the unfolded state and target structure, em-
ploys the gap between the intermediate states and the tar-
get structure was used as an objective function to search for
new sequences. A subset of the sequences optimized with
respect to this “double Z-score” were found to fold quickly
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in simulation. Finally, the procedure was repeated with
restrictions on the amino acid composition in order to en-
sure solubility, and three of the resulting sequences were cho-
sen for experimental characterization. For the purposes of
comparison, several sequences were generated for the target
structure using only total energy of the native state as the ob-
jective function (while still using the same amino acid com-
position constraints), and the lowest of these was also exper-
imentally characterized. All of the optimized sequences were
found to have low sequence similarity to the native sequence
of the target structure. Circular dichroism (CD) and nuclear
magnetic resonance (NMR) experiments led them to con-
clude that one of the “double Z-score” optimized sequences
(originally named DHB06, called TakadaZ in this study) had
both stable secondary and tertiary structures. The energy op-
timized sequence (originally named DHBE, called TakadaE
in this study) had similar amounts of secondary structure but
a poorly resolved one-dimensional NMR spectrum. Diffusion
measurements indicated that TakadaE was forming multimers
in solution, which led to the conclusion that TakadaE may
aggregate due to its lack of well defined tertiary structure.
Finally, they noted that the other two Z-score optimized se-
quences that were experimentally characterized showed prob-
lems, either with packing or large fluctuations from the native
state, in all-atom simulations whereas TakadaZ did not. They
then concluded that screening designed sequences coming
from coarse-grained models with all-atom simulations may
be a useful way of determining beforehand which of the se-
quences will likely be well behaved in the laboratory.

If the problem of designing sequences to fold like pro-
teins is understood as building in the signals necessary to fold
starting from no sequence information, or from random se-
quences, then this immediately suggests another way of ap-
proaching the problem of determining what those signals are:
gradually removing signals from natural protein sequences
until folding fails. There are at least two reasonably con-
trolled ways of accomplishing this. One interesting and prac-
ticable way is to gradually introduce more and more alanine
mutations.18, 19 These studies allow us to learn tremendous
amounts of detail about which parts of the sequence are im-
portant for which aspects of folding, e.g., thermodynamics
and kinetics. Another equally interesting way to simplify se-
quences is to ask the question of how many amino acid types
are necessary for a protein to fold on biological timescales.
Homopolymers are unable to fold to a unique structure due
to the degeneracy of collapsed conformations. If we were to
introduce energetic heterogeneity to these collapsed confor-
mations through a two-letter hydrophobic and polar code, we
would begin to observe energetic discrimination among these
states. However, a theoretical study has reported that two let-
ter codes generally still give rise to many energetically low-
lying non-native conformations.20 A two-letter hydropho-
bic/polar code can distinguish between any two states that
have different degrees of segregation, but cannot go further.
These theoretical considerations have been discussed further
by Wolynes in Ref. 21. Although folded helical proteins gen-
erated with a three-letter code (Q, L, R) which undergo coop-
erative thermal denaturation have been reported,22 the Baker
laboratory reported that a three-letter code was insufficient in

their attempts to simplify the sequence of the SH3 domain.23

Rather, a five-letter code (I, K, E, A, G) was required in order
to build two variants of the SH3 domain in which approxi-
mately 70% of the sequence was simplified. One of the re-
sulting variants folded at a rate similar to the native sequence,
while the other variant folded even faster, suggesting that evo-
lution may emphasize thermodynamic control. In 1999, Wang
reported theoretical efforts to produce a simplified code based
on the concept of mismatch between a reduced interaction
matrix and the Miyazawa-Jernigan matrix.24 This resulted in
the same five-letter code employed by Baker.23 Sequences us-
ing the five-letter code appeared to be kinetically foldable in
their model studies. However, Chan25 pointed out that 29%
of the residues of the simplest sequence studied by Baker23

do not belong to the simplified IKEAG alphabet (there were,
in fact, 14 amino acid types present in the sequence when
all residue positions were counted). Later work by Wang26, 27

indicated that the minimum number of amino acid types re-
quired for a protein to encode its structure might be as large
as ten, which would be consistent with theoretical work by
Levy28 and Dill.29 For highly symmetric structures, at least
for small proteins, the minimum required number of letters
might be lower.30

In this study, we use AWSEM to study the effect of
simplifying sequences of three designed proteins – Top7,
TakadaZ, and TakadaE – as well as the effect of simplifica-
tion on the behavior of two natural controls: S6 and TakadaN.
For the purposes of simplification, we have employed the five-
letter Miyazawa-Jernigan matrix scheme (MJ5),24 and the
two-letter Blosum scoring scheme (BL2).27

II. APPROACHES

A. Systems investigated

Top7, the first protein to be designed to fold into a novel
topology, has 92 residues and contains two α-helices packed
on a five strand β-sheet with all anti-parallel strand pairings
(see Figure 1(a)). The design process, which focused entirely
on minimizing the free energy of the folded monomeric struc-
ture, did neither include explicit negative design against possi-
ble alternative conformations nor consider the kinetic process
of protein folding. Top7 is unusually stable compared to natu-
ral proteins, and exhibits complex, multi-phase kinetics in its
folding,13, 14 arising from the presence of several metastable
intermediates. One intermediate state was found in simula-
tion study to be more stable than either the folded or the un-
folded states.15 Ribosomal protein S6 (PDB: 1RIS) was used
as a comparison control system for Top7. S6 was chosen be-
cause of its similarity in length and secondary structure ele-
ment composition to Top7 (Figure 1(b)), and also because it
exhibits relatively simple, two-state kinetics as is quite com-
mon for natural proteins.31

