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Neurobiology of Disease

Predominance of D2 Receptors in Mediating Dopamine’s
Effects in Brain Metabolism: Effects of Alcoholism
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Dopamine signals through D1-like and D2-like receptors, which can stimulate or inhibit, respectively, neuronal activity. Here we assessed
the balance between D1 or D2 receptor signaling in the human brain and how it is affected in alcoholism. Using PET, we measured the
relationship between changes in dopamine and brain glucose metabolism induced by methylphenidate in controls and alcoholics. We
show that methylphenidate induced significant DA increases in striatum, amygdala, and medial orbitofrontal cortex, whereas it de-
creased metabolism in these brain regions. Methylphenidate-induced dopamine increases were greater in controls than in alcoholics,
whereas methylphenidate-induced metabolic decreases were greater in alcoholics. For both groups, methylphenidate-induced dopamine
increases were associated with decreases in regional brain metabolism, and the correlations were strongest in subthalamic nuclei,
anterior cingulate, and medial orbitofrontal cortex. These correlations were more extensive and robust and the slopes steeper in alco-
holics than in controls despite their attenuated dopamine responses to methylphenidate, which suggests an impaired modulation of
dopamine signals in the brain of alcoholic subjects. These findings are consistent with a predominant inhibitory effect of dopamine in the

human brain that is likely mediated by the prominence of dopamine D2/D3 receptors.

Introduction

Dopamine (DA) signals via D1-like (D1, D5) and D2-like (D2,
D3, D4) receptors, which have opposite effects at the cellular
level, stimulating or inhibiting, respectively, adenylate cyclase
(Girault and Greengard, 2004). Thus, by differentially affecting
D1-like versus D2-like receptors, DA can activate or inhibit re-
gional brain activity.

Drugs of abuse, which stimulate brain DA signaling (Koob
and Bloom, 1988), could therefore result in activation or inhibi-
tion of target regions of the mesolimbic and mesocortical DA
pathways, depending on the predominance of D1-like versus D2-
like receptors. Interestingly, whereas in rats cocaine predomi-
nantly increases regional activity in striatum and cortical regions,
in humans and nonhuman primates it predominantly decreases
their activity (for review, see Mandeville et al., 2011). This dis-
crepancy was interpreted as reflecting a predominance of the
inhibitory effects of D2 receptors (D2R) in humans and nonhu-
man primates and a predominance of the stimulatory effects of
D1 receptors (D1R) in rats (Mandeville et al., 2011). Here we test
the hypothesis that in the human brain there is a predominance
of D2R and thus drug-induced DA increases should predomi-
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nantly decrease regional brain activity. Also, because drug addic-
tion impairs DA signaling (Volkow et al, 2012), we also
hypothesized that the responses of the brain to DA stimulation
would be disrupted in alcoholic subjects.

For this purpose, we measured the effects of intravenous
methylphenidate (MP) on DA and on regional brain glucose me-
tabolism in controls and in detoxified alcoholics. PET imaging
with [''C]raclopride (radioligand that binds to DA D2/D3 recep-
tors that are not occupied by endogenous DA) was used to mea-
sure MP-induced changes in DA by comparing radiotracer
binding between placebo and MP conditions (Volkow et al.,
1994), while [ 18F]deoxyglucose (FDG) was used to measure the
effects of MP (compared with placebo) on brain glucose metab-
olism (marker of brain function) (Sokoloff et al., 1977). Thus,
each subject underwent two sets of paired scans in which a
["'C]raclopride scan was followed 90 min later by an FDG scan:
on one day, the set was done after placebo; and on another day, it
was done after intravenous MP (Fig. 1). MP blocks the DA trans-
porters (Volkow et al., 1998), thus increasing DA in the human
brain (Volkow et al., 2002). We previously reported the compar-
ison of the striatal DA increases induced by MP between controls
and alcoholics and showed that alcoholics had reduced responses
(Volkow etal., 2007a). Here, we extend those studies to assess, for
the first time, the relationship between the MP-induced changes
in DA and the concomitant changes in regional brain glucose
metabolism, which serves as a marker of brain activity. We also
compare the relationship between MP-induced changes in DA
and regional brain metabolism between controls and alcoholics.
We hypothesized that DA stimulation of DA D2/D3 receptors,
which are inhibitory (West and Grace, 2002), would be associated
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Figure 1. Diagram of the experimental design. Subjects were tested on two separate days.

