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Abstract
Phenotypic variability is present even when genetic and environmental differences between cells
are reduced to the greatest possible extent. For example, genetically identical bacteria display
differing levels of resistance to antibiotics, clonal yeast populations demonstrate morphological
and growth-rate heterogeneity, and mouse blastomeres from the same embryo have stochastic
differences in gene expression. However, the distributions of phenotypes present among isogenic
organisms are often overlooked; instead, many studies focus on population aggregates such as the
mean. The details of these distributions are relevant to major questions in diverse fields, including
the evolution of antimicrobial-drug and chemotherapy resistance. We review emerging
experimental and statistical techniques that allow rigorous analysis of phenotypic variability and
thereby may lead to advances across the biological sciences.

Introduction
Although biologists are accustomed to thinking about the phenotypic variation that results
from genetic or environmental diversity, even genetically identical individuals raised in
nominally identical environments can display heterogeneity. We refer to this residual
variation as “phenotypic variability.” Phenotypic variability among clonal cells can be an
advantageous and even necessary feature of biological systems [1, 2]. For example, tri-
chromatic vision, as found in humans, depends upon stochastic processes that underlie the
photoreceptor choice of individual cone cells [3]. On the other hand, phenotypic variability
can be highly undesirable and even buffered during development [4]; for example, numerous
polymorphisms interact to promote invariant heart formation [5]. Mechanisms that buffer
phenotypic variability may degrade with age, as evidenced by several studies that find
phenotypic variability correlates with age in mice [6], yeast [7], rats and humans [8].
Phenotypic variability is also relevant to drug resistance. In microorganisms, noisy gene
expression creates heterogeneous growth strategies within clonal populations that allow
some cells to survive antibiotic treatment [9]. Growth heterogeneity also contributes to
chemioresistance in tumors [10]; a recent study identified an epigenetic basis for growth
heterogeneity that allows some cancer cells to survive chemotherapy [11]. Understanding
the causes of phenotypic variability could reveal treatment strategies that minimize drug
resistance [12] or could elucidate the genetic bases of congenital diseases (like heart
disease).
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Despite tremendous potential gain from an improved understanding of phenotypic
variability, few research programs focus on variance, while studies of trait averages abound.
Consequently, important phenomena go unstudied. As Islam et al. (2012) captured with a
pithy analogy: “… analyzing gene expression in a tissue sample is a lot like measuring the
average personal income throughout Europe—many interesting and important phenomena
are simply invisible at the aggregate level [13].” Even when phenotypic measurements have
been meticulously obtained from single cells or individual organisms, countless studies
ignore the rich information in these distributions, studying the averages alone.

As a result, the mechanistic basis of phenotypic variability is only beginning to be
understood. Phenotypic variability may result from environmental differences that are
difficult to measure, such as unevenness in nutrient concentrations or unequal numbers of
adjacent cells [14–16]. Alternatively, phenotypic variability may result from stochastic
differences in gene expression that stem from the non-deterministic nature of molecular
kinetics [17, 18]. Such differences can propagate; for example, a difference in the
concentration of a single transcription factor can lead to different levels of transcription for
many downstream genes [19]. Therefore, phenotypic variability is present at many levels of
biological organization (Fig 1).

Understanding the causes of phenotypic variability will not only inform medical questions,
but is also important to evolutionary biology, the agricultural industry and other branches of
biological science. Recent evolutionary studies suggest that phenotypic variability may
allow rapid adaptation to new conditions [20], or may represent a bet-hedging strategy that
enhances fitness in fluctuating environments [7, 21]. Theoretical studies also suggest that
phenotypic variability can be adaptive [22–26]. A critical challenge for evolutionary
biologists is to understand how often phenotypic variability influences evolutionary
trajectories [27]. In agriculture, variability is largely a nuisance, as uniformity in crop size,
shape and ripeness increase harvesting efficiency and overall crop yield. However, selection
for uniformity has its downside, as exemplified by the unfortunate loss of flavor in most
supermarket tomatoes [28], not to mention the risks of monoculture [29]. Further work is
needed to understand and ultimately control the degree of variability in crop production, as
well as in industrial-production cell cultures [16].

