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Abstract

Host-associated microbial communities are widespread in nature and vital to the health and fitness
of the host. Deciphering the physiology of the microbiome /n vivois critical to understanding the
molecular basis of the symbiosis. Recently, the development and application of high-throughput
sequencing techniques, particularly RNA-seq, for studying microbial communities has enabled
researchers to address not only which microbes are present in a given community but also how the
community functions. For microbes that can also be cultivated in the laboratory, RNA-seq
provides the opportunity to identify genes that are differentially expressed during symbiosis by
comparing /n vitroto in vivo transcriptomes. In the current study, we used RNA-seq to identify
genes expressed by the digestive-tract microbiome of the medicinal leech, Hirudo verbana, and by
one of the two dominant symbionts, Aeromonas veronii, in a rich medium. We used a comparative
approach to identify genes differentially expressed during symbiosis and gain insight into the
symbiont’s physiology /n vivo. Notable findings include evidence for the symbionts experiencing
environmental stress, performing arginine catabolism, and expressing noncoding RNAs that are
implicated in stationary phase survival, a state in which A. veronii persists for months within the
host.

Introduction

A key component to understanding host-microbe associations is the physiology of the
microbial community because it reveals insight into the contribution of the microbiome to
the host and the conditions the microbes experience inside the animal (Wier et al., 2010;
Petersen et al., 2011). Researchers can reconstruct metabolic pathways and develop testable
hypotheses about how the microbial population functions by identifying genes that are
expressed during symbiosis. Several techniques can be used to examine gene expression,
providing insight into the microbiome’s physiology. Reverse-transcription PCR (RT-PCR)
or quantitative reverse-transcription PCR (qRT-PCR) are used to investigate differentially
expressed genes (Noda et al., 1999). These techniques are useful for examining a few
targets; however, they are challenging for hundreds of targets and require a priori knowledge
of the exact target sequences to which the primers anneal. These caveats make RT-PCR and
gRT-PCR more useful in confirmatory experiments than in gene discovery applications.
Clone libraries of mMRNA-derived cDNA can also be used to gain access to the symbionts’
physiologies and do not require sequenced genomes. For example, Tartar et a/. (2009) used
clone libraries to uncover the digestive contributions of the protists from the hindgut
microbiome in the termite Reticulitermes flavipes. Though valuable, construction of cDNA
clone libraries for prokaryotes is more challenging than for eukaryotes due to the lack of a
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poly-A tail, and cloning can introduce bias into the resulting data sets. Compared to next-
generation sequencing approaches, clone library sequencing is low-throughput and not
quantitative.

Traditionally, researchers have used microarrays to assess global gene expression in
microorganisms, and this technique has been successfully applied to many host-associated
microbiomes such as the gut microbiota of gnotobiotic mice and Vibrio fischeriin the squid
light organ (Sonnenburg et al., 2005; Martens et al., 2008; Wier et al., 2010). However, the
application of microarrays is not as reliable for all host-associated microbiomes, particularly
for field-caught animals whose symbiont communities can vary in composition. For
instance, natural microbial communities can contain allelic variation, and transcripts from
these variants may not be detected or may introduce an artificially lower expression level if
the oligonucleotide probes do not match the transcript. The pangenome, which is the
collective gene pool found within a particular species of prokaryotes, poses another
challenge. Genome sequencing projects of strains belonging to the same bacterial species
have shown for some species that as little as 40%-50% of a given genome is conserved
between all strains examined. For example, a study that compared Escherichia coli genomes
found that only about 2200 genes out of the approximately 4238 to 5589 genes encoded on
each genome were conserved in the 17 genomes examined (Rasko et a/., 2008). If different
strains of the same species are present and the pangenome is unknown, entire genes or
genomic islands can be missed using microarrays. This problem is magnified if not the
species but the function of the species in the association or guild is preserved, which is often
the case in the digestive-tract microbiome of mammals (Dethlefsen ef a/., 2007).

The advent of high-throughput sequencing in 2005 provided researchers with new
opportunities to explore the metabolic potential of microorganisms by sequencing microbial
genomes and metagenomes at a very high coverage (Margulies et a/., 2005). The application
of high-throughput sequencing to cDNA constructed from RNA transcripts, known as RNA-
seq, facilitated investigations into physiologies of naturally occurring microbial
communities such as those found in the ocean (Frias-Lopez et al., 2008; Gilbert et al., 2008)
and in the soil (Urich et al., 2008). More recently, RNA-seq has been used to characterize
the metatranscriptomes of host-associated microbial communities. Examples include the
digestive-tract microbiomes of humanized mice using RNA from cecal contents (Turnbaugh
et al., 2009), and cecal contents of pigs (Poroyko et al., 2010) and of humans using fecal
samples as a proxy (Turnbaugh et a/., 2010). RNA-seq has also been used to study 7n vivo
gene expression of the intracellular symbionts of bivalves (Stewart et a/., 2011). In contrast
to microarrays, RNA-seq does not require a priori knowledge of community composition or
genomes, though this information greatly aids in experimental design and data analysis. A
challenge for this approach is the difficulty of removing rRNA prior to cDNA library
preparation. rRNA often constitutes well over 90% of total RNA in a cell (Neidhardt, 1996),
and the lack of a poly-A tail on mRNA in bacteria presents a challenge to enriching mRNA.
However, mRNA enrichment methods that utilize oligonucleotides or enzymes that target
rRNA are available (Yoder-Himes et al., 2009; Poretsky et al., 2009). In addition, the high-
throughput and reduced sequencing costs of the Illumina platform (Luo et a/., 2012) can
overcome this difficulty.