We have also studied two proteins designed by the
Takada laboratory.11 These two sequences were designed to
fold into the structure of the truncated protein G-related al-
bumin binding domain (PDB: 1PRB), which has the first un-
structured N-terminal 6 residues cut out. This protein has a
three-helix bundle topology, shown in Figure 1(c). The two
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FIG. 1. The crystal structures of Top7 (a) and S6 (b), and the truncated and
relaxed 1PRB structure, denoted TakadaN (c). Coloring of the structures is
according to residue index starting at the N-terminal (blue) and going to the
C-terminal (red). Structures were generated using PyMOL.32

Takada sequences were formed using different automated
computational approaches: the first used a sophisticated
Z-score based criterion to build a globally funneled land-
scape employing a rather good coarse-grained energy func-
tion, whereas the second focused only on optimizing in-
teractions within the target structure. The Z-score design
variant is denoted as TakadaZ (originally DHB06), and the
sequence designed by minimizing the energy of the target
structure alone is denoted as TakadaE (originally DHBE) in
this paper. In our studies, the truncated protein G-related al-
bumin binding domain, which was the structural template for
the design, was used as the control system. We denote it as
TakadaN. We performed a short annealing simulation with the
“single memory” AWSEM (see Sec. II B) at low temperature,
starting from the truncated 1PRB, and used the final structure
as the target structure for the calculation of Q values. The tar-
get structure deviates only slightly from the crystal structure,
with a Cα RMSD of 2.4 Å that comes primarily from a tighter
packing of the two terminal helices. This structure was also
used for the Frustratometer analyses.

B. Models

Both the structure-based and predictive models are im-
plemented in the LAMMPS molecular dynamics package.33

These models share a coarse-grained backbone description
wherein the position and orientation of each amino acid
residue are dictated by the positions of its Cα , Cβ , and O
atoms (except Glycine, which lacks a Cβ atom). The model
does not explicitly represent solvent molecules, so it is rel-
atively rapid to simulate. Instead, the effects of solvent are
modeled implicitly using the interaction terms in the Hamil-
tonian. This predictive model contains water-mediated inter-
actions that go beyond the usual hydrophobicity dominated
contact models.34 We believe it is likely that these interactions
are somewhat more realistic than those employed to make the
original designs, which were already quite good.

We employ a non-additive structure-based model to study
the effect of topology on the landscapes of Top7, S6, and
TakadaN. This model’s Hamiltonian, shown in Eq. (1), con-
tains a backbone term (Vbackbone) and a non-additive term
(Vna), in which Ei is a pairwise-additive energy term and
p is the non-additivity exponent as shown in Eq. (2). For

this study, a value of p = 2.0 was used. Values of p in the
range of 2.0–3.0 have been shown to produce protein-like lev-
els of cooperativity when global and local folding events are
considered.35, 36 Complete details of this model are available
in Ref. 37:

VSBM = Vbackbone + Vna, (1)

Vna = −1

2
�i |Ei |p. (2)

AWSEM was used to predict the structures and to study
the role of non-native contacts (energetic frustration) on the
landscape and folding free energy profiles of the designed
and natural proteins mentioned above. The complete AWSEM
Hamiltonian is given in Eq. (3):

VAWSEM = Vbackbone + Vcontact + Vburial + VHB + VFM.

(3)
VFM is a bioinformatically based term, which depends

on the fragment memories obtained from the alignment of
9-residue segments of the target sequence to a database of
sequences corresponding to experimentally determined struc-
tures. Details of this model can be found in Ref. 38. A
“single memory” model was also used for constructing free
energy profiles so that effects of tertiary energy frustration
alone could be quantified. In the “single memory” model, the
fragments come directly from the experimentally determined
structure (PDB) and the secondary structure bias is taken from
the STRIDE39 assignment. In the “single memory” model,
VFM , is based on an experimentally determined structure.
All other parts of the model are fully transferable, including
Vcontact , Vburial , and VHB . AWSEM with a “homologues ex-
cluded” fragment library, together with simulated annealing
simulation was used for structure prediction. This “fragment
memory” model uses the Protein Secondary Structure Pre-
diction server JPRED prediction for its secondary structure
bias.40 The alignments coming from locally similar but glob-
ally unrelated structures introduce the possibility of frustra-
tion at the level of secondary structures, but in all probability
overestimates this effect.

