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ABSTRACT

Algorithms that detect and align locally similar
regions of biological sequences have the potential
to discover a wide variety of functional motifs. Two
theoretical contributions to this classic but
unsolved problem are presented here: a method to
determine the width of the aligned motif automatic-
ally; and a technique for calculating the statistical
signi®cance of alignments, i.e. an assessment of
whether the alignments are stronger than those that
would be expected to occur by chance among
random, unrelated sequences. Upon exploring vari-
ants of the standard Gibbs sampling technique to
optimize the alignment, we discovered that simu-
lated annealing approaches perform more ef®-
ciently. Finally, we conduct failure tests by applying
the algorithm to increasingly dif®cult test cases,
and analyze the manner of and reasons for eventual
failure. Detection of transcription factor-binding
motifs is limited by the motifs' intrinsic subtlety
rather than by inadequacy of the alignment
optimization procedure.

INTRODUCTION

Sequence alignment is a fundamental means of detecting
biologically signi®cant patterns in biopolymers. Given a group
of sequences that share a common biological property,
multiple local alignment methods attempt to locate and align
similar subsequences, which may confer this property. This
approach has often been used to look for transcription factor-
binding sites in similarly regulated promoters (1), but there are
numerous other applications. For example, one could search
for functional motifs at origins of DNA replication, in
scaffold/matrix attachment regions, at RNA 3¢-cleavage
sites, at exon±intron boundaries or in alternatively spliced
exons or introns, in 3¢-untranslated regions of localized RNAs,
in 5¢-untranslated regions of translationally regulated RNAs or
in stability regulated RNAs. Of course this technique can also
be used to ®nd domains and motifs shared by a set of proteins.

Although a plethora of multiple local alignment algorithms
have been developed (1±12), all of these methods possess
limitations. Most of them require the user to specify in
advance the width of the aligned motif. Most methods provide
no estimate of the statistical signi®cance of their alignments,
i.e. whether they are any better than alignments of random
sequences. Most do not allow gaps in the alignments, or allow
them only in a limited way. Many of these methods are
heuristic searches for a mathematically optimum alignment,
and they often return one result with little indication of
whether it has achieved the mathematical optimum, or
whether a repeat of the search from a different starting point
would produce a completely different alignment. From a
practical standpoint, the multiple alignment/motif ®nding
problem is widely recognized to be dif®cult, and these
algorithms often fail to ®nd meaningful motifs when such
patterns are known to be present. Our purpose in this study is
®rst to overcome some of these limitations, and secondly to
analyze the reasons why these approaches sometimes fail to
®nd biological motifs, so that we can suggest which future
research directions are most likely to be fruitful.

Some previous studies have taken steps towards automatic
determination of the alignment width. A fragmentation
approach permits the motif width to vary, by allowing variable
spacing of a ®xed number of `informative columns' in the
alignment (13). However, the number of informative columns
must be speci®ed in advance. The WCONSENSUS program
automatically determines the alignment width, but since it is
based on a scoring scheme that is non-decreasing with
increasing width, the user must specify an ad hoc bias
parameter which is subtracted from each column's score (5).
Like our method described here, the MEME algorithm
optimizes alignment width without requiring any nuisance
parameters (14). However, since it also uses a non-decreasing
scoring scheme, it employs complex statistical techniques to
compare alignments of different widths. We believe our
method is theoretically more transparent, and we present
evidence that it works better in practice.

In another approach, Hertz and Stormo (5) estimate the
statistical signi®cance of a gapless multiple alignment of ®xed
width as follows. First, they calculate the P-value of the score
produced when several short random sequences of the ®xed
width are aligned over their entire length. Then, they perform
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a Bonferroni correction on the P-value, multiplying it by the
number of ways of selecting a subsequence of the ®xed width
from each of the sequences under scrutiny. As they indicate,
the resulting quantity is really an estimated E-value, which
overestimates the corresponding P-value since it ignores
correlations between alignments that overlap.

A non-parametric test for statistical signi®cance has also
been suggested (13). It matches each sequence of interest with
a control sequence, concatenates the two sequences and aligns
all the concatenated sequences. A Wilcoxon signed rank test is
then used to decide whether the resulting multiple alignment
involves signi®cantly more test sequences than controls. On
one hand, the method is computationally intensive and cannot
declare signi®cance if the number of sequences is small. On
the other hand, it permits a ¯exible speci®cation of the null
hypothesis through the selection of the control sequences,
whereas analytic methods are usually restricted to a null
hypothesis of random independent nucleotides.

