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Developmental programs are driven 
by transcription factors that coordi-

nate precise patterns of gene expression. 
While recent publications have described 
the importance of coordinated action 
of transcriptional activators at multiple 
cis-regulatory modules or enhancers, the 
contribution of sequence-specific repres-
sors to overall regulation and robustness 
of gene expression has been difficult to 
ascertain. The Ets transcriptional repres-
sor Yan functions as part of a conserved 
network downstream of receptor tyrosine 
kinase (RTK) signaling in Drosophila. 
This network displays switch-like 
responsiveness to RTK signaling, with 
the transition from a high-Yan to a low-
Yan state induced by mitogen-activated 
protein kinase (MAPK)-mediated phos-
phorylation and inactivation of Yan. The 
ability of Yan to self-associate through 
a conserved sterile α motif (SAM) is 
essential for Yan’s repressive ability, and 
has been suggested to allow spreading 
of Yan repressive complexes along chro-
matin. Such a mechanism has the poten-
tial to confer both signal responsiveness 
and robustness to the Yan network. 
To explore this spreading model, we 
compared the genome-wide chromatin 
binding profiles of wild-type vs. mono-
meric Yan. Consistent with the start-
ing prediction, we found that wild type 
chromatin occupancy at genes encod-
ing crucial developmental regulators 
and core signaling pathway components 
occurs as clusters of peaks that “spread” 
over multiple kilobases. However mono-
meric Yan, which fails to rescue a yan 
null mutation and displays significantly 
impaired repressive ability, exhibits a 
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broadly similar occupancy profile to that 
of wild-type Yan, with multi-kilobase 
binding at developmentally important 
genes. This unexpected result suggests 
that SAM-mediated self-association 
does not mediate Yan recruitment to 
DNA or chromatin spreading, and raises 
the questions of why developmentally 
important genes require extensive Yan 
chromatin occupancy and how SAM-
mediated polymerization might contrib-
ute to active repressive mechanisms in 
this context. In this Extra View article 
we discuss potential mechanisms by 
which Yan self-association and extended 
chromatin occupancy may contribute to 
robust regulation of gene expression.

Embryonic cells must faithfully execute 
specific developmental programs in the 
face of biological noise arising from sto-
chasticity and environmental variation. 
For example, pattern formation in the 
early Drosophila embryo is driven by gene 
regulatory networks that are robust to both 
intrinsic and extrinsic noise.1-6 The inabil-
ity to maintain robustness to noise will 
lead to aberrant patterning, and poten-
tially, catastrophic failure of development. 
In contrast, other biological networks, for 
example those mediating the response to 
stress, rely on rapid regulatory changes at 
the expense of transcriptional precision.7-9 
Since gene expression is controlled at mul-
tiple levels through regulation of transcrip-
tion, translation and protein stability, it is 
likely that there are built-in mechanisms 
favoring either robustness or stochasticity 
at each of these steps.

As an example of transcription-level 
regulation, which is the topic of this 
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prediction, gene ontology (GO) analysis 
revealed that Yan HDR binding occurs 
primarily at developmentally important 
genes, with significant enrichment of GO 
terms associated with signal transduction 
pathways and tissue specific networks. 
For example, genes associated with the 
GO term “Pattern specification process” 
are predominantly associated with HDRs 
(Fig. 1C). Thus the Yan HDR patterns 
map exactly to the set of genes that one 
predicts would require buffering mecha-
nisms to stabilize and coordinate their 
expression, a possibility that we speculate 
on further below.

A further prediction of our hypothesis 
is that genes bound by single Yan peaks 
should be those affiliated with stochas-
tic processes that require rapid, but not 
precise, regulation. To address this, we 
analyzed Yan binding patterns at genes 
associated with the GO term “cellu-
lar response to stress.” Of the 110 genes 
bound by Yan, 70 display a single-peak 
binding profile (Fig. 1B and C). These 
include factors implicated in the response 
to heat-shock, alcohol and DNA dam-
age32-41 (Fig. 1D). Since these genes must 
be upregulated quickly in response to cel-
lular stress, we predict that stochasticity 
will be favored and that they will have 
greater variability in expression under 
stable conditions than developmentally 
important genes. While 30 of the genes 
within this GO term category are associ-
ated with Yan HDRs, they include known 
regulators of development such as Notch, 
E(spl) and brinker.42