C. Simulation and analysis methods

The Frustratometer7 has previously been used to measure
and localize frustration in natural proteins by allowing us to
computationally examine the changes in energy upon making
mutations. The mutational frustration index, as described in
Ref. 7, was used for all frustration calculations in this study.
Roughly speaking, the mutational frustration index compares
the stability of native interactions to a distribution of decoy in-
teractions that are obtained by making mutations to the inter-
acting residues themselves and the residues with which they
are in contact. Frustration in general is the result of multiple
competing interactions that cannot be simultaneously satis-
fied, and localizing frustration in the native structure of pro-
teins can be useful in determining which parts of the protein
are prone to local unfolding or misfolding. One way to rep-
resent localized frustration on a protein structure is to draw
lines between residues in contact and color them according to
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FIG. 2. The frustratograms show calculated mutational frustration of Top7
(a), S6 (b), and TakadaN, TakadaZ, and TakadaE (c, d, and e, respectively).
Minimally frustrated contacts are shown in green and highly frustrated con-
tacts are shown in red. Figures were generated using Visual Molecular
Dynamics (VMD).43

their degree of frustration. In the resulting “frustratograms”
(Figure 2), minimally frustrated contacts are shown in green
and highly frustrated contacts are shown in red. For most nat-
ural proteins, minimally frustrated linkages constitute a con-
nected stable folding core for the molecule. The fraction of
minimally frustrated and highly frustrated contacts were also
calculated and are given in Table I. Top7 is mostly mini-
mally frustrated. Its very few highly frustrated contacts are

TABLE I. Summary of the mutational frustration analysis for all se-
quence/structure pairs studied. The columns show the fraction of minimally,
highly, and neutrally frustrated interactions present in the native structure (or
putative native structure in the case of TakadaZ and TakadaE).

Minimally Highly Neutrally

S6 FULL 0.41 0.13 0.45
MJ5 0.40 0.14 0.46
BL2 0.40 0.17 0.43

Top7 FULL 0.57 0.06 0.37
MJ5 0.50 0.11 0.39
BL2 0.55 0.06 0.39

TakadaN FULL 0.49 0.06 0.45
MJ5 0.48 0.08 0.44
BL2 0.44 0.00 0.56

TakadaZ FULL 0.49 0.05 0.46
MJ5 0.55 0.07 0.38
BL2 0.50 0.00 0.49

TakadaE FULL 0.60 0.02 0.38
MJ5 0.57 0.02 0.41
BL2 0.53 0.09 0.38

between polar residues on the outside of the β sheet. The na-
tive structure of S6 has a highly frustrated region between the
C-terminal unstructured coil and the β sheet. The coil region
between the first β strand and the first helix also makes highly
frustrated contacts with the twisted region of the second and
third β strands. All three Takada sequences have a large frac-
tion of minimally frustrated interactions. Notably, similar to
what was found for Top7, TakadaE has an unusually high
fraction of minimally frustrated contacts, while the fraction of
highly and minimally frustrated contacts for the natural pro-
tein TakadaN and the designed TakadaZ are nearly identical.
The largest cluster of highly frustrated contacts in TakadaN
coincides with the putative albumin binding site at the N-
terminal.41 The frustratograms shown in Figure 2 and the frus-
tration analysis in Table I were generated by the version of the
Frustratometer that is implemented inside of AWSEM-MD,
which is specifically designed to be consistent with the simu-
lation Hamiltonian. Interactions within the range of fragment
memory term VFM are therefore excluded. The Frustratome-
ter web server42 includes these interactions.

To survey the landscape of folding, we first employ sim-
ulated annealing simulations. These allow us to get an idea
of how foldable a sequence is, and how robust the folding
is to simplification of its sequence. These simulations were
performed with a “homologues excluded” fragment library.38

To generate a starting structure, a simulation starting from
the native structure that was obtained from the Protein Data
Bank44 was first run at a high temperature (well above the
folding temperature), resulting in a random extended confor-
mation. Starting from these extended conformations and this
high temperature, the temperature was slowly brought down
to below the folding temperature over the course of 1 × 107

steps, using a time step of 2 fs. Coordinates of the system
were saved every 1000 steps. For each saved snapshot, Q and
radius of gyration values relative to the native structure were
calculated. Q is the fraction of pairwise distances within 1 Å
of their distances in the native structure. The exact form of Q
is given in Eq. (4):

Q = 1

Np

∑
i

∑
j>i+2

exp

[−(
rij − r

μ

ij

)2

2σ 2
ij

]
. (4)

Finally, structures were built from the last snapshot of
each of these simulations, and the Cα RMSD was calculated
for comparison to the experimentally determined structure in
the cases of Top7 and S6, or the relaxed target structure in the
cases of the three Takada sequences.

In order to sample along Q and calculate free energy pro-
files, we ran umbrella sampling simulations in which a har-
monic bias (given in Eq. (5)) was added to the Hamiltonian:

VQ-bias = 1

2
kQ-bias(Q − Q0)2. (5)

All free energy profiles and expectation values were
calculated using the multi-state Bennett acceptance ratio
(MBAR) method as implemented in the pyMBAR package.45

Samples were collected for a range of temperatures near the
empirically determined folding temperature.
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FIG. 3. Two-dimensional free energy profiles of S6 (a) and Top7 (b) computed using the non-additive structure-based model. The free energy profile of S6 is
less complex with two distinct low free energy regions corresponding to the unfolded and folded states. Structure a1, a representative structure at the transition
state of S6, has an overall correct topology, though its secondary structures are incompletely formed. The free energy profile of Top7 is more complex, with
multiple metastable states near the transition state. Structures (b1 and b2) at Top7’s transition state have the C-terminal fragment preferentially formed, while
the N-terminal fragment remains unfolded.