We recently used RNA-seq to examine symbiont physiology within the digestive tract of the
medicinal leech, Hirudo verbana (Bomar et al., 2011). The medicinal leech serves as a
model for naturally occurring digestive-tract symbioses (Graf et al,, 2006; Nelson and Graf,
2012). In contrast to most mammalian digestive tracts, the crop, the largest compartment of
the leech gut, is colonized by two dominant symbionts. One of the symbionts, Aeromonas
veronii, is a gram-negative, facultative anaerobe that is often cultured from aquatic
environments and is also a human pathogen (Janda and Abbott, 2010). Interestingly, our
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initial RNA-seq study suggested that the A. veronii population in the crop was not
homogeneous but exhibited at least two distinct physiologies at the same time: one of free-
swimming or pelagic cells and one in mixed-species microcolonies with the second
dominant symbiont, a recently cultured Rikenella-like bacterium (Worthen et al., 2006;
Kikuchi and Graf, 2007; Bomar ef al., 2011).

RNA-seq studies can also reveal the presence of previously unrecognized noncoding RNAS
that can be highly abundant in bacterial cells (Shi et a/., 2009). One such system is the CsrB
family that is involved in global gene regulation. The CsrB family contains regulatory RNAS
that bind to and sequester CsrA, an RNA binding protein that post-transcriptionally regulates
gene expression (Babitzke and Romeo, 2007). Binding of CsrA by CsrB is achieved through
a series of GGA repeats (Babitzke and Romeo, 2007). In various bacterial genera, the Csr
system regulates carbon metabolism, biofilm formation, secondary metabolite production,
quorum sensing, and stationary-phase gene expression (Babitzke and Romeo, 2007).

In the current study, our goal was to gain a better understanding of the differences in A.
veronir’s physiology /n vitro compared to /n vivo. We used RNA-seq to gain insight into A.
veronir’s physiology during exponential growth in a rich medium and compared it to the
physiology inside the leech 42 h after ingestion of a blood meal. The data suggest that CsrB
is highly expressed, Aeromonas degrades arginine, and bacteria experience extracytoplasmic
stress.

Materials and Methods

Sample collection for harvesting RNA

Leech crop samples—Two to four Hirudo verbana specimens (Leeches USA, Westbury,
NY) per time point were fed heparinized sheep blood (Quad Five, Ryegate, MT) and
maintained at room temperature for 2 h, 4 h, 8 h, 24 h, 42 h, 96 h, or 14 d. Leeches were
dipped in 70% ethanol and sacrificed; 50-pl aliquots of the intraluminal fluid (ILF) were
then harvested and flash-frozen in liquid nitrogen. /n vitro grown A. veroniiHm21, an A.
veronii strain isolated from the medicinal leech, was cultivated in lysogeny broth, LB, at 30
°C at 200 rpm (Sambrook and Russell, 2001). Aliquots of cells representing different phases
of growth were collected and flash-frozen in liquid nitrogen. Samples were stored at =80 °C
until further use.

In vivo growth curve of native Aeromonas

Three to eight leeches per time point were fed heparinized sheep blood and maintained at
room temperature for 2 h, 4 h, 8 h, 24 h, 42 h, or 96 h. Leeches were sacrificed as described
above, and the ILF was harvested. ILF was serially diluted in 0.85% (wt/vol) NaCl and
plated on LB agar. Plates were incubated at 30 °C overnight, and colonies were enumerated
to determine the level of native Aeromonas colonization in the crop.