To address whether the Yan HDR 
signature reflects the proposed polymer-
ization and spreading mechanism, we ana-
lyzed the chromatin occupancy patterns of 
Yan monomers.31 Previous work identified 
specific missense mutations within the 
SAM domain that block polymerization 
both in vitro and in Drosophila cells.26-28 
Functionally, Yan monomers retain DNA 
binding capability, but do not repress 
transcription.26,43 To exclude potential 
artifacts associated with cDNA overex-
pression, we recombineered the V105R 
SAM domain missense mutation into the 
yan genomic locus and then crossed this 
transgene, which we refer to as mono-
meric Yan, into a yan null background. 
Careful controls confirmed the absence 

Pointed (Pnt) to drive specific cell fate 
transitions. The fidelity with which this 
system operates is perhaps best illustrated 
in the context of recruitment of photore-
ceptor fates in each of the ~800 omma-
tidia of a compound eye, a process that 
relies on the Yan-Pnt switch, and occurs 
with > 99% accuracy.25 To achieve this 
level of precision, we hypothesize that the 
Yan network must include mechanisms to 
buffer gene expression against noise that 
might otherwise induce inappropriate 
switching between states and consequent 
cell fate specification defects.

Over a decade ago, a potential mecha-
nism was proposed to account for both 
robustness and signaling responsiveness of 
the Yan-Pnt switch, based on the ability 
of Yan to form helical polymers through 
homotypic sterile α motif (SAM) inter-
actions.26-28 According to this model, 
Yan would be recruited to cis-regulatory 
enhancers with high-affinity GGA(A/T) 
ETS consensus binding sequences.29,30 
Polymerization of Yan through its SAM 
domain would allow repressive complexes 
to spread along chromatin to occupy 
flanking regions that carry lower affinity 
binding sites. Functionally, spreading of 
Yan polymeric repression complexes would 
stabilize the inactive state of the network 
to prevent inappropriate induction of tar-
get gene expression in response to intrinsic 
fluctuations in MAPK signaling. By regu-
lating the extent of polymerization across 
a particular locus, a cell might be able to 
set different thresholds of RTK signaling 
responsiveness at distinct target genes.

To explore these ideas, we examined 
occupancy patterns of endogenous wild 
type Yan in stage 11 embryos from both 
D. melanogaster and D. Virilis, two spe-
cies that diverged > 60 million years 
ago.31 Suggestive of Yan spreading along 
chromatin, we found that at ~25% of its 
putative target genes, Yan binding occurs 
as clusters of densely packed peaks span-
ning multiple kilobases. We refer to these 
as high-density regions (HDRs). The high 
degree of conservation of HDR-type Yan 
bound regions between D. melanogaster 
and D. virilis suggests they are important 
to gene regulation (Fig. 1A). Further, 
genes requiring conserved and complex 
regulation are themselves likely to be criti-
cal for development. Consistent with this 

article, recent studies of dorso-ventral 
embryonic patterning have revealed the 
role of auxiliary, or “shadow” enhancers, 
in conferring robustness. These auxiliary 
enhancers are intrinsically capable of driv-
ing gene expression in a pattern similar to 
that of the primary enhancer.10-13 Deletion 
of a shadow enhancer does not alter 
expression or fitness under optimal condi-
tions, but compromises the ability of the 
system to buffer against noise. For exam-
ple, a shadow enhancer identified down-
stream of the snail gene drives expression 
in a pattern broadly overlapping that 
of a previously characterized primary 
enhancer.11 Removal of either enhancer 
has no discernible phenotype in other-
wise optimal conditions, but results in 
more variable snail expression upon either 
raising embryos at elevated temperature 
or reducing the genetic dose of dorsal, a 
critical activator of snail. Thus regulation 
through these two semi-redundant ele-
ments buffers snail expression against both 
environmental and genetic perturbation. 
Although our understanding of auxiliary 
enhancers is presently limited to these few 
examples,10-13 their initial characterization 
underscores the importance of regulatory 
precision to developmental programs and 
suggests complex interactions between 
multiple cis-regulatory regions could pro-
vide diverse and widespread mechanisms 
for buffering gene expression. Here we 
present a speculative discussion of how 
regulation by the Drosophila ETS family 
transcriptional repressor Yan may confer 
robustness both at the level of individual 
gene expression and across developmental 
signaling networks.