III. RESULTS

A. Top7 vs. S6

Since it has homogeneous interactions, the structure-
based model allows us to evaluate the effects of topology
alone on the folding of Top7. Figure 3 shows the two-
dimensional free energy profiles of Top7 and S6 as a function
of Q and radius of gyration computed using the non-additive
structure-based model. There are two distinct low free energy
regions, corresponding to the unfolded and folded states, in
the free energy profiles of both Top7 and S6. Even for this sin-
gle structure-based model corresponding to ideally funneled
interactions, the free energy profile of Top7 is more complex
than it is for the natural protein, S6, as reflected in the broad
transition state region with multiple metastable states (Q val-
ues from 0.2 to 0.4). Structures at Top7’s transition state have
the C-terminal fragment preferentially formed, while the N-
terminal fragment remains unfolded, whereas the narrower
transition state region for S6 is more structurally homoge-
neous. The structure at the transition state of S6 has an over-
all correct topology, even though its secondary structures are
incompletely formed. Compared to S6, which has two state
folding kinetics in experiment,31 Top7 has intermediates with
folded C-terminal fragments. These results are consistent with
the previous simulation study15 as well as with experiments
on Top7. These results strengthen the hypothesis that topolog-
ical frustration plays a dominant role in the complex folding
kinetics of Top7.

The “single memory” model with transferable tertiary in-
teractions was used to specifically study the role of tertiary
energetic frustration on folding. The two-dimensional free en-
ergy profiles F(Q, rg) of S6 and Top7 (Figures 4(a) and 4(b),
respectively) are similar, though Top7 has a somewhat wider
range of radii of gyration that are low in free energy. Both
proteins still have an energetic bias towards native-like states
as is shown in the F(Q, E) plots (Figures 4(c) and 4(d), re-
spectively) with a low free energy basin that extends from
low Q and high energy to moderately high Q and low energy.
Figure 5 shows the energy of the tertiary interactions as a
function of Q for both Top7 and S6. The tertiary energy is de-

fined as the sum of Vcontact and Vburial in Eq. (3). The tertiary
energies of both proteins decrease as Q increases, and have
approximately the same standard deviation, though Top7 has
a slightly larger energy gap and is funneled to higher Q. The
tertiary energy starts to flatten out at Q = 0.5 and Q = 0.7 for
S6 and Top7, respectively.

Next, we used AWSEM with fragment memories to
quantify the combined roles of secondary and tertiary frus-
trations. Figure 8(a) shows the quality of structure prediction
of Top7 and S6 over 20 simulated annealing runs. Top7 is
better predicted, with overall better Q values than S6. The
best predicted structure, with a Q value of 0.74 (Figure 6(a)),
is the only well packed structure with the correct topol-
ogy. Two of the energetically competitive structures are
shown in Figure 6. We frequently observed swapping of the
fourth and fifth β strands, an example of which is shown in
Figure 6(b). The structure in Figure 6(c) is a pseudo mir-
ror image of the native structure, which also has an incor-
rect wiring of the first and third β strands. These structures
are energetically competitive in our model because they are
compact and retain a full complement of hydrogen bonds as
well as a well formed hydrophobic core. Circular dichroism
experiments in the Baker laboratory suggested that fragments
consisting of helices and subsets of Top7’s β strands, includ-
ing some subsets in which none of the β strands participate
in native pairings, are stable in solution. All of this is consis-
tent with the observation of Baker et al.10, 12, 13, 23 and Watters
et al.14 reiterated but unexplored by Chan, that Top7 might be
prone to misfolding via mispairing of its β strands.

The quality of S6’s structure prediction is low in compar-
ison to most natural proteins we have studied previously;38

19 out of 20 predicted structures have a Q value below 0.4
(Figure 7). Predicted structures of S6 have an extra helix in
place of the second β strand as seen in two representative
structures in Figures 7(a) and 7(b). Figure 7(c) shows a repre-
sentative structure taken from an umbrella sampling simula-
tion with a bias centered at Q = 0.60 using fragment memory
AWSEM. This structure has overall correct topology, but its
second β strand still has some helical character. This helical
formation in predicted structures of S6 is apparently due to a
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FIG. 4. The two-dimensional free energy profile as a function of Q and the radius of gyration of S6 (a) and Top7 (b) are similar, though Top7 has a wider range
of radii of gyration that are low in free energy. The two-dimensional free energy profile as a function of Q and energy of S6 (c) and Top7 (d) are also similar.
All free energy profiles were calculated using the “single memory” model with transferable tertiary interactions.

discrepancy between JPRED’s secondary structure prediction
(which influences AWSEM’s Ramachandran potential and β

hydrogen bonding term) and S6’s actual secondary structure.
As shown in Table II, the secondary structure prediction of
JPRED assigned the second β strand region to be coil.

FIG. 5. Plot of the tertiary energy term as a function of Q for Top7 (red line)
and S6 (green dashed line). Standard deviation of the tertiary energy term (�
Energy) is shown in the top right corner.