Oneach day, they were scanned first with [ "'CJraclopride, and this was followed by an FDG scan.
Onone of the days, the subjects received intravenous placebo (saline solution); and on the other
day, they received intravenous MP, which was given 5 min before [ "'Clraclopride injection.

with decreases in regional metabolism. We also hypothesized that
alcoholics would show stronger associations as a result of impair-
ments in their ability to modulate the large increases in DA trig-
gered by intravenous MP.

Materials and Methods

Subjects. Twenty male alcoholics and 20 male healthy controls were re-
cruited, and the four imaging studies (two FDG and two [''C]raclo-
pride) were completed in 17 alcoholics (41 = 6 years old, 13 = 2 years of
education, 14 cigarette smokers) and in 19 of the healthy controls (41 =
6 years old, 14 = 2 years of education, 2 cigarette smokers). Alcoholics
were recruited from therapeutic communities and advertisements (mean
23 * 10 years of alcohol abuse, daily alcohol use of 16 = 8 beer equivalent
and had discontinued alcohol for at least 30 d with a range 30164 d). At
least two clinicians interviewed the patients to ensure that they met
DSM-1V diagnostic criteria for alcoholism, with a semistructured stan-
dardized interview. Inclusion criteria also required that they had a first-
degree relative who was an alcoholic. Subjects were excluded if they had
a history of substance abuse or addiction (other than alcohol and nico-
tine). Exclusion criteria also included history of psychiatric disease (other
than alcohol dependence), or neurological disease, medical conditions
that may alter cerebral function (i.e., cardiovascular, endocrinological,
oncological, or autoimmune diseases), current use of prescribed or over-
the-counter medications, and/or head trauma with loss of consciousness
of >30 min. All subjects had Hamilton’s Anxiety and Depression scores
(Hamilton, 1960) <19 and had to have refrained from drinking alcohol
at least 30 d before the study. Controls were recruited from advertise-
ments in local newspapers; exclusion criteria other than allowance for
alcohol dependence or abuse were the same as for alcoholic subjects. In
addition, control subjects were excluded if they had a family history of
alcoholism. All subjects had a physical, psychiatric, and neurologic ex-
amination. Drug screens were done on the days of the PET studies to
exclude the use of psychoactive drugs. Subjects were instructed to dis-
continue any over-the-counter medication 2 weeks before the PET scan
and controls to refrain from drinking alcohol the week before the PET
scan. Food and beverages (except for water) were discontinued at least 4 h
before and cigarettes for at least 2 h before the study. This study was
approved by the Committee on Research in Human Subjects at
Brookhaven National Laboratory and at Stony Brook University, and
written informed consent was obtained from all subjects.

Behavioral and cardiovascular measures. Subjective ratings for drug
effects were recorded before and 27, 57, 90, 130, and 150 min after pla-
cebo or MP administration (1-10) (Wang et al., 1997). Heart rate and
blood pressure were monitored before and periodically after placebo or
MP administration. MP concentration in plasma was measured using
capillary GC/mass spectrometry (Srinivas et al., 1991). A factorial re-
peated ANOVA was used to assess the effects of MP in the behavioral
measures (drug main effect) and to assess whether the differences dif-
fered between controls and addicted subjects (drug X group interaction
effect).