We present a modi®cation to the Gibbs sampling alignment
algorithm that allows the width of the aligned motif to be
discovered automatically, and demonstrate that it chooses
suitable widths for alignments of transcription factor-binding
sites and SINE elements. Secondly, we implement and test the
accuracy of the BLAST statistical method to estimate the
signi®cance of alignments. While the MACAW program (15)
uses the same method, to our knowledge, the accuracy of its
E-value estimates has not been examined. Unlike Hertz and
Stormo's calculation, the BLAST method accounts for
correlations between alignments on the same diagonal of the
alignment matrix (see Methods). It ignores correlations
between diagonals, although these correlations are known to
become negligible in the limit of long sequences.

We also conduct failure tests of our algorithm by using it to
search for motifs embedded in DNA sequences of increasing
length, and analyze the manner of and reasons for eventual
failure. In addition, we explore simulated annealing and rapid
restart versions of the algorithm, and discover that the standard
sampling method is not the most ef®cient way to optimize the
alignment.

METHODS

Scoring scheme

In common with many other alignment techniques, our
method has two components: we ®rst de®ne a scoring scheme
to measure the quality of a gapless alignment, and then we
specify a search algorithm to ®nd the alignment with the
maximum score. One scoring scheme that has been used
previously is information content, but it possesses the
drawback that it can never decrease as the width of the
alignment increases (5). We use an alternative Bayesian
scoring scheme that does not have this limitation (13). We
suppose that each column in an alignment possesses some
underlying propensities to contain each of the four nucle-
otides, A, C, G and T. These propensities re¯ect the function
of that position in the motif. We denote these unknown
propensities qi, where i ranges over A, C, G, T and the qi sum
to 1. Furthermore, we supply a prior probability distribution
over the qi that indicates how common any set of propensities
is. Let
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In equation 1, W denotes the width of the alignment, cki is the
count of nucleotide i in the kth column of the alignment, and pi

is the background abundance of nucleotide i.
Equation 1 for the alignment score is a log likelihood ratio,

marginal for a particular window of length W. Its numerator
gives the predictive probability of observing the nucleotides in
column k under the hypothesis of relatedness, and its
denominator gives the predictive probability of observing
them under the hypothesis of unrelatedness (equation 1).

How should we select the prior? A conservative choice
would be an uninformed prior, where all sets of qi are equally
probable. However, we do have some prior expectations
concerning qi: we suppose that in the motifs we are looking
for, positions with roughly equal propensities for the four
nucleotides will be less common on the whole, and positions
with propensities biased to one or a few nucleotides will be
more common. It is traditional to specify a Dirichlet function
for the prior (equation 2).
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Z is a normalization constant, and different choices of ai

(referred to as pseudocounts) give different functions within
the Dirichlet family. The only reason to favor this functional
form over any other is that it leads to tractable mathematics.
Setting all the ai to 1 gives an uninformed prior, ai > 1 gives
peaked distributions that favor choices for qi close to one
central, most favored choice, and ai < 1 gives anti-peaked
distributions that favor choices at the extremes where some of
the qi are close to zero. With a Dirichlet prior, the integral in
equation 1 can be solved analytically, leading to the ®nal
alignment scoring formula (equation 3) (13).
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A is the sum of the ai, N is the number of sequences in the
alignment, and G() is the gamma function.

The entropy inequality SPi ln[Qi/Pi ] < 0 ensures that the
expected score per aligned position in equation 3 is negative.
On average, the expectation of the sum in equation 3 therefore
decreases with the alignment width. Thus, our scoring scheme
is additive with a negative expectation, conditions that are
required for the BLAST statistical method.

Estimation of pseudocounts

In order to select the pseudocounts in a principled way, we ®t
them to the transcription factor-binding site matrices con-
tained in the TRANSFAC Professional database, release 6.3
(16). We excluded matrices whose nucleotide counts sum to
100, since these are probably percentages rather than counts,
and matrices containing fractional numbers. The remaining
matrices were then concatenated into one large M 3 4 matrix.
Supposing that the pseudocounts are equal to one another, i.e.
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equal to 1
4

A, the log likelihood of observing all of the columns
in the TRANSFAC matrices is given by equation 4. The best
®t is the value of A that maximizes this formula.
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Figure 1 graphs log likelihoods for a range of values of A. The
log likelihood achieves a maximum when A is ~1.5, thus
con®rming our earlier prediction that appropriate values for ai

are less than 1. Plots obtained from only vertebrate or only
insect matrices do not look signi®cantly different from
Figure 1, nor do plots using only matrices with at least 12
total counts per position (data not shown). We also performed
a two-dimensional ®t, using one pseudocount for nucleotides
(C, G) and another for nucleotides (A, T), but this procedure
did not result in a signi®cant difference between the two
pseudocounts (data not shown). We decided to use pseudo-
counts proportional to the background nucleotide abundances:
ai = 1.5 3 pi.