In order to encourage greater attention to variability phenotypes, we discuss emerging
experimental and statistical methods that allow rigorous study of phenotypic distributions.
We then conclude by discussing the major open questions and the opportunities to make
advances of intellectual and practical importance.

Experimental methods for studying phenotypic variability
The study of phenotypic variability presents three unique experimental challenges. Firstly, it
requires measurements from single cells or individual organisms rather than measurements
of population averages. This precludes many standard techniques from being used to
quantify phenotypic variability, such as growth-rate measurements that rely on increases in
cell density over time, or gene-expression measurements from bulk culture, as measured by
microarrays or RNA-seq. Secondly, larger numbers of observations are required to
accurately estimate phenotypic variability because the sampling error on variance is greater
than on mean [30]. Thirdly, it requires an experimental design that enables separation of
multiple factors that can affect phenotypic variation (e.g. measurement error and
environmental differences) (Fig 2). We describe three methodologies – flow cytometry,
high-content imaging, and single-cell RNA sequencing – that address the above challenges.

Flow cytometry allows large-scale measurements (millions of cells) of single-cell
phenotypes making it an ideal technique to study phenotypic variability. Flow cytometry is
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often used to study phenotypic variability within tumors [31]; for example, recent
flowcytometry experiments demonstrated that initially homogeneous breast cancer [32] as
well as melanoma [10] tumors become heterogeneous as cells switch between different
functional states. Several recent experiments used flow cytometry to survey expressionlevel
variability in yeast. Two revealed higher than expected expression-level variability for
stress-responsive proteins, suggesting a diverse response to stress maximizes survival in
harsh or unpredictable environments [33, 34]. Another experiment identified naturally
occurring polymorphisms that affect expression-level variability [35]. Still another used
flow-cytometry data from a previous study [36] to identify gene deletions that affect
expression-level variability in yeast [37] (Table 1). In all four studies, the experimental
design incorporated replicates or controls in order to separate variability differences caused
by genetic perturbation from technical variation among experiments.

Although flow cytometry almost always reports data on single cells, thus providing
information about variance, many researchers ignore these data, opting instead to focus on
means or on proportions of cells surpassing an arbitrary threshold for whatever trait is being
measured. The overlooked, but information-rich, data from previous studies can be used to
answer questions about phenotypic variability without ever picking up a pipette [37].

High-content imaging (HCI) is another technique that overcomes the aforementioned three
challenges associated with the study of phenotypic variability. It presents an advantage over
flow cytometry in that it allows observation of more diverse phenotypes, including: 1)
subcellular protein localization and cell morphology in fixed cells (reviewed in [38]), 2)
protein translocation and dynamic gene expression in live cells (reviewed in [39]), and 3)
single-organism phenotypes like behavior in C. elegans and leaf shape in A. thaliana
(reviewed in [40]). Another advantage of HCI is that it allows many phenotypes to be
measured simultaneously, and a growing number of opensource software projects automate
analysis of the resulting data-rich image files (reviewed in [41]). Although HCI provides
single-cell, high-throughput data that are ideal for studying phenotypic variation, most
studies do not analyze phenotypic distributions, and instead focus on measures of central
tendency (e.g., means). Our recent study revisited these distributions, using previously
collected HCI data [42] to identify candidate genes that buffer morphological variability
within genetically identical yeast populations, then validating these candidates by collecting
additional HCI data [43].