RNA extraction

Total nucleic acid was extracted from ILF or /n vitro grown Hm21 using the MasterPure
RNA purification kit (Epicentre, Madison, WI). For the ILF samples, the whole-blood
protocol was followed except that samples were treated with 50 g of proteinase K in 300 pl
of tissue and cell lysis solution prior to nucleic acid precipitation. For the /in vitro samples,
the protocol for cell samples was followed. DNA was removed using the Turbo DNA- free
kit (Ambion, Austin, TX), and DNA contamination was tested for using Aeromonas-specific
primers RpoBF1/RpoBR1 and the DNAse-treated RNA as template, as described previously
(Bomar et al., 2011).
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cDNA library preparation and sequencing

Total RNA was quantified with the NanoDrop ND-1000 (Thermo Scientific, Wilmington,
DE), and integrity was analyzed using an RNA FlashGel (Lonza, Basel, Switzerland). Ten
micrograms of equally pooled, total RNA from the leech and 10 pg of total RNA from the /in
vitro samples were enriched for mMRNA using mRNA-only (Epicentre, Madison, WI).
Enriched RNA was quantified using RiboGreen (Invitrogen, Carlsbad, CA). One hundred
nanograms each of the /n vitroand /n vivo enriched RNA were used for library preparations
using SuperScript 11 (Invitrogen, Carlsbad, CA) and an mRNA-seq kit (Illumina, San Diego,
CA) following the manufacturer’s instructions, except that the poly(T) bead enrichment step
was omitted. The cDNA libraries were submitted to the Translational Genomics Core at the
University of Connecticut Health Center for cluster generation and 1 x 76 bp sequencing.

Data analysis

cDNA reads were mapped against the draft genome of A. veronii strain HM21 using CLC
Genomics Workbench (ver. 4.0.2; Aarhus, Denmark). Reads that mapped to more than one
region of the draft genome or mapped with more than two mismatches to the draft genome
were excluded from the analysis. An expression value (EV) was calculated for each gene
using the following formula: EV = [(number of reads mapped to the gene)/(length of the
gene in kilobases) x (total number of reads mapped in millions)].

Nucleotide sequence alignment of CsrB sequences

Nucleotide sequences representative of the CsrB family were aligned in Geneious Pro (ver.
5.5.6; Auckland, New Zealand) using MUSCLE (Edgar, 2004).

Colony PCR screen for csrB and csrC

The primer pairs CsrBF1/CsrBR1 and CsrCF1/CsrCR1 were used for the amplification of
csrBand csrC, respectively. Primer sequences are listed in Table 1 and the following
amplification protocol was used: (i) 120 s at 95 °C; (ii) 30 cycles of 30 s at 95 °C, 30 s at 50
°C, 30 sat 72 °C; (iii) 120 s at 72 °C. Reactions contained 1x GoTaq Green MasterMix
(Promega, Madison, WI), 1 pmol 1-1 each of the appropriate forward and reverse primers,
and 1 pl of a 1:20 colony dilution in a final reaction volume of 20 pl. The specificity of the
primers was confirmed by sequencing the PCR amplicons generated using A. veronii
wildtype genomic DNA as template, as previously described (Silver et al., 2007).

Quantitative, reverse-transcription PCR

Double-stranded cDNA synthesis was carried out as described above using reagents from
the Illumina mRNA-seq kit or New England Biolabs (Beverly, MA). Copy number of target
genes was quantified using 1x SsoFast EvaGreen Supermix (Biorad, Hercules, CA), 500
nmol 171 each of the appropriate forward and reverse primers, and 1 pl of a 10-fold dilution
of cDNA in a final reaction volume of 12.5 ul. The following primer pairs were used for
amplification of gPCR targets: CsrBF2/CsrBR1, CsrCF1/R1, RpoDF1/R1, RpoEF1/R1,
PspA2F1/R1, ArcAF1/ArcAR1, and ArcBF1/ArcBR1. All primer sequences are listed in
Table 1. The following amplification protocol was used for all primer pairs: (i) 30 s at 95
°C; (ii) 35 cycles of 0.5 s at 95 °C, 15 s at 50 °C. Primer specificity was confirmed by
sequencing either amplicons generated in standard PCR using A. veronii genomic DNA as
template or cloned amplicons. A melting curve analysis was also done where the dwell
temperature increased from 50 °C to 95 °C in 0.5 °C increments every 10 s. The 27AAC,
method was used to calculate relative gene expression. Primer efficiency was evaluated
using the standard curve method and ranged between 98% and 101%.
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RNA-seq data accession numberss

Results

Raw and processed RNA-seq data files were deposited in Gene Expression Omnibus at the
NCBI under accession number GSE38068.