FIG. 6. Top7: plot of predicted structures as a function of Q and energy. The
crystal structure of Top7 is shown in the rectangle. (a) is a predicted structure
of Top7, which is in good agreement with the Top7 x-ray crystal structure,
with a Q = 0.74 and a RMSD = 2.09 Å. (b) and (c) are competitive low en-
ergy predicted structures of Top7 that have lower Q values, Q = 0.51, RMSD
= 10.09 Å and Q = 0.40, RMSD = 9.46 Å, respectively. These structures
have all of their secondary structures formed but have incorrect wirings of
the β strands.
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FIG. 7. S6: plot of predicted structures as a function of Q and energy. The
crystal structure of S6 is shown in the rectangle. (a) is a predicted structure
of S6 which has Q = 0.40 and a RMSD = 9.18 Å. (b) is a predicted structure
which has the lowest energy with Q = 0.33, RMSD = 9.91 Å. (c) shows a
representative structure taken from an umbrella sampling simulation with a
bias centered at Q = 0.6.

Both Top7 and S6 have energetic biases toward native-
like states in the fragment memory AWSEM, as seen in the
calculations of expectation values of the total, fragment mem-
ory, and tertiary energy terms (Figures 8(b), 8(c), and 8(d),
respectively). The formation of highly native-like states is
somewhat disfavored in S6 due to the aforementioned non-
native helix formation induced by the (incorrect) assumed
secondary structure bias. Top7 has a large energy gap in both
the tertiary and fragment memory energy terms. According to
analysis using the frustratometer, Top7 has a higher fraction
of minimally frustrated contacts and lower fraction of highly
frustrated contacts than S6 (Table I), consistent with Top7’s
unnaturally large hydrophobic core.

B. TakadaN vs. TakadaZ vs. TakadaE

Figure 9(a) shows the two-dimensional free energy pro-
file for TakadaN as a function of Q and the radius of gyration

TABLE II. Sequences and secondary structure information. Beneath each sequence, its respective JPRED secondary structure prediction is given. “H,” “E,”
and “-” correspond to α-helix, β-strand, and coil, respectively. The STRIDE assignment was converted into this representation by mapping all “AlphaHelix”
assignments to “H” and all “Strand” assignments to “E.” All other types of STRIDE assignments were mapped to “-.”