Relatively few other HCI studies have focused on variability phenotypes. In a landmark
study in E. coli researchers designed a now widely used [33, 36,37] dual reporter system that
quantifies stochastic expression-level variability [44]. Recent work in C. elegans used HCI
to count individual mRNA molecules in intestinal precursor cells, demonstrating that
stochastic gene expression variability underlies incomplete penetrance of a mutant
phenotype [45]. We recently used HCI to study variation in single-cell growth-rate in yeast,
revealing a correlation between slow growth and survival of acute stress [7] (Table 1).
Another recent HCI experiment quantified the responses of singlecells to a signaling
molecule, revealing variability in binary phenotypes (whether to activate the transcription
factor NF-κΒ) and continuous phenotypes (activation time) [46]. HCI studies in human cells
have shown that stochastic differences in gene expression underlie variability in apoptosis
rates [47], proliferation rates [10], and drug survival [48], whereas a deterministic response
to micro-environmental differences affects virus susceptibility [14]. Given its wide range of
measureable phenotypes, HCI has the potential to provide broad insights about phenotypic
variability.

Single-cell RNA-seq is an emerging technology that is poised to yield insights about
expression-level variability between genetically identical cells, but that currently is not high-
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throughput. It is limited (by cost and time) to analysis of ~100–200 single cells per
experiment [13, 49]. Additionally, single-cell RNA-seq can only reliably quantify
expression of medium- to high-abundance transcripts [50]. Despite these limitations, a few
studies have used single-cell RNA-seq to answer questions about phenotypic variability.
One such study developed a kinetic model of transcription that explains stochastic
differences in gene expression [50] among mouse embryonic stem cells (single-cell RNA-
seq data from [51]) (Table 1). Another study found that individual blastomeres from the
same early mouse embryo have stochastic, allele-specific expression differences for 6% of
heterozygous genes [52]. Rapidly advancing sequencing technology may soon overcome the
limitations of single-cell RNA-seq to allow a new wave of genome-wide studies focused on
expression variability at the RNA level.

The aforementioned technologies — flow cytometry, HCI, and single-cell RNA-seq — are
primarily used to study phenotypes in single cells. Study of phenotypic variability in larger
multicellular animals and plants may be enabled by agricultural data [15, 53]. The
agriculture industry performs many phenotypic measurements of individual organisms, uses
large sample sizes, and has increasingly turned to monoculture, thus minimizing genetic
sources of variation. Nevertheless, these data remain largely unexploited by variability
studies.

Statistical methods for studying phenotypic variability
Experiments that quantify phenotypic variability will produce distributions representing the
phenotypes of hundreds to millions of single cells or organisms. Analyzing these
distributions is challenging because they are influenced by multiple factors. For example,
expression-level variability depends on stochastic processes, cell size, and mRNA
abundance [33]. A clever experimental design can facilitate separation of these factors
during downstream statistical analysis, for example, by simultaneously measuring single-cell
expression level, size, and mRNA abundance, as well as the technical variation unique to the
experimental methodology. Statistical modeling allows estimation of the relative
contribution from each factor to the observed phenotypic distribution. However, classic
statistical models make many assumptions, including that the variance is normally
distributed, equal across all samples, and independent of the mean [54]. We first discuss
how paying attention to these often-violated assumptions can provide insight about
phenotypic variability, and then discuss how this guides selection of a statistical model.

The shape of a phenotypic distribution depends strongly on the phenotype of interest, and
can provide clues about the mechanistic underpinnings of phenotypic variability. For
example, our recent imaging study found that the distribution of growth rates among
genetically identical yeast microcolonies is strongly left-tailed; this prompted experiments
revealing a subpopulation of slow-growing cells that over-express a stress tolerance protein,
TSL1, and that have enhanced survival of high heat [7]. Although consideration of a
distribution’s shape can yield valuable insights, sometimes a transformation such as taking
the logarithm [53, 55] or the more general Box-Cox power transformation [43, 56] can make
data sufficiently approximate a normal distribution. This could allow analysis via a more
common or more powerful statistical model than would be possible for non-normally
distributed data. Such transformations should be applied with caution, as they may change
the scale of the resulting data [54, 57], or may be inappropriate if the data are known to
follow a particular non-normal distribution, as is the case for count data (e.g., RNA-seq) [50,
58].