Search algorithm

Having chosen a scoring scheme, we require an algorithm to
®nd the alignment with maximum score. We use the original
Gibbs sampling technique (2), together with a novel procedure
to adjust the width of the alignment. Beginning from a
completely random alignment, the algorithm proceeds through
many iterations. At each iteration, it randomly selects one
sequence, and stochastically alters which segment of that
sequence to include in the alignment. The probability of
choosing each segment is proportional to exp(S), where S is
the alignment score that would result from including that
segment (equation 3). Some previous Gibbs sampling papers
describe choosing each segment with a probability propor-
tional to its likelihood ratio given the other aligned segments
(2): it can be shown that this approach is mathematically
identical to ours (13). Thus choices that increase the alignment
score are favored, but the stochastic aspect allows the
algorithm to escape from local maxima. The algorithm may

also choose to exclude the sequence from the alignment
entirely, again with probability proportional to exp(S).

Our algorithm further incorporates two resizing moves. In
the ®rst kind of move, the left ends of the aligned segments in
each sequence are held ®xed, and the right ends are varied to
change the width of the alignment. A new width is chosen with
probability proportional to exp(S). For the second move, the
right ends are held ®xed and the left ends are varied. As an
added bene®t, these resizing moves overcome a problem of the
®xed width algorithm, which can get stuck in alignments
whose end points are shifted left or right relative to the
optimal. We do not adjust both ends simultaneously, since the
required number of moves would become proportional to
length squared, which would make the search too slow.

The search continues until a certain number of iterations, n,
have passed since ®nding the best alignment score so far. In
addition, our program performs multiple runs of the search
algorithm for a given alignment problem. If many of these
runs converge to the same best alignment, we have increased
con®dence that it is indeed the global optimum.

Estimation of statistical signi®cance

Our algorithm will always ®nd an alignment, even for a set of
unrelated sequences. In order to detect biologically meaning-
ful signals, we would like to know whether an alignment is
statistically signi®cant, i.e. whether its score is greater than
would be expected to occur by chance in a set of random
sequences. For gapless alignments, there is a mathematical
theory for the distribution of optimal alignment scores of
random sequences, which is used by the BLAST program
(15,17). This theory maps the alignment problem onto a
one-dimensional random walk problem as follows.

A pair-wise alignment problem can be viewed as a matrix
(Fig. 2), where each cell contains the score for aligning two
letters, and the optimal alignment corresponds to the diagonal
run of cells with maximum aggregate score. Similarly, a
multiple alignment problem corresponds to a multidimen-
sional matrix. We only consider alignments where all the
sequences participate, and for the time being we do not
consider reverse strands. The probability ri of a cell contain-
ing any score si can be calculated based on the background
abundances of nucleotides and the scoring scheme (equation
3). We can imagine joining all the diagonals of the matrix end-
to-end to form a single line of cells with length P Li, where Li

is the length of the ith sequence. The alignment problem
corresponds approximately to ®nding the run of cells within
this line that has maximum aggregate score S. If the cells are
independent of one another and the expected score per cell is
negative, this score follows a Gumbel distribution (equation 5):

Prob�S > X� � 1ÿ eÿK�P�Li��eÿlX

; 5

Figure 2. A pair-wise alignment matrix.

Figure 1. Log likelihood of observing TRANSFAC matrices as the
pseudocount weight is varied.
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where K is given by a complex formula and l is the unique
positive solution to the equation Sri exp(l si) = 1 (17).
Fortunately, the entropy inequality SPi ln[Qi/Pi] < 0
mentioned above ensures that the expected score per cell is
negative. Conveniently, moreover, for the scoring scheme in
equation 3 [and, indeed, for any log likelihood ratio scheme
(18)], l = 1.

This argument has made two approximations: we have
neglected that alignments cannot cross the join between two
diagonals, and we have assumed that the cells are all
independent when in fact neighboring diagonals are correlated
(19). An edge correction has been proposed to compensate for
the ®rst approximation, where adjusted sequence lengths
are calculated, and used instead of Li in the signi®cance
calculation (equation 6) (20):

L0i � Li ÿ ln�K �
Y

Li�=H 6

H is the expected score per column in an optimal alignment of
random sequences (20,21). The correlated diagonals error
does not seem to be too great for typical pair-wise alignment
problems, but as we shall see it becomes increasingly serious
as the number of sequences increases.

This statistical method can be extended to double-stranded
alignments. In this case, alignments can occur not only along
leading diagonals of the alignment matrix (top-left to
bottom-right in Fig. 2), but along any diagonal direction. An
N-dimensional matrix has 2N ± 1 diagonal directions. So for a
double-stranded alignment of N sequences, we multiply P Li

in equations 5 and 6 by an extra factor of 2N ± 1.