Sequencing Aeromonas veronii's transcriptome in culture and inside the leech gut

Genes that were expressed by A. veronii during exponential growth in a rich medium and
inside the medicinal leech digestive tract were identified using lllumina RNA-seq. For /n
vitro growth of A. veroniiwe cultivated a medicinal leech isolate, Hm21 (Graf, 1999) under
typical laboratory conditions in a rich medium (200 rpm at 30 °C in LB). Under these
conditions, A. veronii doubles approximately every 30 min (data not shown). A. veroniiwas
sampled in mid-log phase. For in vivo growth we sampled the leech intraluminal fluid 42 h
after the animal had ingested a blood meal. At this time, A. veroniiis still actively
proliferating, although a portion of the population is entering stationary phase (Kikuchi and
Graf, 2007; Bomar et al., 2011). By this time the host has modified the blood meal by the
removal of water and osmolytes (Sawyer, 1986), and hemocyte-like cells are patrolling the
crop, phagocytosing sensitive bacteria (Silver et al., 2007). We have previously examined
only the leech crop microbiome 42 h after feeding using RNA-seq (Bomar et al., 2011),
using a different method to remove ribosomal RNA before library preparation. In the
previous study, we utilized an oligonucleotide-based approach that was not very efficient
(Table 2), and in the present study we utilized an enzymatic mMRNA-enrichment method in
an effort to increase our coverage of non-ribosomal transcripts.

The cDNA libraries were sequenced using an Illumina platform, generating 5,500,677 and
11,107,024 reads for the /n vitroand in vivo libraries, respectively (Table 2). Approximately
201,558 of the /n vitro library reads and 52,514 of the /n vivo library reads mapped to non-
ribosomal regions of Hm21’s genome. For the /n vivo library, the lower percentage of the
reads mapping to the genome of Hm21 is largely due to reads mapping to the genome of the
other dominant symbiont, the Rikenella-like bacterium. Overall, 95% and 98% of the reads
were ribosomal for the /n vitroand in vivo libraries, respectively, indicating that the mRNA-
enrichment method we used was not very efficient. However, the sequencing depth of
[llumina enabled us to overcome this issue because we were still able to detect cDNA reads
that originated from protein-coding transcripts.

Carbon storage regulator (Csr) system

A powerful aspect of having both /in vitroand in vivo data sets for A. veroniiis the ability to
identify genes that are differentially expressed between the two conditions. The most highly
expressed gene /n vivo, csrB, is expressed 65-fold lower in vitro and was originally
annotated as a hypothetical protein in Hm21’s draft genome (Table 3). Prior to discovering
the identity of this gene, we queried the nucleotide sequence against the non-redundant
GenBank database using BLASTN (Altschul et al., 1990), and the closest match
corresponded to a genomic region in A. Aydrophila PPD134/91 (83% identity, 5 x 10~114
expected value, accession number AY378289). This region was identified during a genomic
subtraction screen for virulence loci in A. Aydrophila strains that used a non-virulent A.
hydrophila strain to remove DNA of high similarity from the fish pathogen (Yu et a/., 2005).
Our gene of interest, which is 469 bp in length, has 203 bp that overlap with an open reading
frame (ORF) predicted to encode a 115 amino acid protein of unknown function. Because of
its high expression and its implication in virulence, we investigated the highly expressed
gene further.

Biol Bull. Author manuscript; available in PMC 2013 August 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bomar and Graf

Page 6

Non-coding RNAs (ncRNAs), which are RNAs that do not encode for proteins, are often
short in length and can be highly abundant (Shi et a/., 2009), similar to the highly expressed
gene that we observed. Therefore, we queried the nucleotide sequence of the gene against
the RFam database (Gardner et al., 2011). On the basis of the results, this gene is predicted
to be a CsrB family ncRNA (1.8 x 10713 expected value), and thus we refer to this ncRNA
as CsrB. In A. veronii's CsrB we found 40 GGA repeats, 31 of which are preceded by an A
residue or AN residues. This sequence structure is similar to that found in other CsrB family
members. Bacterial genomes can possess functionally redundant CsrBs (Lenz et al., 2005),
so we queried Hm21’s genome with CsrB’s nucleotide sequence using BLASTN. This
analysis revealed a 20-nucleotide stretch that was 100% identical to the query sequence.
Further examination of the sequence flanking the alignment revealed a series of 16 GGA
repeats, 13 of which are preceded by an A residue or AN residues. Based on the alignment
with CsrB and other CsrB family members from the Rfam database and from A. salmonicida
(Fig. 1), we annotated this newly identified, second ncRNA of the draft genome as CsrC.
Similar to CsrB, CsrC expression is 50-fold higher during symbiosis than /n vitro (Table 3).
A BLASTN search of Hm21’s genome using the nucleotide sequence of CsrC did not reveal
additional CsrB family members, nor did querying the Rfam database (version 10.1) with
the Hm21 genome. As this is only a draft genome, we cannot exclude the possibility that
another CsrB homolog is present in the genome.