Another property of biological data that may provide insight about phenotypic variability is
the presence of unequal variances among samples (heteroscedasticity). The common view
that heteroscedasticity is simply an obstacle to overcome completely misses the main point
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of this review: that differences in variance between groups may be the most interesting
aspect of a dataset [59]. Indeed, screens for genes that modulate phenotypic variability
explicitly search for significant differences in variance between populations, for example,
between different single-gene knockout strains [43]. To test for unequal variance, previous
phenotypic variability studies have used Levene’s test [60, 61], Bartlett’s test [55] or the
Fligner-Killeen test [62]. These tests look for variance differences between discrete,
researcher-defined groups yet ignore continuous covariates like age or measurement timing
that create differences within groups; this may reduce the power of these tests [30].
Alternate approaches to model heteroscedasticity are discussed below.

A special case of heteroscedasticity occurs when variance depends upon the mean. Mean-
variance relationships, although potentially informative, can be problematic for studies of
phenotypic variability because the effect of interest (variance) is confounded by another
effect (mean). Mean-variance relationships might also be a symptom of improper
transformation [30, 56]. A favored way to deal with mean-variance relationships (and with
heteroscedasticity in general) is to extract variances that are independent of the mean and to
model these separately. This extraction can be done by using non-linear regression of
standard deviation on mean to estimate the mean-variance relationship, and then using the
residuals from such a regression as mean-corrected measures of variation [30, 37,43,53].
The first step in this approach, plotting standard deviation versus mean, is a very useful
diagnostic for whether and how variation depends on mean, and it should be standard
procedure in all studies of phenotypic variability. Simple linear corrections for mean-
variance dependence, such as the coefficient of variation (CV, standard deviation divided by
mean), are occasionally used without first assessing whether such a correction makes any
sense, and indeed biological traits often show unpredicted, non-linear mean-variance
relationships [43]. Such non-trivial dependencies might be informative, perhaps suggesting a
mechanistic link between the molecular machineries that affect mean and variance, but at
the very least they must be taken into consideration in analyses of variation.

Many sources of variation contribute to phenotypic distributions. These sources are often
mixed, which means some are “fixed” effects whereas others are “random” effects. Fixed
effects take values that are repeatable and of inherent interest (e.g., genotype), whereas
random effects take values that are sampled from a potentially infinite set (e.g. measurement
error). Two commonly used statistical approaches to separate mixed effects that contribute
to trait variation are analysis of variance (ANOVA), which works best with balanced
experimental designs, and linear mixed modeling (LMM), which is more flexible and can
handle unequal sample sizes in both nested and crossed (Fig 2) experimental designs [54,
57]. The lme4 package in R provides a free, open-source implementation of LMM [63].
LMM- and ANOVA-based methods can yield biased results when applied to data derived
from non-normal distributions [30]. An extension of LMM, Generalized linear mixed
modeling (GLMM) accommodates nonnormal distributions and is implemented in R
through the lme4 package [54]. However, GLMM has some drawbacks [57] that can be
avoided if a log or Box-Cox transformation makes data approximate a normal distribution
allowing analysis via LMM.

These methods model trait averages and can be extended to model trait variability. One such
extension is to apply LMM or GLMM to model sample means and then to model the
residuals from the first model as a measure of variance as described above. One drawback of
this two-step approach is that mean effects are estimated assuming equal variances because
heteroscedasticity is not modeled until step two, which may bias estimates [30, 53]. An
alternate approach, Double Generalized Linear Modeling (DGLM), iteratively estimates
sample means and residuals until estimates converge [56, 64]. Although estimates do not
always converge [53, 65], DGLM has been successfully used to detect polymorphisms that
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contribute to phenotypic variability [56, 65]. For large, balanced, normally distributed
datasets, two-step models and DGLM perform with similar power and false-positive rates on
simulated data [30]. A well-documented extension of DGLM that allows mixed modeling is
implemented in the hglm package in R [66].