RESULTS

We developed a C++ program to perform gapless local
alignment of multiple sequences (GLAM), which can be
downloaded from: http://zlab.bu.edu/glam/. The only required
input is a ®le of DNA sequences in FASTA format, although
there are many options for modifying the program's behavior.
The program performs r (default: 10) alignment `runs' on the
sequences, and outputs the best alignment found, the score and
E-value of this alignment, and the number of runs which
converged to this alignment. It also prints the marginal score
of each sequence's aligned segment, i.e. the score difference
between the alignment including this segment and the
alignment excluding this segment. The marginal scores are
useful indicators of how well each segment matches the rest of
the alignment. If some of the runs converged to lower scoring
alignments, details of these alignments are also printed. The
program can align sequences in either OOPS (one occurrence
per sequence) or ZOOPS (zero or one occurrence per
sequence) modes (14), and it can perform single- or double-
stranded alignment. Upper and lower bounds on the alignment
width can be set if desired. All results described here were
obtained with default options (r = 10, ZOOPS, no bounds on
width) unless otherwise speci®ed. The n parameter, de®ning
how many iterations to persist for without improving the
alignment, was generally made large enough so that at least
three runs converged to the best alignment found. For the sake
of comparison, MEME alignments were performed with
default options, except that the width bounds were set to the

maximum allowed extent (2±300 bp). Data sets used in this
paper are available at http://zlab.bu.edu/glam/sup/.

Tests of alignment width optimization

We tested the ability of our algorithm to determine suitable
widths for alignments by analyzing sequences containing
known transcription factor-binding sites. We obtained 50 bp
genomic sequences surrounding 25 mammalian estrogen
response elements (EREs), 19 vertebrate LSF-binding sites,
27 mammalian E2F-binding sites, and 35 bicoid- and 27
KruÈppel-binding sites from Drosophila. Regulation by E2F,
bicoid and KruÈppel has been extensively analyzed using
experimental approaches, and their binding sites have also
been studied in previous computational analyses (22,23).
Known binding sites for LSF and ERE were collected sites
from experimental literature (24±26) (R.B.O'Lone, M.C.Frith
and U.Hansen, submitted). The consensus sequences of all
these motifs (Fig. 3, see below) are based not only on
alignments of known binding sites, but also on mutational
analyses to determine both the critical positions and nucle-
otide preferences for binding of the transcription factors, on
chemical and enzymatic `footprinting' experiments to deter-
mine base pairs in contact with the proteins and, in the case of
the estrogen receptor, on the structure of the protein±DNA
complex determined by X-ray crystallography (27). These
various methods agree on determination of the critical DNA±
protein contact regions, and in general on the extents of the
DNA-binding sites.

In every case, the GLAM alignment is very similar to
consensus sequences of the motif established by experimental
data, differing in width by a few base pairs at most (Fig. 3)
(22,24,25,28). For instance, in the case of the ERE,
mutagenesis studies have con®rmed that the extent of
sequence important for binding af®nity is indeed the 13±
15 bp region indicated (25). The MEME program aligns three
of the motifs (E2F, bicoid and KruÈppel) just as successfully as
GLAM, but it returns excessively wide alignments for ERE
and LSF.

Alignment of Alu elements

It proved surprisingly instructive to apply GLAM to a random
set of human DNA sequences, where it aligns the ubiquitous
Alu element (Fig. 4). The initial alignment (gray shapes above
the lines) covered half an Alu sequence, which is the greatest
extent possible without exceeding the bounds of two elements
that are truncated. We then masked the nucleotides within this
alignment (replaced them with `n'), and applied GLAM a
second time, recovering the other half Alu sequence.
Surprisingly, we found no other program that can align these
elements as cleanly as GLAM. MEME also identi®es the Alu
elements, but its alignments do not cover the full width of the
element (Fig. 4). Dialign aligns the full extent of the sequences
rather than picking out the Alu elements (29). Although
BLAST can align the Alu elements in a pair of sequences, it is
not straightforward to combine pairwise alignments into a
multiple alignment. This example demonstrates that GLAM
works for a range of multiple alignment problems. In addition,
these alignments were fast (tens of seconds on an 1.1 GHz
Pentium III CPU), demonstrating that GLAM is fast not only
when the data set is small, but also when the signal to be
aligned is strong (as is the case for Alu elements).
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Tests of the statistical signi®cance calculation

Since GLAM will always return an alignment even for
unrelated sequences, it is extremely useful to know whether an
alignment score is statistically signi®cant, i.e. greater than
would be expected by chance for random sequences. To this
end, we implemented a multiple sequence generalization of
the BLAST statistical calculation, and tested its accuracy by
aligning sets of random DNA sequences (in OOPS mode) and
observing the empirical score distribution (Fig. 5). For
alignments of ®ve sequences (Fig. 5A), the calculated and
empirical score distributions generally agree. When aligning
greater numbers of sequences, however, the calculated score
distribution becomes increasingly conservative. This means
that if an alignment score is calculated to be statistically
signi®cant, then it certainly is. However, if it is not calculated
to be signi®cant, we do not know whether or not it really is.
We performed a similar test for double-stranded alignments of
®ve sequences, obtaining an even better agreement between

theory and observation than for the single-stranded case (30).
In conclusion, this method is quite useful because it is accurate
for small numbers of sequences, and it provides upper bounds
of E-values for large numbers of sequences. Presumably, a
correction for correlated diagonals would make the calculation
more accurate. Plots of one minus the cumulative distribution
function zoomed into the upper tail are provided as
Supplementary Material available at NAR Online.