Because a genomic region containing ¢srB was detected during a screen for virulence loci in
A. hydrophila, we were interested in the prevalence of ¢srBand c¢srC in other aeromonads.
We screened 17 strains of A. veronii, including clinical and leech isolates, and 9 additional
Aeromonas species for csrBand csrC using colony PCR (Table 4). The screen revealed the
presence of PCR products for both genes in all the A. veroniiisolates tested, including those
that cannot colonize the medicinal leech to normal levels, suggesting that these genes do not
account for the observed competitive dominance of leech isolates over strains isolated from
other sources (Silver ef al., 2011). In our screen for ¢srC, amplicons of the expected size
were detected in all of the nine Aeromonas species tested. csrBamplicons of the expected
size were also detected for all nine Aeromonas species tested; however, amplification of A.
hydrophilaand A. caviae template produced an additional amplicon of slightly larger size.
The PCR primers used for this screen were optimized using Hm21 DNA as template, and
the additional amplicons could be due to nonspecific amplification of A. hydrophilaand A.
caviae template DNA. Overall, these particular ncRNAS appear to be widely conserved in
the Aeromonas genus.

We validated the RNA-seq expression levels using gRT-PCR to quantify csrBand csrC
expression over time /n vitro and in vivo. We examined five time points /n vitro that ranged
from early exponential growth (ODgggnm 0.158) to late stationary phase (ODgggnm 5.34)
(Fig. 2B). From early exponential growth to late stationary phase, csrBand csrC expression
increased approximately 29-fold and 52-fold, respectively (Fig. 2A).

The expression of these genes was also measured 7 vivo. Because ¢srBand ¢srC expression
has been reported to change depending on an organism’s growth phase, it was important to
determine the growth rates of the native Aeromonas community at the time points we
sampled: 2 h, 4 h,8h, 24 h, 42 h, 96 h, and 14 d after feeding. Figure 2C shows a growth
curve for native Aeromonas colonizing the leech gut at some of the corresponding sampling
times. The data suggest that A. veroniiis rapidly proliferating in the crop, perhaps doubling
as fast as every 60 min at the earliest time points and slowing down to a doubling time of
more than 250 min between 8 and 24 h after feeding. There are two important caveats to
these measurements: the starting number of A. veroniiin each animal is unknown, and the
animal removes water from the crop to concentrate the blood, which accounts for about a
50% weight loss during the first 48 h after consuming a blood meal. These data are
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consistent with a doubling time of 70 min during the first 12 h that we determined
previously with an A. veronii strain that was introduced with a blood meal (Graf, 1999). The
expression of csrBand csrCis below the limit of detection 2 h after feeding, but expression
is detected at 4 h after feeding (Fig. 2A). Surprisingly, csrBand csrC expression is high 8 h
after feeding (Fig. 2A), a time when the bacteria are still increasing in cell number (Fig. 2C).
The observed expression levels are comparable to what was measured in late stationary
phase under laboratory conditions when A. veroniiis no longer proliferating. From 8 h
onward, the expression of these two genes remains high.

Aeromonas veronii utilizes arginine as a nutrient source within the crop

An important question in all host-microbe associations is “what is the nutrient source for the
microbiome?” In our previous report, we provided evidence for A. veroniri's in vivo
catabolism of acetate and fatty acids via the glyoxylate shunt of the citric acid cycle and for
the utilization of carbohydrates viathe Embden-Meyerhoff Parnas pathway (Bomar et al.,
2011). Here, we present evidence that A. veroniialso utilizes arginine /n vivo. This
hypothesis is supported by expression of arcA, arcB, arcC, and arcD, genes predicted to
encode an arginine deiminase, an ornithine carbamoyltransferase, a carbamate kinase, and
an arginine/ornithine antiporter, respectively (Table 3). gRT-PCR was used to verify
expression of select arginine catabolism-related genes in mid-log phase (ODgggnm = 0.301)
and in the crop at 42 h after feeding (Fig 3). As expected, the expression of arcA and arcB
was elevated in the crop relative to /n vitro, suggesting that arginine is utilized as a nutrient
source /1 Vivo.

A. veronii experiences extracytoplasmic stress inside the leech digestive tract

Another interesting feature revealed by the transcriptome data is that several stress-response-
related genes are highly expressed during symbiosis and are expressed at a lower level or not
detected during growth /n vitro (Table 3). Most notable is the elevated expression of the
alternative sigma factor, 7po£, in vivo. Bacteria use alternative sigma factors to direct the
RNA polymerase to bind different sets of promoters, allowing them to adapt to changing
environmental conditions. In bacteria, 7poE expression is induced when cells experience
extracytoplasmic stress. This stress can be the result of many factors including changes in
osmolarity, high temperatures, or exposure to antimicrobial compounds or reactive oxygen
species (Rowley et al., 2006). /n vivo, rpoE expression is 7.2-fold higher than /n vitro. In
addition, /n vivo rpoE expression is 6.3-fold greater than the expression of the housekeeping
gene sigma factor rpoD in vivo. For comparison, /n vitro rpokE expression is about 1.3-fold
lower than /n vitro rooD expression. Phage shock genes (pspA, pspB, and pspC) are also
highly expressed in the crop relative to /n vitro (Table 3). Similar to rpo£, the psp genes
have been implicated in the extracytoplasmic stress response. Depending on the
microorganism and the environment, pspA gene expression can be induced by a number of
stimuli including osmotic stress, high temperatures, loss of proton maotive force, exposure to
organic solvents, stationary phase growth, and filamentous phage infection (Rowley et al.,
2006). Again, we used qRT-PCR to verify the expression of select stress-response-related
genes, pspA2and rpoE (Fig. 3). pspA2and rpoE were expressed about 7087-fold and 62-
fold higher /in vivo, validating our transcriptome findings that these genes are upregulated in
the leech gut.