Yan functions as part of a conserved 
network downstream of receptor tyro-
sine kinase (RTK) signaling to regulate 
gene expression programs that direct the 
differentiation of a variety of tissues and 
organs.14-22 The network displays switch-
like behavior, transitioning from a high 
Yan to a low Yan state in response to RTK 
activation.23,24 In the initial “inactive” 
state, high Yan levels repress target gene 
expression to hold cells in an uncommit-
ted progenitor state. Rapid degradation 
of Yan following RTK signaling switches 
the network to a low Yan “active” state in 
which expression of previously repressed 
genes can be turned on by the activator 
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pathway genes, suggest contributions to 
gene expression regulation. Our broad 
hypothesis is that these patterns reflect a 
mechanism for maintaining the robust-
ness of gene expression regulation in 
dynamic systems of elaborate spatial and 
temporal complexity.

The prevailing model of the Yan net-
work is that Yan and Pnt compete for 
binding to ETS motifs to either repress 
or activate target gene expression, respec-
tively. Genetic and biochemical analyses 
of known Yan/Pnt targets such as argos, 
eve, mae and prospero, are consistent with 
such a model.14,23,26,49-51 As part of the vali-
dation process for our Yan ChIP data, we 
expanded this set by showing that 16/18 
Yan bound regions cloned from both 
HDR and single peak target genes can be 
activated by Pnt and repressed by Yan in 
cultured cell reporter assays.31 For genes 

on these results, we propose that SAM-
mediated polymerization is essential for 
active Yan-mediated repression, but not 
via a spreading mechanism. As analogous 
SAM-mediated polymerization-spreading 
models have been proposed to provide a 
mechanism of long-range repression for 
several other transcriptional regulators, 
most notably the polycomb repressor pro-
teins,28,45-48 our unexpected results with 
Yan emphasize the importance of explic-
itly testing this widely accepted model.

If Yan’s HDR binding profile does not 
reflect a polymerization-mediated mecha-
nism of spreading along chromatin, then 
what might be the functional significance? 
Both the high degree of conservation of 
these patterns at specific genes between D. 
melanogaster and D. virilis and the preva-
lence of Yan HDR binding across key 
developmental regulators and signaling 

of maternally provided wild-type Yan in 
stage 11 yan null embryos, ensuring that 
all ChIP signal in this experiment derived 
from the YanV105R monomer.

In contrast to our starting predic-
tion, we observed similar genome-wide 
occupancy patterns for wild-type and 
monomeric Yan, including prevalent 
HDR type binding. This suggests that 
SAM-mediated polymerization is not the 
primary determinant of Yan chromatin 
occupancy and argues against the polym-
erization-spreading model. Although 
Yan monomers can be recruited across 
multi-kb stretches of DNA, this appears 
insufficient to support transcriptional 
repression as the YanV105R transgene failed 
to rescue the yan null. Thus, the major-
ity of yan;YanV105R animals die with the 
“anterior open” cuticular phenotype char-
acteristic of yan null embryos.44 Based 

Figure 1. The complexity of Yan chromatin association patterns correlates with the predicted requirement for either stable or variable target gene 
expression. (A and B) Examples of conserved HDR (A) and single peak occupancy (B) patterns of wild-type Yan in D. melanogaster and D. virilis at the 
patched and Hsromega loci. ChIP-seq data are shown as smoothed tag density with a scale of number of reads per million. Gene structures shown 
below the ChIP patterns depict the plus strand with genomic coordinates indicated below. (C) Developmentally important genes and signaling fac-
tors, for example those associated with the GO term “pattern specification process”, are predominantly associated with high-density Yan binding or 
multiple peaks, while genes associated with the GO term “cellular response to stress” are predominantly associated with single isolated peaks. Yan 
binding at 271 “pattern specification process” genes and 110 “cellular response to stress” genes is summarized in the pie charts as percentage of genes 
bound with a single peak (blue), multiple peaks (green) or associated with an HDR (red). (D) Yan putative single-peak targets include genes involved in 
cell death pathways and genes upregulated in response to either heat-shock or DNA-damage.
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HDR environment. The end result of 
such combinatorial regulation would be 
to set different thresholds of sensitivity 
to RTK signaling, with perhaps a graded 
response to different levels of MAPK acti-
vation depending on the extent of Yan 
binding. Such a system might not only 
confer differential sensitivity to levels of 
pathway activation, but might also be able 
to distinguish between the duration of a 
MAPK signal. Thus, disassembly of Yan 
complexes across an HDR might require 
prolonged signaling whereas single-peak 
genes might respond to a short burst of 
RTK signal. Either scenario would effec-
tively stabilize the expression of genes with 
extensive Yan occupancy signals against 
random fluctuations in MAPK signaling 
(Fig. 2B).