The above analysis has a potential weakness: the BLAST
statistical theory applies to optimal alignments, but we have
tested it using a heuristic algorithm which is not guaranteed to
®nd them. We present two pieces of evidence arguing that
GLAM has, in fact, found the optimal alignment most of the
time. If GLAM is robustly ®nding optimal alignments, we
would predict that if we repeat an alignment several times, we
will obtain the same result on each (or most) of these attempts
(in spite of the algorithm being stochastic). We tested this
prediction by performing 10 runs of each of the 1000
alignments and recording how many of the runs converged

Figure 3. Alignments of transcription factor-binding sites. (A) Alignment of 25 EREs by GLAM. The remaining panels show pictogram representations (C.
Burge and F. White, http://genes.mit.edu/pictogram.html) of GLAM and MEME alignments, compared with independently established consensus sequences
of these motifs. (B) EREs (same as in A). (C) E2F-binding sites. (D) LSF-binding sites. (E) Bicoid-binding sites. (F) KruÈppel-binding sites.
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to the same best alignment in each case (Fig. 5). In most cases,
all 10 runs gave the same result. This agreement of runs is
slightly less good for the alignments of 20 sequences, which
may explain the score distribution's appearance of having
eroded from the Gumbel shape.

We also considered the possibility that the global optimum
alignment has a very narrow `basin of attraction', somewhat
like the hole on a golf course. The following alignment
problem was constructed to mimic this scenario: the sequence
TATTAATTTAAA was inserted once into each of 20 random
sequences of 500 bp consisting only of G and C. In this
problem, there are no sites outside the embedded motifs,

which make it favorable for the algorithm to select the motifs.
Nevertheless, GLAM was able to identify the embedded
sequences rapidly (tens of seconds on an 1.1 GHz Pentium III
CPU). In general, GLAM seems to have most dif®culty when
the global optimum lies within a very broad and shallow basin
where many alignments have almost the same score. This is
typically the case when there is no signi®cant motif to be
found.

Failure testing GLAM

We applied GLAM to a range of increasingly dif®cult problem
scenarios, to learn the limits of its applicability and to study
the reasons for eventual failure. In particular, we were
interested to learn whether failure is caused by the search
scheme failing to ®nd the highest scoring alignment, or by the
biologically meaningful alignment failing to have the highest
score. Various numbers of ERE sites were selected, and
embedded in randomly generated DNA sequences of various
lengths. The sites were embedded in synthetic rather than real
sequences because real sequences are likely to contain many
unknown biological signals, making it hard to tell whether an
alignment is successful or not. Some tests were made harder,
and probably more realistic, by including `decoy' sequences
(randomly generated sequences lacking EREs). To measure
GLAM's accuracy in identifying the embedded sites, we use
the correlation coef®cient (equation 7).

CC � TP� TN ÿ FP� FN����������������������������������������������������������������������������������������TP� FP��TN � FN��TP� FN��TN � FP�p 7

TP (true positives) is the number of nucleotides contained in
the sites and also included in the alignment returned by
GLAM; FP (false positives) is the number of nucleotides not
in a site but in the alignment; FN (false negatives) is the
number of nucleotides in a site but not in the alignment; TN
(true negatives) is the number of nucleotides neither in a site
nor in the alignment. The correlation coef®cient varies
between +1 and ±1, with +1 indicating perfect performance,
and 0 indicating a performance no better than random.

GLAM's ability to ®nd the sites decreases as the sequences
become longer, and improves when there are more EREs
(Fig. 6). Interestingly, the accuracy deteriorates in a gradual
rather than a catastrophic manner as the sequence length
increases, especially for larger numbers of EREs. We studied
the alignments in detail to understand this behavior. Many of
the EREs are so weak that as the sequence length increases,
stronger motifs appear by chance in some of the sequences
and get selected by GLAM. The resulting alignments still
resemble an ERE, cover the full extent of the motif, and often
have the correct width, though they sometimes are wider by
several base pairs. It is worth emphasizing that alignments
with correlation coef®cients as low as ~0.3 still very much
resemble EREs. For example, the alignment of 20 EREs in
2000 bp sequences with ®ve decoys has a correlation
coef®cient of only 0.341, but eight of the EREs are perfectly
recovered by this alignment. Moreover, the two highest
marginal scores in this alignment belong to embedded EREs.