Top7

STRIDE -EEEEEEEE----EEEEEEEE---HHHHHHHHHHHHHHHH---EEEEEEE---HHHHHHHHHHHHHHHHHHH---EEEEEEE--EEEEEEE-

FULL DIQVQVNIDDNGKNFDYTYTVTTESELQKVLNELMDYIKKQGAKRVRISITARTKKEAEKFAAILIKVFAELGYNDINVTFDGDTVTVEGQL

--EEEEEE--------EEEEEE--HHHHHHHHHHHHHHHH----EEEEEEE---HHHHHHHHHHHHHHHHH-----EEEEE---EEEEE---

MJ5 EIKIKIKIEEKGKKIEIAIAIAAEKEIKKIIKEIIEIIKKKGAKKIKIKIAAKAKKEAEKIAAIIIKIIAEIGIKEIKIAIEGEAIAIEGKI

--EEEEEE-----EEEEEEEEE-HHHHHHHHHHHHHHHHH----EEEEEEE--HHHHHHHHHHHHHHHHHHH---EEEEEE---EEEEE---

BL2 SISISISISSSSSSISISISISSSSSISSIISSIISIISSSSSSSISISISSSSSSSSSSISSIIISIISSISISSISISISSSSISISSSI

-EEEEEEEE-----EEEEEEEE----HHHHHHHHHHEEE------EEEEEEE--------HHHHHHHHHH--EEEEEEEEEE---EEE----

S6

STRIDE -EEEEEEEEE-----HHHHHHHHHHHHHHHHHH--EEEEEEEEEEEEEEEEE--EEEEEEEEEEEEE----HHHHHHHHH----EEEEEEEE-----

FULL MRRYEVNIVLNPNLDQSQLALEKEIIQRALENYGARVEKVEELGLRRLAYPIAKDPQGYFLWYQVEMPEDRVNDLARELRIRDNVRRVMVVKSQEPF

----EEEEEE-----HHHHHHHHHHHHHHHHH---EEEEE-----------------EEEEEEEEE----HHHHHHHHH-----EEEEEEEEE----

MJ5 IKKIEIKIIIKGKIEKKKIAIEKEIIKKAIEKIGAKIEKIEEIGIKKIAIGIAKEGKGIIIIIKIEIGEEKIKEIAKEIKIKEKIKKIIIIKKKEGI

----EEEEEE-----HHHHHHHHHHHHHHHHH---EEEEE-----------------EEEEEEEEE---HHHHHHHHHH-----EEEEEEEEE----

BL2 ISSISISIIISSSISSSSISISSSIISSSISSISSSISSISSISISSISISISSSSSSIIIIISISISSSSISSISSSISISSSISSIIIISSSSSI

---EEEEEEEE------EEEEEEHHHH-HHHHH-----EEEEEEEEEEEEEEE-----EEEEEEEEE----EEEEE-EEEEE---HEEEEEE-----

TakadaN

STRIDE --HHHHHHHHHHH------HHHHHHHHH---HHHHHHHHHHHH----

FULL LKNAKEDAIAELKKAGITSDFYFNAINKAKTVEEVNALKNEILKAHA

--HHHHHHHHHHHH----HHHHHHHH-----HHHHHHHHHHHHH---

MJ5 IKKAKEEAIAEIKKAGIAKEIIIKAIKKAKAIEEIKAIKKEIIKAAA

--HHHHHHHHHHHH----HHHHHHHHH----HHHHHHHHHHHHHH--

BL2 ISSSSSSSISSISSSSISSSIIISSISSSSSISSISSISSSIISSSS

--------EEEE-------EEEEEEE-----EEEEEEE---------

TakadaZ

STRIDE --HHHHHHHHHHH------HHHHHHHHH---HHHHHHHHHHHH----

FULL RGNDAKKAAARWKDRKFKFKAFIHRMDSFGAITEIHKAASAYAKKFG

----HHHHHHHH----HHHHHHHHH------HHHHHHHHHHH-----

MJ5 KGKEAKKAAAKIKEKKIKIKAIIAKIEKIGAIAEIAKAAKAIAKKIG

----HHHHHHHHHH-HHHHHHHHHHHHHHHHHHHHHHHHHHHHH---

BL2 SSSSSSSSSSSISSSSISISSIISSISSISSISSISSSSSSISSSIS

-----------EE--EEEHHHHHHHH-----EEEE------------

TakadaE

STRIDE --HHHHHHHHHHH------HHHHHHHHH---HHHHHHHHHHHH----

FULL AYKFAETFFEQWKKFGWQIKYFLEYMRRAGGAKKFYEMIRRWIKEGW

--HHHHHHHHHHHHH--HHHHHHHHHHH-----HHHHHHHHHHH---

MJ5 AIKIAEAIIEKIKKIGIKIKIIIEIIKKAGGAKKIIEIIKKIIKEGI

--HHHHHHHHHHHHHEEEEEEHHHHHHH----HHHHHHHHHHHH---

BL2 SISISSSIISSISSISISISIIISIISSSSSSSSIISIISSIISSSI

-----HHHHHHHHHHHHHHHHHHEEEE------HHHHHHHHHHH---



121908-9 Truong et al. J. Chem. Phys. 139, 121908 (2013)

FIG. 8. Final Q versus annealing index of Top7 and S6 structure prediction. Twenty independent simulated annealing simulations were conducted and their
final Q values were plotted in the order of decreasing Q from left to right (a). Note that “annealing index” does not refer to the actual order in which the
simulations were carried out. Plots of the expectation value of the total energy and its standard deviation (b), fragment memory energy (c), and tertiary energy
(d) of Top7 and S6. Top7 is shown in red. S6 is shown in green.

obtained using the structure-based model. Since the structures
of TakadaN and the designs are essentially the same, these re-
sults would also apply to these systems. The unfolded and
folded states are shown as two low free energy regions sep-
arated by a well defined transition state, indicating that the
target structure is not topologically frustrated.

To see the effects of tertiary energetic frustration which
might distinguish the artificial designs from the natural pro-
tein, the free energy profile as a function of Q and energy
was also calculated using the “single memory” AWSEM for
the three Takada sequences at the same temperature and are
shown in Figures 9(b)–9(d). Free energy profiles of TakadaZ
and TakadaE (Figures 9(c) and 9(d)) are more complex than
the free energy profile of TakadaN. The free energy profile of
TakadaN (Figure 9(b)) is funneled to a Q value of 0.75, which
is the highest Q value among the three sequences having a
common structure, which is consistent with it being the se-
quence that was used to obtain the relaxed structure. The ter-
tiary energy as a function of Q is shown in Figure 10. TakadaE
has a larger energy gap than both TakadaN and TakadaZ, and
its energetic variance is also the largest among the three se-
quences. For the AWSEM energy function, TakadaZ has a

variance comparable to the variance of TakadaN, though its
energy gap is slightly smaller. The natural protein, TakadaN,
has its energy funneled smoothly to a high Q value, and a
small variance.

Next, predictions were performed with fragment mem-
ory AWSEM. TakadaN has the best predicted structures
found by simulated annealing as shown in Figure 11(a).
Expectation values of the total, fragment memory, and ter-
tiary energy terms are calculated and plotted as shown in
Figures 11(b)–11(d). The thermal average of the total energy
of all three Takada sequences is well funneled. The energy gap
of TakadaE is comparable to TakadaN and is larger than the
energy gap of TakadaZ, while the variance in the energies is
similar for all three constructs. This explains why TakadaE is
better predicted than TakadaZ with AWSEM. Thus, while the
Z-score was optimized in the original design with the original
energy function, the Z-score is not so highly optimized when
the AWSEM potential is used. JPRED’s secondary structure
prediction for the TakadaE sequence is also more similar to
that of TakadaN’s sequence than is TakadaZ’s (as shown in
Table II), indicating that its secondary structure propensities
match the target structure more closely. Figure 12 shows the
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FIG. 9. The two-dimensional free energy profile of TakadaN as a function of Q and the radius of gyration (a) was computed by using the non-additive structure-
based model. The two-dimensional free energy profiles of TakadaN (b), TakadaE (c), and TakadaZ (d) were computed by using the “single memory” model.
All free energy profiles were calculated at the same temperature.

plots of final simulated structures as a function of Q and en-
ergy. TakadaZ and TakadaE have predicted structures that are
scattered over a larger range of Q and energy. TakadaN has
less scattered predicted structures, with 13/20 structures clus-
tered at high Q and low energy. For each of these plots, a
predicted structure which has the highest Q value and a pre-
dicted structure which has the lowest energy are shown. In
all cases, the lowest energy structures (as well as the highest
Q structures) correspond to a correctly predicted overall fold;
deviations come mostly in the form of partially formed sec-
ondary structures and differences in the details of helix-helix
packing.