The importance of 3D-chromatin con-
formation to regulation of gene expression 
suggests another potential mechanism 
by which Yan occupancy across HDRs 
might stabilize repressive complexes 
across a locus (Fig. 2C). In this model, 
Yan polymers might directly promote or 
stabilize chromatin conformations that 
restrict access of other transcription fac-
tors and/or the basal transcriptional 
machinery. If true, then essential chroma-
tin contacts that occur in wild type ani-
mals between Yan-bound regions should 
be destabilized in the YanV105R monomeric 
background. Alternatively, Yan might not 
directly influence chromatin conforma-
tion or contacts, but might exploit the 3D 
environment to assemble repressive com-
plexes that bridge linearly noncontiguous 
regulatory elements. Such 3D contacts 
could explain in part the multi-kb Yan 
HDR patterns we observe in our ChIP 
data sets. Thus, recruitment of Yan across 
an HDR could involve a combination of 
direct binding to clusters of ETS motifs 
in a cis-regulatory enhancer and indirect 
interactions with complexes brought into 
close proximity through the 3D chroma-
tin environment. If correct, then if tested 
in isolation, only a subset of Yan-bound 
elements within an HDR should be suf-
ficient to recruit Yan. Further, targeted 
genomic deletions of directly bound 
regions should disrupt long-range coop-
erative interactions and destabilize Yan 
occupancy across the entire HDR. In all 
scenarios, Yan repressive complexes within 

three factors Kr, Ubx and Dll with the most 
prominent HDR patterns, the extent of 
high-density binding, in terms of both the 
average length of the region occupied and 
the extent to which signaling pathway com-
ponents were bound, was less than for Yan. 
Finally, recent work from several other labs 
has confirmed that regulatory complexity 
can occur within single cells or tissues.52,53 
Thus, although we expect that a modest 
fraction of Yan’s occupancy patterns reflect 
binding to tissue-specific enhancers, for 
the purpose of the remaining discussion we 
accept as a reasonable assumption that the 
full complexity of the Yan HDR profile at 
a given locus could influence its expression 
in an individual cell.

Considering that transcription fac-
tor occupancy and regulation of gene 
expression is determined by a complex 
combination of protein concentration, 
DNA-binding affinity, chromatin struc-
ture and the dynamics of transcriptional 
complex assembly/disassembly, what types 
of regulatory contributions to gene expres-
sion could be conferred by extensive occu-
pancy of the Yan repressor across a locus? 
One possibility is that the primary role of 
Yan HDR-type binding is to maintain a 
high local Yan concentration to increase 
the probability of assembling active 
repressive complexes at the critical cis-
regulatory elements. In this scenario, the 
ability to recruit or stabilize active repres-
sive complexes from the neutral repository 
of HDR-bound Yan would require SAM-
mediated self-association (Fig. 2A). HDR 
binding could both maintain the stability 
of the inactive state of the Yan-Pnt switch 
under optimal conditions and also provide 
a buffering mechanism against conditions 
that limit Yan availability. A testable pre-
diction is that in a yan heterozygote, the 
expression of HDR category target genes 
should be essentially identical to wild type 
whereas expression of target genes bound 
by single Yan peaks should increase and 
become more variable.

Alternatively, it is possible that Yan 
bound peaks across an HDR define dis-
crete cis-regulatory elements that contrib-
ute to repression in an additive manner. 
These elements could include both bona 
fide shadow enhancers and elements 
essential for repression that lack autono-
mous regulatory capacity outside the 

regulated by standard Yan-Pnt switch like 
behavior, Yan HDR binding might sta-
bilize the inactive state and prevent the 
switch from being flipped before a criti-
cal RTK signaling threshold was reached, 
thereby limiting transcriptional noise. 
In contrast, expression of genes at which 
Yan occupancy is limited to an individual 
binding site or element might be more 
prone to variation due to intrinsic fluc-
tuation in MAPK activation or environ-
mental stress. As currently there are no 
available ChIP data for Pnt, we do not yet 
know whether switch-like Yan-Pnt com-
petition occurs across an entire HDR or 
at only a small subset of Yan-bound ele-
ments. Further, some Yan-bound genes 
may not use the Yan-Pnt switch at all, 
but may still rely on extensive Yan occu-
pancy to buffer their expression. Below 
we present a series of models to consider 
how Yan might confer such regulation. 
Although the ideas are entirely specula-
tive at this point, we hope they may pro-
vide an interesting framework for future 
investigations.