Decoy sequences almost always get included in the
alignments, the exceptions occurring when the sequences are

Figure 4. Alignment of Alu elements within 20 human DNA sequences.
The horizontal lines represent the sequences (2000 bp each) and the black
shapes indicate the positions of the Alu elements within them. The gray and
hollow shapes above the lines indicate the ®rst and second alignments
returned by GLAM, respectively. The gray and hollow triangles below the
lines indicate the ®rst and second alignments returned by MEME,
respectively.
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very short. We do not think this indicates a fundamental ¯aw
in the method, since our alignment of Alu repeats excluded all
sequences that lack this element (Fig. 4). The ERE motif,
unlike the Alu, is simply so weak that sequences that resemble
it more closely than they resemble random DNA are likely to
occur by chance. The segments of decoy sequences that appear

in the alignments tend to have low marginal scores, which
might provide a criterion for ®ltering them out.

While the correlation coef®cient decreases, the alignment
score relentlessly increases as the sequences become longer
(Fig. 6). This observation strongly suggests that the accuracy
is not suffering because the search algorithm fails to ®nd the

Figure 5. Tests of the statistical signi®cance calculation. (A) One thousand sets of ®ve random DNA sequences, each 500 bp long, were generated. Each set
was aligned using GLAM, and the alignment scores are plotted as a histogram. The solid curve indicates the distribution of scores expected according to the
statistical theory. The dashed curve indicates the theoretical distribution without the edge correction. (B) The alignment scores for (A) were obtained by
applying 10 GLAM `runs' to each sequence set and keeping the highest score. The number of runs that converged to the same alignment with this score
(`maximal runs') are plotted. (C and D) Likewise, using sets of 10 DNA sequences. (E and F) Likewise, using sets of 20 DNA sequences.
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highest scoring alignment, but because the embedded sites
increasingly do not constitute the optimal alignment. Finally,
we observe that alignments which fall short of the global
optimum can still be useful. We performed 10 runs of GLAM
on the set of 25 EREs in 5000 bp sequences with ®ve decoys,

obtaining eight different alignments, six of which have
correlation coef®cients >0.4.

We investigated whether GLAM's calculated E-value can
distinguish biologically meaningful from random alignments,
by plotting the E-values of all the alignments shown in Figure 6

Figure 6. Tests of GLAM's ability to ®nd EREs embedded in random DNA sequences of varying lengths. In all panels, red lines indicate the results when
®ve EREs were present; green, 10 EREs; dark blue, 15 EREs; purple, 20 EREs; light blue, 25 EREs. Open boxes indicate tests where fewer than three out of
10 GLAM runs converged to the same maximal alignment. (A) Each ERE was embedded in a random DNA sequence, and these were presented to GLAM.
The y-coordinate (correlation coef®cient) indicates how closely the alignment found by GLAM corresponds to the EREs. (B) The scores of these alignments.
(C and D) Five decoys: ®ve random sequences lacking EREs were added to each sequence set. (E and F) Double decoys: each sequence set contains a
number of decoys equal to the number of ERE-containing sequences.
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against their correlation coef®cients (Fig. 7). All of the
alignments with E-values <0.01 have correlation coef®cients
>0.5, indicating that they recover the embedded EREs to a
considerable extent. On the other hand, there is a `twilight
zone' of alignments that have good correlation coef®cients but
insigni®cant E-values. These cases can be partly explained by
the conservative nature of the E-value calculation, and
presumably some of these alignments really are on the verge
of becoming statistically insigni®cant. The failure tests were
repeated using E2F instead of ERE motifs, which con®rmed
the observations made above (data not shown).

Assessment of various alignment strategies

We explored whether modi®cations to the search algorithm
might optimize alignments more ef®ciently. As explained in
Methods, the basic algorithm is a stochastic search of the
alignment space, where new alignments are selected with
probability proportional to exp(S), where S is the score of the
new alignment. A closely related approach is simulated
annealing, where a `temperature' parameter t is introduced,
and new alignments are selected with probability proportional
to exp(S/t). Low temperatures exaggerate score differences, so
that the probability of selecting higher scoring alignments
increases at the expense of lower scoring ones. High
temperatures have the opposite effect. We experimented
with three annealing schedules: constant temperature; geo-
metric cooling, where the temperature is multiplied by a
parameter c < 1 at each iteration; and a more complex
technique known as the `modi®ed Lam schedule' (31). The
modi®ed Lam schedule aims for a target accept rate, i.e. rate of
changing the alignment versus leaving it unchanged per
iteration. During the ®rst 15% of an alignment run, the target
accept rate decays geometrically from 100 to 44%, then it
remains ®xed at 44%, and ®nally it decays geometrically to
0% over the last 35% of the run. At each iteration, the
temperature is either multiplied or divided by c to force the
real accept rate towards the target. For this schedule, n
speci®es the total number of iterations, rather than how long to
persist without improving the alignment.