A comparison of in vivo data sets

We compared the current /n vivo data set to a previously published data set from the same
time point, in which an alternative method for mRNA enrichment was used (Bomar et a.,
2011). For the comparison, we calculated gene expression values either including or
excluding the highly expressed ncRNAs CsrB and CsrC (Table 5). The reason for this was
that between 24.5% and 38.5% of reads mapped to the csrBand ¢srC genes, and a small
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difference in the number of reads mapping to those genes between the two samples would
disproportionally affect the expression values of all other genes in the data set because the
expression value is normalized to the total number of reads that mapped to the reference
genome (Table 5). In the data set generated using the oligonucleotide method for rRNA
removal, ¢srBand csrC accounted for a higher proportion of the reads; therefore the gene
expression values in this data set are typically lower, potentially skewing the data set
comparisons. In both analyses the expression values for most of the genes differ in
expression by less than 2-fold (Table 5). The discrepancies that do exist between the two
data sets could be due to animal-animal variation, differences in library coverage, or the
different methods used to remove ribosomal RNA. Overall, the comparison of the two data
sets suggests that the gene expression values obtained are consistent and independent of the
rRNA removal method.

Discussion

In this study, we used high-throughput sequencing of RNA transcripts to characterize the
transcriptomes of Aeromonas veronii during exponential growth in a rich medium and inside
the digestive tract of the medicinal leech. Our goal was to gain further insight into the
physiology of A. veronii within the host by identifying genes that are upregulated during
symbiosis. The availability of both /n vitroand in vivo data sets helped us determine the
microbe’s physiological state inside the host.

Utilizing both data sets, we identified two previously unannotated ncRNAs, csrBand c¢srC,
that are highly expressed during symbiosis and appear to be conserved among aeromonads.
We verified the expression of these genes /n vitro and in vivo over time and found that their
expression increases as cells approach stationary phase. This is consistent with previous
reports that demonstrate that csrBand csrC expression is induced as cells approach
stationary phase (Babitze and Romeo, 2007). Because of the large number of genes that
have been reported to be regulated by the Csr system, it is difficult to predict the functional
role of these NcRNAs in A. veronii during gut colonization. However, the Csr system has
been reported to play a role in host colonization in a range of microorganisms (Lucchetti-
Miganeh et al., 2008), and an interesting future direction will be to investigate the role of
that system in A. veronii colonization of the medicinal leech gut by constructing mutants.

The transcriptome data also provided new insight into the microorganism’s nutrient sources
within the crop. Data indicated that arginine is being utilized /n vivo. We verified the
expression of select genes involved in the catabolism of arginine and found that expression
of arcA and arcB was elevated in the crop. Surprisingly, we detected /n vitro expression of
arcA and arcB, though the levels were close to our limit of detection. This was in contrast to
the transcriptome data in which no expression was detected, suggesting that gRT-PCR with
gene-specific primers is more sensitive than our transcriptome data. This difference could be
due to the different priming method (random hexamers) used in the cDNA synthesis
reactions for the transcriptome libraries or to an insufficient sequencing depth. The
degradation of arginine through the combined activities of ArcA, ArcB, and ArcC is known
as the arginine deiminase pathway and results in the production of ATP, ammonia, carbon
dioxide, and ornithine, which is excreted through ArcD down a concentration gradient
(Cunin et al., 1986). Arginine is a poor nutrient source, and its catabolism results in one net
mole of ATP per mole of arginine catabolized. The utilization of this nutrient source
suggests that the A. veronii population has depleted more energetically favorable nutrients
and could explain why the population begins to level off (Kikuchi and Graf 2007; Bomar et
al., 2011). In addition, degradation of arginine is induced during anaerobiosis (Cunin et al.,
1986), suggesting that there are anoxic conditions in the crop. The release of ammonia could
also raise the pH of the intraluminal fluid, counteracting the acidification during
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fermentation. Several microbes have been found to use arginine as a growth substrate in the
laboratory, and there is evidence for microbes utilizing arginine during host association
(D’Hooghe et al., 1997; Fulde et al., 2011). Given the nutrient complexity of the blood meal
and the provision of mucin by the leech epithelium, it is not surprising that A. veroniiis able
to use a variety of nutrient sources in the leech gut for growth or maintenance. One would
expect the symbiont to have redundant mechanisms for nutrient utilization. A temporal
analysis of nutrient utilization inside the animal would provide interesting insights into the
nutritional preferences /n vivo.