Conclusion
Previous studies of genetically identical individuals have provided the first clues about the
phenotypic variability present in nature, illuminating cases where it is influenced by a
genetic component, and assessing – for particular phenotypes – which genes have the
greatest effect on variance. Three fundamental questions about phenotypic variability should
be the focus of current research efforts:

1) How many genes modulate phenotypic variability?
Comprehensive studies have found that disruption of almost any gene in S. cerevisiae 67]
and C. elegans 68] reduces average fitness (population growth rate) in at least one condition.
Yet these studies are unable to determine which genes influence variance in fitness because,
like most growth assays, they measure the average fitnesses of bulk cultures [69]. Very few
genome-wide studies have sought to identify genes that modulate fitness variability. Our
recent study developed new tools to quantify growth-rate variability among thousands of
yeast microcolonies and identified mutations that alter the extent of microcolony growth-rate
variation [7]. Only three genome-wide screens have identified genes or genomic regions that
modulate variability in other phenotypes including gene expression (yeast) [37], morphology
(yeast) [43] and sensory bristle traits (Drosophila) [70]. The results from these studies
suggest that genes contributing to phenotypic variability are common, with hundreds of
genes identified in the two yeast studies, and 28 genomic regions (on average encompassing
~40 genes each) identified in the Drosophila study. Identifying genes that influence
variability is a first step toward controlling the degree of variability in agricultural
populations, cell-production cultures, and even among tumor cells.

2) How common is natural genetic variation that modifies phenotypic variability, and is
such variation adaptive?

Countless screens have identified polymorphisms that alter the mean values of fitness-
related traits ranging from flowering time in plants to disease susceptibility in humans. Yet
only a few studies have identified polymorphisms that alter the variances of such traits [35,
55,56,60,62,65,71–74]; many of these identified polymorphisms affect trait variance while
also altering trait mean, which might imply that mean and variance effects are confounded.
More studies are needed to illuminate the prevalence and adaptive values of polymorphisms
affecting trait variability in nature.

3) What is the mechanistic basis of phenotypic variability?
The mechanistic basis of most phenotypic variability present in nature is not understood,
with a few exceptions. Differences in gene expression can arise from asymmetric cell
division, as in the bacteria Sinorhizobium meliloti 75] and Mycobacterium 76], and from
chromatin-mediated switching in lung cancer cells [11]. Stochastic differences in gene
expression can be transiently heritable [47] and are sometimes reinforced by dedicated
regulatory circuits (reviewed in [2]). Genome-wide studies suggest that stochastic gene
expression is common [33, 34]. Other studies suggest that stochastic gene expression may
drive the evolution of mechanisms that buffer its phenotypic effects [45]; a breakdown of
this buffering can reveal mutant phenotypes [45] and may underlie many human diseases
[4]. Some mechanisms that buffer or otherwise modulate phenotypic variability may do so
for multiple phenotypes at once. For example, impairment of a protein chaperone increases
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variability for many leaf and root phenotypes within inbred A.thaliana lines [20] and
deletions of particular genes, including some encoding chromatin regulators, increase
variability of many morphological phenotypes within clonal yeast populations [43]. How
variability at different levels (i.e. variability in chaperone levels, chromatin structure,
transcript abundance) interacts to manifest in higher-order phenotypes is not well
understood.