We applied these strategies to a dif®cult case: aligning 40
DNA sequences of length 1000 bp each (one of the double
decoy sets described above). Interestingly, the default strategy
(t = 1) does not achieve the highest alignment scores (Fig. 8A).
Among the constant temperature strategies, lower tempera-
tures perform better when the run time is short, and higher
temperatures perform better when given more time, up to
t = 0.9 at 10 000 s on an 1.1 GHz Pentium III CPU. It is
conceivable that t = 1 would become the best strategy given
even more time. Constant temperatures greater than 1 perform
extremely poorly (data not shown). The geometric schedules
generally perform worse than the constant temperature
strategies (Fig. 8B). The modi®ed Lam schedule does not
obviously perform better than constant t, which is disappoint-
ing given its extra complexity (Fig. 8B). Strong values of the
forcing parameter c work better for short run times, and
weaker values work better for long time scales.

Another strategy is to perform very many very fast searches.
We applied this strategy using low temperatures (t = 0.00001
and t = 0.5) so that each search quickly reaches a local
optimum, with r = 100, 1000, 10 000 or 100 000 restarts
(Fig. 8C). When t = 0.00001, it is better to use high r and low n
(i.e. more and quicker searches), whereas when t = 0.5, it is
better to use low r and high n. Overall, the rapid restart
approach is not the best, suggesting that the problem has an
extremely large number of local maxima.

In conclusion, the use of a constant temperature slightly less
than 1 and the modi®ed Lam schedule are the most effective
search methods. We also tested the strategies on two further
sequence sets, 20 sequences of 5000 bp each and 100
sequences of 1000 bp each, which con®rmed all of the
observations made above (data not shown).

DISCUSSION

Our studies of gapless local alignment of multiple sequences
demonstrate a straightforward way to optimize the alignment
width, indicate that the BLAST statistical method is useful but
not perfect for multiple alignments, and suggest enhancements
to the alignment optimization procedure.

Fundamental limits to motif discovery?

The failure tests we have performed indicate that the limiting
factor in our ability to discover transcription factor-binding
sites is the motifs' weakness relative to the scoring scheme.
Therefore, improved search algorithms will not bring about
fundamental improvements. Perhaps scoring schemes better
attuned to these motifs could be devised. One suggestion is to
search for palindromic motifs, since many transcription
factors bind as homodimers to palindromes (32). However,
this approach would miss many non-palindromic motifs, e.g.
LSF, bicoid and KruÈppel (Fig. 3). Another idea is to use `shape
priors' to favor alignments where highly constrained positions
lie next to one another, since real motifs are alleged to exhibit
this pattern (M.B.Eisen, personal communication). We
expect this approach to produce incremental rather than
order-of-magnitude improvements.

However, there is no reason why it must be possible to
detect binding sites ab initio in arbitrarily long sequences. This
problem is not one the cell itself has to solve, since the
transcription factors are structurally programmed to recognize

Figure 7. Relationship between statistical signi®cance and accuracy of
GLAM alignments. The E-value versus correlation coef®cient is plotted for
each alignment in Figure 6. The open boxes indicate cases where fewer
than three out of 10 GLAM runs converged to the same alignment.
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their sequence binding preferences. On the other hand, we are
encouraged that GLAM's performance improves as the
number of motif-containing sequences increases. For studies
of basal promoter elements, intron splice signals or mRNA
3¢-end processing signals for instance, it should be possible to
obtain hundreds or thousands of sequences that potentially
share functional motifs. We also note the many potential
applications of multiple local alignment to RNA and protein
sequences, which are generally limited to a few thousand
residues in length: within the range where GLAM identi®es
transcription factor-binding site-like motifs.

Phylogenetic footprinting?

One potentially powerful approach for motif discovery is to
focus on sequence regions that are conserved between species,
such as human and mouse (33). However, studies by ourselves
and others suggest that many transcription factor-binding sites
are not conserved between these species (R.B.O'Lone,
M.C.Frith and U.Hansen, submitted) (34). Moreover, we
found that 2 kb regions centered on human EREs often show
little sign of conservation relative to mouse, although estrogen
regulation could be atypical in this regard (R.B.O'Lone,
M.C.Frith and U.Hansen, submitted).