A striking feature of the transcriptome data was the upregulation of stress-response-related
genes /in vivo, particularly those indicative of extracytoplasmic stress, such as rpo£ and the
psp genes. We verified the expression of pspAZand rpoE in both /n vitroand in vivo
samples and found that expression of both genes was elevated in the crop. In contrast to the
transcriptome data, these data showed /n vitro expression of pspAZ, suggesting that qRT-
PCR with gene-specific primers can detect expression of genes missed in the RNA-seq data.
The importance of rpoE for host colonization has been reported in other animal models. For
example, Xenorhabadus nematophila rooE mutants have a decreased ability to colonize the
intestinal vesicle of the entomopathogenic nematode (Heungens et al., 2002). rpo£is also
required for pathogenic microbes such as Vibrio cholerae (Kovacikova and Skorupski,
2002) and Salmonella typhimurium to colonize mice (Humphreys et al., 1999). The
extracytoplasmic stress experienced by A. veronii could be due to a number of factors
including osmotic stress. The osmotic pressure of mammalian blood is approximately 300
mosm/l (Sawyer, 1986). Already during feeding, the leech removes water and osmolytes
from the blood meal. By 2 d after feeding, the ingested blood meal is isosmotic with the
hemolymph, which is about 200 mosm/I (Sawyer, 1986; Zebe et al., 1986). This
modification would expose the resident crop bacteria to changes in osmolarity, which likely
causes osmotic stress for the bacteria. Another possible cause for the extracytoplasmic stress
could be host antimicrobial peptides or antimicrobial proteins such as bactericidal
permeability-increasing proteins, which often function by disrupting the bacterial cell
membrane. The role of rpoE in resistance to antimicrobial peptides, such as polymixin B,
has been demonstrated in S. fyphimurium in vitro (Humphreys et al., 1999). Antimicrobial
peptides have been detected in the medicinal leech nervous system (Schikorski et a/., 2008)
and the intestinal epithelium of a distantly related leech species, Theromyzon tessulatum
(Tasiemski er al., 2004). It seems likely that there are also antimicrobials in the medicinal
leech gut, and that these could induce extracytoplasmic stress in A. veronii. A temporal
transcriptome study of host and symbiont genes would provide important insight into these
interactions.

Direct RNA sequencing techniques, such as RNA-seq, have been slow to be used in bacteria
as compared to in eukaryotes because of the lack of a poly-A tail, which greatly hinders the
enrichment of mRNA because it accounts for only a small percentage of the total RNA pool,
with rRNA making up over 90% of the pool (Neidhardt, 1996). While there are enzymatic-
and oligonucleotide-based approaches that remove rRNA, they are not always very efficient,
and this can depend on the species being used and also the source of the sample. Some
reports observed varying enrichment efficiencies between replicate samples (Yoder-Himes
et al., 2009; Stewart et al., 2010). However, the increased throughput of next-generation
sequencing platforms such as Illumina, which currently generates hundreds of a millions of
reads in a single run, enables researchers to sequence through the ribosomal RNA and detect
the more informative mRNA transcripts.

In addition, Illumina RNA-seq makes it feasible for researchers to study microbiomes that
are in close association with a host. While there have been only a few published reports of
RNA-seq being used to investigate host-associated microbiomes (Turnbaugh et al., 2009,
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2010; Stewart et al, 2011; Bomar et al., 2011), we anticipate that the recent advancements
in RNA-seq will facilitate a greater use of this technique for symbioses. For instance, the
high throughput enables the detection of transcripts from the microbiome despite
contaminating host RNA and the presence of a mixed-species community. In addition, the
ability to multiplex samples, where multiple samples are sequenced on the same flow cell
lane, makes RNA-seq a cost-effective tool for transcriptomics. The application of this
technology to /n vivoand /n vitro microbiomes, when possible, allows researchers to
identify the physiology of a microorganism that is unique to its symbiotic state and can aid
in determining the contribution of the microbiome to its host.
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Figurel.