C. How robust is folding to sequence simplification?

Figure 13 shows the quality of structure prediction of the
five proteins using various simplification schemes as com-
pared to the structure prediction performed by simulated
annealing on the full sequence. The exact sequences used

FIG. 10. Plot of the tertiary energy as a function of Q for TakadaN (red
line), TakadaZ (green dashed line), and TakadaE (blue dotted-dashed line).
Standard deviation of the tertiary energy (� Energy) is shown in the top right
corner.
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FIG. 11. Plot of Q versus annealing index of the three Takada sequences (a). Plots of the expectation value of the total energy (b), the fragment memory energy
(c), and the tertiary energy (d). TakadaN is shown in red, Takada Z is shown in green, and TakadaE is shown in blue.

and their corresponding JPRED secondary structure predic-
tions are given in Table II. In all five cases, simplifying
the sequences using only two amino acid types results in
predicted structures with uniformly lower Q values when
compared to the predictions using the full encoding or the
five-letter sequence codes. The simplified sequence using the
five-letter Miyazawa-Jernigan matrix scheme yields struc-
ture predictions comparable in quality to those for the full
sequence in the case of S6 and TakadaE (Figures 13(a)
and 13(b), respectively). TakadaZ is actually better predicted
when its sequence is reduced to five letters (Figure 13(c)).
The quality of structure prediction is slightly reduced when
the sequence is reduced to five-letter level in the case of Top7,
and is significantly reduced in the case of the natural protein
TakadaN (Figures 13(d) and 13(e), respectively).

It is typical for proteins to have ≈40% minimally frus-
trated contacts and 10% highly frustrated contacts (by the
“mutational” measure).7 These statistics are consistent with
the frustration patterns of the full sequence of S6 (41% min-
imally frustrated contacts/13% highly frustrated contacts),
while the full sequence of Top7 yields a structure with larger
fraction of minimally frustrated contacts and fewer highly
frustrated contacts (57% and 6%, respectively) than is normal
for natural proteins; see Table I. The fraction of tertiary in-

teractions that are minimally frustrated remains high and the
fraction of highly frustrated interactions remains low for Top7
and S6 when the five-letter simplified encoding is employed.
The fraction of highly frustrated contacts in Top7 increases
from 5% to 10%, contributing to a decrease in the quality of
predicted structures when its sequences are simplified using
the MJ5 scheme. There is no significant change in the frustra-
tion signals of S6 at the level of MJ5 simplification, which re-
sults in a comparable quality of structure prediction. TakadaE
and TakadaN also show little change in the tertiary frustra-
tion signals when they are reduced to the MJ5 code, whereas
TakadaZ actually has an increase in the fraction of minimally
frustrated contacts.

The local structure frustration can also be important in
determining the quality of structure prediction, as is illus-
trated in the case of TakadaN. The expectation value of the
total energy for its MJ5 simplified sequence has a local mini-
mum along Q around Q = 0.4 and a global minimum at much
higher Q (Figure 14). The origin of this trap can be seen in the
expectation value of the fragment memory energy term, which
has a wide global minimum between Q = 0.25 and Q = 0.4,
indicating the presence of competing non-native secondary
structures. This makes it difficult for the reduced sequence to
fold into the native structure; indeed, only 5/20 fixed-length
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FIG. 12. Plots indicating where the final simulated annealed structures lie
as a function Q and energy for TakadaZ (a), TakadaE (b), and TakadaN (c).
Predicted structures are shown on the right alongside a view of the target
structure that has been rotated in order to highlight the differences. In all
cases, the lowest energy structures (as well as the highest Q structures) cor-
respond to a correctly predicted overall fold; deviations come mostly in the
form of partially formed secondary structures and differences in the details
of helix-helix packing.

simulated annealing simulations were able to reach the cor-
rect overall fold.