Dealing with repetitive elements

In order to recognize the presence or absence of an interesting
alignable pattern, one must avoid being misled by alignments
of ubiquitous repetitive elements. This problem is much more
severe for multiple than for pair-wise alignments. For
example, GLAM's third alignment of the 20 human Alu-
containing sequences (Fig. 4) is a highly A-rich motif with an
E-value of 6 3 10±26. A variety of approaches could be used to
®lter out repetitive elements. They can be masked prior to
alignment using programs such as RepeatMasker, nseg and
dust (A.F.A.Smit and P.Green, personal communication;
R.Tatusov and D.Lipman, personal communication) (35).
Alternatively, the alignment program can be used iteratively to
®nd several different alignments, and the uninteresting ones
can be ¯agged and ignored (36). This approach requires a
robust criterion for de®ning suboptimal alignments, which is
discussed below. Another class of methods builds awareness
of uninteresting motifs into the alignment scoring scheme, for
example using higher order Markov models of background
DNA (8,9), a Bayesian segmentation method (33), or by use of

a background sequence set (37). All of these methods face a
non-trivial trade-off between ®ltering repetitive elements
aggressively enough and not ®ltering too many interesting
motifs.

Suboptimal alignments

Since sequences may share more than one alignable pattern,
we are generally interested in suboptimal as well as optimal
alignments. However, the second highest scoring alignment is
usually a trivial variant of the highest scoring one, making it

Figure 8. Alignment score achieved versus run time (on 1.1 GHz Pentium
III CPUs) for various alignment strategies. (A) Fixed temperature strategy.
GLAM's t parameter was ®xed at certain values, and the running time was
varied by adjusting the n parameter. Red, t = 0.6; green, t = 0.7; dark blue,
t = 0.8; purple, t = 0.9; light blue, t = 1.0. (B) Simulated annealing
strategies. The `modi®ed Lam' and geometric cooling schedules were used
to lower the temperature during alignment runs (starting with t = 1 for Lam
and t = 2 for geometric). The running time was varied by adjusting the n
parameter. For the geometric schedule, the cooling factor c was set so that
the temperature would have a speci®c half-life relative to n. Red, Lam, c =
0.999; green, Lam, c = 0.9999; dark blue, Lam, c = 0.99999; purple, Lam,
c = 0.999999; light blue, geometric, half-life = n/2; yellow, geometric, half-
life = n/3; black, geometric, half-life = n/5. (C) Rapid restart strategy. The n
and t parameters were ®xed at certain values, and the running time was
varied by adjusting the r parameter (number of restarts). Red, t = 0.00001,
n = 100; green, t = 0.00001, n = 1000; blue, t = 0.00001, n = 10000; purple,
t = 0.5, n = 100; light blue, t = 0.5, n = 1000; yellow, t = 0.5, n = 10 000.
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necessary to develop a criterion for how different a suboptimal
alignment must be before we are interested in it. We currently
use the most aggressive criterion: forbidding every base pair
that participates in an alignment from participating in any
subsequent alignment. This approach risks missing interesting
patterns that slightly overlap a higher scoring alignment. The
AlignACE program masks only the most information-rich
column of its alignments (38). This method is sometimes too
lenient, suffering from `mask variants', and in some cases may
be too aggressive. Therefore, we propose using a general-
ization of Waterman and Eggert's pair-wise criterion (39): any
pair of residues that appear in the same column of an
alignment must not appear in the same column of any
subsequent alignment.

Future directions

Faster search algorithms would expand the range of problems
for which reproducible alignments can be obtained.
Techniques that could be explored include ordered over-
relaxation and parallel tempering (40,41), or use of oligomer
counting algorithms to seed Markov Chain Monte Carlo
methods. A more accurate statistical signi®cance calculation
would assist interpretation of results, as would statistical
estimates for ZOOPS alignments and for marginal scores of
aligned segments. Algorithms that can align more than one
segment from the same sequence might help to detect motifs
that occur in clustered repeats. However, this approach
massively increases the search space of possible alignments,
which both makes the search harder and increases the
likelihood of high scoring random alignments. Ultimately
we would like a fully general gapped alignment method, to
®nd motifs that tolerate insertions and deletions. The align-
ment of Alu elements (Fig. 4) suggests an interesting
generalization: to allow sequences to participate in only part
of a more extensive alignment. This approach can lead to
arbitrarily complex alignment networks (42). For alignment of
proteins, it would be wise to incorporate prior knowledge of
the chemical similarities among amino acids, for example
using a Dirichlet mixture prior (43). Some RNA motifs may
exhibit conservation of intramolecular base pairing rather than
primary sequence. Existing programs to align such motifs do
not scale to large problems (44), and it is worth exploring
advanced combinatorial optimization techniques such as
simulated annealing.

Conclusions

We have developed several useful enhancements to the Gibbs
sampling alignment method: automatic detection of the
alignment width, calculation of statistical signi®cance (albeit
conservatively), and more ef®cient optimization of the
alignment via simulated annealing. We have shown that
transcription factor-binding site discovery is limited by the
motifs' weakness rather than inadequacy of the search
algorithm. The great variety of untapped applications and
the many fascinating avenues for future development suggest
that multiple local alignment methods have yet to demonstrate
their full potential.

SUPPLEMENTARY MATERIAL

Supplementary material is available at NAR Online.
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