Nucleotide sequence alignment of CsrB family members from the Rfam database,
Aeromonas salmonicida and A. veronii Hm21. Note the presence of GGA repeats.
Nucleotides are shaded in a range of black and gray according to similarity. Black indicates
that all sequences have identical nucleotides in the position indicated. Gaps in the alignment
are depicted as dashes. The following accession numbers and nucleotide positions for the
sequences used in the alignment are as follows: Yersinia enterocolitica
(AM286415/3595708-3595388), Yersinia pestis (AAYV01000020/39993-39672),
Pectobacterium carotovorum (ABVY01000012/18391-18747), Sodalis glossinidius
(AP008232/3356002-3355655), Serratia proteamaculans (CP000826/4199485-4199142),
Escherichia fergusonii (CU928158/283863-284220), Cronobacter sakazakii
(CP000783/487241-487598), Enterobacter cancerogenus (ABWMO01000067/87302-86944),
Salmonella enterica (CP000880/4597967-4598323), Klebsiella pneumoniae
(CP000964/999311-999670), Escherichia coli (CP001164/3751312-3750953), Shigella
aysenteriae (CP000034/2780478-2780119), Citrobacter koseri
(CP000822/3859356-3858998), and Erwinia tasmaniensis (CU468135/3038137-3037797),
Aeromonas salmonicida CsrB (NC_009348.1/4285409-4285802), Aeromonas salmonicida
CsrC (NC_009348.1/232825-233093).
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Page 14

csrBand csrC expression in vitroand in vivo. (A) Expression of ¢srBand ¢srC, in vitro and
in vivo, was confirmed using quantitative reverse-transcription PCR (qQRT-PCR). Results are

displayed as fold change in expression relative to rpoD expression and normalized to

expression in early exponential growth (ODggonm = 0.158). Each target was quantified in
duplicate and the experiment was performed in triplicate. The error bars represent standard
deviation. (B) Growth curve for Hm21 in lysogeny broth. An asterisk indicates a sampling
time analyzed in gRT-PCR. (C) Representative growth curve for native Aeromonas in the
leech crop, as determined by plating dilutions of the intraluminal fluid. The CFU/mI of
Aeromonas in the crop was averaged from multiple animals and is represented by an open
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Page 15
circle. A regression analysis was performed for the time points between 2 h and 8 h. The

equation of the line shown is y=0.306x + 5.24 and was used to calculate the growth rate for
this time period. Standard error is represented by the vertical bars.
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Figure 3.

Quantitative reverse-transcription PCR validation for arginine catabolism and stress-
response related genes in lysogeny broth (LB) (ODggonm = 0.301) and in the crop (42 h).
Results are displayed as fold change in expression relative to 7poD expression and
normalized to expression in LB. Each target was quantified in triplicate and the assay was
performed twice. The error bars represent standard deviation.
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Table 1

Primers used in this study

Primer Sequence (5" to 3")

CsrBF1 GACGCAAGGAACACCACGGG
CsrBF2 GAATAAAGGAACACCGCA
CsrBR1 AATATCCCCTTTCCAATCC
CsrCF1 GGTCAGGAAGATTGGCTG
CsrCR1 TAGGTTTCCCCTTCCCAATC
RpoDF1 CACGCATATCGGTTCCGAGCTC
RpoDR1  TCGCGAGCAACTTCCGGATC
RpoEF1 TAAAAGCCTACCGTGCAT
RpoER1 CTTTTTATCGATTGCTTCCC
PspA2F1  ATTAATGCCAACCTGCAC
PspA2R1 CATTTTTTGACCTCCGCC
ArcAF1 TTTCCTGCTGACCAATCT
ArcAR1 TGGTGGAGTTGTCGTAGT
ArcBF1 TATCGAATACCGCGGCTA
ArcBR1 CACACCCTCTTTCACATC
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Aeromonas strains used for csrBand csrC screen and PCR results

Table 4

Species Strain Isolation PCR result
source (csrB/csrC)
Aeromonas veronii  AER397 Blood +H+
A. veronii AMC34 Human feces ++
A. veronii AMC35 Wound +H+
A. veronii CDC0437-84  Fish +H+
A. veronii AER28 Feces ++
A. veronii AER39 Blood +H+
A. veronii AMC22 Feces +H+
A. veronii AMC23 Finger wound +/+
A. veronii AMC24 Feces +H+
A. veronii AMC25 Duck +H+
A. veronii AMC26 Foot wound ++
A. veronii HV221 Hirudo verbana +H+
A. veronii HV231 H. verbana +H+
A. veronii HV241 H. verbana +H+
A. veronii HM21 H. verbana +H+
A. veronii Ho635 H. orfentalis +H+
A. veronii LMG13695 Feces +H+
A. allosaccharophila LMG140549T  Eel ++
A. hydrophila ATCC7966T  Canned milk .
A. bestiarum ATCC14715 Silver salmon +H+
A. salmonicida CDC434-84 Fresh water +H+
A. cavige ATCC15468 Guinea pig #+
A. sobria CIP7433 Fish +H+
A. Jandaei ATCC49568T  Feces ++
A. encheleia LMG16330T Eel ++
A. trota ATCC49657T  Feces +H+

a . . . . .
Indicates that an additional PCR amplicon was generated using this template.
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