Many questions remain, but the experimental and statistical tools are now available to
facilitate rigorous analysis of phenotypic variability. Such analyses promise to reveal
ecologically, evolutionarily and physiologically important phenomena that had been
obscured in the aggregate. The practical benefits of understanding phenotypic variability
could be great. For example, a study using flow cytometry showed that maximum antibody
fragment production in E. coli industrial cultures occurs not when total biomass is at its
maximum value, but when the subpopulation of metabolically active cells is greatest [77].
Understanding the range of phenotypes present within cell populations also has practical
medical applications. For example, in a tumor or a population of pathogenic bacteria, it
might be possible to develop drugs that attack various population subsets rather than
targeting the population average. An alternative approach might be to target a gene or
protein that promotes variability, and then to treat the population with an anti-cancer drug or
antibiotic effective against the cell type that dominates the resulting, more-uniform
population. The ability to modify phenotypic heterogeneity remains to be realized, but
existing evidence suggests it is a worthy — and attainable — goal.
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Highlights

• Variation exists within genetically identical populations raised in nominally
identical environments

• This variation, called “phenotypic variability,” is relevant in medicine and
agriculture

• The frequency, adaptive value and mechanistic basis of phenotypic variability in
nature are unknown.

• New experimental and statistical methods allow rigorous analysis of phenotypic
variability.
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Figure 1.
Phenotypic variability is present at many levels of biological organization. (A) A within-cell
difference in abundance between two fluorescent proteins expressed by the same promoter.
This difference is not deterministic as different cells have different relative levels of each
fluoresecent protein; reproduced with permission from [44]. (B) A between-cell difference
in JARID1B expression gives some melanoma cells larger, rounder nuclei and slower
doubling times than others from the same cell line; reproduced with permission from [10].
(C) A difference within structured, clonal populations of HeLa cells. Those at the islet edges
(greener) are more susceptible to dengue virus; reproduced with permission from [14]. (D)
A difference between multicellular organisms from the same inbred line. Morphological
abnormalities in A. thaliana are revealed after drug treatment; reproduced with permission
from [20].
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Figure 2.
Example experimental designs using 96 well plates. (A) A fully crossed design where
multiple effects, both fixed (e.g. genotype, environment) and random (e.g., technical error),
contribute to yeast phenotypes. Any residual variance not explained by these factors may
result from within-genotype variability. The experiment shown is balanced, meaning that
equal numbers of cells are assayed for each genotype in each condition. (B) Design “B” is
not fully crossed. Instead, technical errors specific to each plate are confounded with the
environmental effect. Additionally, this experiment is unbalanced, which will influence
statistical modeling. Although confounding effects can often be avoided by strategic
experimental design, HCI experiments almost always produce unbalanced sample sizes
between groups.
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Table 1

Example studies combining experimental and statistical techniques to isolate phenotypic variability from other
sources of variation.

Reference Major Question Experimental
platform

How did the
experimental design
isolate
sources of variation?

How did the statistical
methods
isolate sources of
variation?

Rinnot et al.PNAS2011[37] How much cell-to-cell
variability in protein
levels is due to
stochastic events?

Flow cytometry A fluorescent 2-reporter
system distinguishes
global variability, which
coordinately affects
reporters, from stochastic
variability, which
independently affects
reporters (data from [36]).

The residuals from plots
of fluorescence mean vs.
CV are utilized to
distinguish effects on
variability from effects on
mean.

Levy et al.PloS Biology2012
[7]

Does variation in
singlecell growth and
gene expression
correlate with survival
of acute stress?

High content imaging
(HCI)

An experimental design
similar to that in Figure 2
quantifies effects on
growth variability from
instrument error,
genotypic differences,
and clonal heterogeneity.

GLM is used to estimate
the relative effect on heat-
shock survival from clonal
heterogeneity in growth
rates vs. genotypic
differences.

Kim et al. Genome
Biology2013 [50]

Can expression-level
variability present in
mouse embryonic stem
(ES) cells be explained
by a kinetic model for
transcriptional bursting?

Single-cell RNA-seq Correlations between
expression-level
variability (data from
[51]) and histone
modifications (data from
[78]) suggest a biological
basis for cell-to-cell
variation in gene
expression.

A Poisson-Beta
distribution is used to
model the kinetics of
stochastic gene expression
caused by transcriptional
bursting. Single-cell
RNA-seq data from
mouse ES cells fits this
model.
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