IV. DISCUSSION

Our study of Top7 indicates that Top7 has a good thermo-
dynamic design as reflected in the local frustration and cor-
rect structure prediction. Nevertheless, the non-natural topol-
ogy of Top7 by itself leads to multiple intermediates that
are found using a non-additive structure-based model. These
intermediates have folded C-terminal fragments, while the

N-terminal fragment remains disordered. These results are
consistent with previous experimental13, 14 and simulation15

studies.
The role of energetic frustration in the folding of Top7

was also examined by using both “single memory” and frag-
ment memory versions of AWSEM. The average contact en-
ergy in the “single memory” model, and the average fragment
memory, tertiary, and total energies in the fragment mem-
ory model all decrease up to high values of Q. However, we
find in our simulated annealing simulations several non-native
structures that are energetically competitive with the best pre-
dicted structure. Although the average energy appears to be
well funneled in umbrella sampled data, the existence of these
low-energy non-native structures in the simulated anneal-
ing simulations indicates kinetic complications with Top7 in
our model. Furthermore, the predicted non-native structures
are characterized by non-native β strand pairing. Baker and
colleagues10, 12, 13, 23 and Watters et al.14 suggest that canon-
ical nature of four of the five β strands may be conducive
to strand swapping. Also, the middle and slow phases ob-
served in the Chevron plot of Top7 are reported to correspond
to states in which no additional surface area is buried, but
rather structural rearrangements between collapsed states.14

The predicted non-native states of Top7 in our model are con-
sistent with both of these ideas. The Z-score of Top7 accord-
ing to AWSEM looks as though it should be sufficient to ex-
clude possible alternative conformations by chance in the ap-
proximation that the molten globule is largely unstructured.
Nevertheless, the highly regular and symmetric structure of
Top7 apparently allows a small number of discrete competi-
tor states to be significantly populated in solution. The sim-
ulated annealing results of AWSEM suggest these are a few
structures that are competitive at a coarse-grained level that
were not excluded by the elements of heuristic design that
were employed to constrain the optimization of the Top7 se-
quence. These specific competitor structures in the coarse-
grained simulations may have energetic packing issues when
considered in full atomistic detail.

The truncated natural template of Takada’s two designed
sequences, TakadaN, has a funneled energy landscape and
was found to have the highest quality of structure prediction
using AWSEM. Unlike the nicely funneled energy profile for
TakadaN using AWSEM, TakadaE and TakadaZ have com-
plex features in their free energy profiles and there is scattered
clustering of predicted structures from the simulated anneal-
ing runs. TakadaE is slightly better predicted than TakadaZ is,
likely because of its larger energy gap and similar energetic
variance using the fragment memory predictive model.

We have attempted to assess to what extent funneling
and frustration in the energy landscape are changed by sim-
plifying the sequences to five (MJ5) and to only two (BL2)
amino acid types. Simplified sequences using the five-letter
Miyazawa-Jernigan matrix scheme produce predicted struc-
tures with comparable quality to predicted structures using
the full sequences, except in the case of TakadaN, which when
simplified now has an energetic trap at around Q = 0.4 as a
result of competing secondary structures. With the exception
of TakadaZ, predictions of full sequences are of better qual-
ity than their corresponding MJ5 simplified sequence. This
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FIG. 13. Q versus annealing index is plotted with decreasing Q from left to right, summarizing the quality of structure prediction upon simplification of the
sequences: S6 (a), TakadaE (b), Top7 (c), TakadaZ (d), and TakadaN (e). The full sequence is shown in red, the five-letter (MJ5) simplified sequence is shown
in green, and the two-letter (BL2) simplified sequence is shown in blue.

result is consistent with the Frustratometer analysis described
previously.

Simplifying to a two-letter scheme generally gives lower
quality results, as expected from the arguments laid out ear-
lier in this work. These poorer results are partially the result of
the sensitivity of the AWSEM to the input JPRED secondary

structure predictions, which influence both the Ramachan-
dran potential and β hydrogen bonding terms of the AWSEM
potential. JPRED predictions for simplified sequences using
the MJ5 mapping agree for the most part with those of the
full sequences, consistent with the structure prediction results
described previously. With the exceptions of TakadaE and
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FIG. 14. Plots of the expectation value of the total energy (a) and fragment memory energy (b) of TakadaN at different levels of simplification. The full
sequence is shown in red, the five-letter (MJ5) simplification is shown in green, and the two-letter (BL2) simplification is shown in blue.

Top7, the JPRED predictions for simplified sequences using
the BL2 mapping are drastically different from the JPRED
predictions based on the full sequence. Incorrect assignment
of residues, as being β is the most common anomaly, of-
ten resulting in deformed secondary structure in poorly pre-
dicted structures (structures not shown). JPRED predictions
of BL2 simplified sequences for Top7 and TakadaE are no-
tably more similar to those of the full sequence. Many of the
predicted structures of the Top7 BL2 sequence have correctly
formed secondary structure. Nevertheless, incorrect pairing of
β strands is still frequently observed. This is expected as the
energetic heterogeneity of the full sequence that potentially
encodes the specificity of pairing has been completely lost in
simplification.

Our results suggest that a five-letter code may contain
sufficient information for structure prediction of de novo de-
signed sequences but may not be sufficient for natural pro-
teins. TakadaN showed the most dramatic change in predic-
tion quality upon MJ5 simplification, due to local sequence
frustration. It remains unclear how many flavors of amino
acids are required to fold simplified sequences of natural pro-
teins with as much accuracy as their native sequence. In con-
trast to some natural proteins, the three designed proteins ex-
amined in this work can be folded using a smaller number of
amino acid types. Evolution has tuned natural sequences over
millions of years to both fold and function. Though de novo
designed sequences are indeed proving to be intelligently de-
signed, being able to fold into stable structures, they also seem
to be less sensitive to simplification, perhaps implying that
they are relying on less subtle signals than natural proteins.
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