Given that we used chromatin derived 
from whole embryos for the Yan ChIP 
analysis,31 the HDR patterns may simply 
reflect the composite of enormous regula-
tory diversity across different cell types 
rather than regulatory complexity within 
individual cells. In other words, the spa-
tial and temporal complexity in expression 
typical of developmental regulators and 
signaling factors might require extraordi-
nary cell-to-cell heterogeneity in Yan occu-
pancy at discrete cis-regulatory enhancers. 
While it will take single cell analysis to 
rule out this possibility, such a model pre-
dicts that we would observe very different 
ChIP profiles at different developmental 
stages. However, we found extensive over-
lap between Yan HDR patterns at stage 
5–7 and stage 11, two developmental time 
points with diverse cell populations and 
gene expression profiles. A second predic-
tion is that the majority of transcription 
factors that participate in developmental 
regulation should have similarly complex 
chromatin occupancy profiles. However 
meta-analysis of chromatin occupancy 
patterns of modEncode transcription fac-
tors revealed that most display a much 
lower extent of HDR type binding than 
we observed for Yan. Indeed, even for the 
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the complex 3D topology of an HDR 
would be protected from MAPK access, 
thus conferring robustness to intrinsic 
fluctuations in MAPK activation.

As chromatin conformation capture 
techniques have provided evidence of 
chromatin loops bringing otherwise dis-
tant genes into close proximity,54,55 Yan-
mediated regulatory interactions could 
exist across multiple genes in a 3D envi-
ronment. Very speculatively, this might 
coordinate expression levels across entire 
pathways or networks. A prime example 
of extensive Yan HDR occupancy across 
a group of functionally interconnected 
genes is seen in the retinal determina-
tion (RD) gene network. The RD net-
work is comprised of a conserved group 
of transcription factors that collaborate 
with other signaling pathways and tissue-
specific networks to direct many aspects 
of eye development.56,57 Two core RD 
genes, eyes absent (eya) and sine oculis 
(so) were recently identified as Yan tar-
gets58 (Fig. 3A and B) and our ChIP data 
suggest an even broader involvement of 
Yan-mediated regulation within the RD 
network, with binding to eyeless (ey), eya, 
so, dachshund (dac), optix, teashirt (tsh), 
homothorax, nemo and distal antenna 
related (danr) (Fig. 3C).31 Given the 
extensive feedback interactions that occur 
within this and most other signaling net-
works, inappropriate fluctuations in gene 
expression might be quickly amplified, 
compromising output. Noise buffering 
mechanisms would be critical to prevent 

Figure 2. Robustness through Yan HDR binding. Orange circles depict Yan while the cis-regulatory elements to which it binds are drawn as black 
rectangles on the DNA (black lines). As such elements generally contain clusters of ETS binding sites, each orange circle may represent multiple Yan 
molecules. (A) Binding of Yan across cis-regulatory elements comprising an HDR would maintain a locally high Yan concentration even if Yan levels in 
the cell are low. This would stabilize target gene repression over a wide range of Yan concentrations, and ensure a sharp switch-like off/on response 
when Yan concentration crossed the critical threshold. In contrast, Yan binding at a single element would be more prone to dissociation, with stable 
Yan occupancy only achieved at high Yan concentration. Such fluctuations in Yan occupancy would result in variable target gene expression at low 
Yan concentration (gray shading). (B) Extensive Yan binding across an HDR might protect against premature dissociation of Yan polymers in response 
to sub-threshold RTK signaling or intrinsic fluctuations in MAPK activation. Sustained and/or strong pathway activation would be required for coop-
erative removal of Yan from all elements and to activate gene expression. In contrast, Yan repressive complexes assembled at only a single element 
would be prone to dissociation in response to intrinsic MAPK fluctuation, leading to more variable gene expression (depicted by gray shading). (C) The 
3D chromatin environment could contribute to the establishment and/or function of multi-kb HDR patterns. To illustrate this, a Yan high-density ChIP 
signature at an arbitrary locus is shown. The 5 ChIP peaks that define the HDR are labeled as 1–5. In the first scenario (left-most diagram, Direct bind-
ing and looping), all ChIP peaks in the sample HDR are directly bound by Yan. SAM-mediated interactions could either directly influence or indirectly 
exploit the 3D environment to assemble repressive complexes between elements 1–4 that interact in nonlinear space. Alternatively (right-most dia-
gram, Indirect binding and looping), Yan occupancy across an HDR could involve direct binding of Yan to only a subset of sites (1, 3 and 5 for example), 
with the ChIP signal at sites 2 and 4 coming about as an indirect consequence of the 3D environment that places those chromatin regions in close 
proximity to regions 1 and 3. Such indirect binding could be stabilized by Yan self-association and/or additional protein-protein interactions.
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