Scans. PET studies were done with a Siemens HR+ tomograph (reso-
lution 4.5 X 4.5 X 4.5 mm full width half-maximum) in 3D mode. Each
subject underwent two PET [''Clraclopride and two PET FDG scans
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done on two separate days. On a given day, each subject was injected first
with ["Clraclopride and then 90 min later with FDG. Five minutes
before injection of [ ''C]raclopride, subjects were injected with a placebo
(3 mlsalinei.v.) on one day and with MP (0.5 mg/kgi.v.) on another day.
The order of administration was randomized. The study was a single-
blind design (subjects were blind to the drugs received). For [ ''C]raclo-
pride, dynamic scans were started immediately after injection of 4-10
mCi of [ ''C]raclopride (specific activity 0.5-1.5 Ci/um at end of bom-
bardment) for a total of 60 min using previously published procedures
(Volkow etal., 1993b). For FDG, an emission scan was obtained for 20
min and was started 35 min after injection of 4—6 mCi of FDG using
previously described procedures (Wang et al., 1993). Blood sampling
was obtained from a catheter placed in the radial artery, which was
used to measure the concentration of radiotracer in plasma. During
the uptake period of FDG and during the [''C]raclopride scanning
period, subjects remained in a supine position with their eyes open in
a darkly lit room, and noise was kept to a minimum, except for the
periodic assessment of drug effects. Metabolic rates were computed
using an extension of Sokoloff’s model (Phelps et al., 1979) (for ex-
perimental design, see Fig. 1).

Analysis. The data for the [''C]raclopride images (transformed to
nondisplaceable binding potential or BPy,) and for the metabolic im-
ages (normalized to whole-brain metabolism) were analyzed using the
Statistical Parametric Mapping (SPM) (Friston et al.,, 1995) package
SPM2 (Wellcome Trust Centre for Neuroimaging). Specifically, the PET
images were spatially normalized to the stereotactic space of the MNI
using a 12-parameter affine transformation. The SPM2 FDG template
(PET.mnc) was used to normalize the metabolic images, which were then
normalized to their mean signal intensity. For the [''C]raclopride im-
ages, we estimated for each voxel, the distribution volume (DV), which
corresponds to the equilibrium measurement of the ratio of the radio-
tracer’s tissue concentration to that of its plasma concentration using a
graphical analysis technique for reversible systems (Logan etal., 1990). A
custom MNIT template, which was previously developed using DV images
from 34 healthy subjects that were acquired with [ ''C]raclopride and the
same PET scanning sequence (Wang et al., 2011), was used for the spatial
normalization of the DV images. Then, the intensity of the DV images
was normalized to that in the cerebellum (left and right ROI) to obtain
images of the DV ratios, which correspond to the nondisplaceable bind-
ing potential (BPy,) in each voxel. The normalized metabolic and BP,
images were then spatially smoothed using an 8 mm Gaussian kernel to
minimize the variability of the brain anatomy across subjects.

Statistical group analyses were based on a factorial repeated ANOVA
SPM2 model with two groups (alcoholics and controls) and two condi-
tions (MP—placebo). A mask of a priori selected regions (dorsal and
ventral striatum, amygdala, and orbitofrontal cortex [OFC]) was created
using the digital anatomical brain atlases provided with the MRIcro soft-
ware (http://www.cabiatl.com/mricro/). Specifically, the voxels corre-
sponding to the amygdala and striatum (caudate, putamen, and globus
pallidus) were defined in the MNI stereotactic space using the Auto-
mated Anatomical Labeling atlas, whereas those for the cortical regions
were computed using the Brodmann atlas (Van Essen et al., 2011). The
statistical significance of group differences on differential regional brain
metabolism and BP, (MP—placebo) within the mask of a priori selected
regions was set by a voxel-level threshold ppy; < 0.05, corrected for
multiple comparisons with the familywise error rate and small volume
corrections (10-mm-diameter spherical searching volume) in SPM2.
Simple regression analyses in SPM2 were used to access the voxelwise
correlations across subjects between the changes induced by MP on
BPy, (ABPyp,) and the changes on metabolism (AFDG), separately for
controls and alcoholics. For this purpose, we used the Biological Para-
metric Mapping, a toolbox for SPM2 that allows voxelwise statistical
analyses of multimodality imaging datasets (Casanova et al., 2007), and a
conservative statistical significance threshold (p < 0.001, 100 voxels).

ROI analyses were conducted to assess the differences in the regres-
sions of ABPy, to AFDG between controls and alcoholics. Specifi-
cally, the average intensity of the FDG and BP, images was extracted
from 10 mm isotropic ROIs (125 voxels) centered at the cluster max-
ima identified by the SPM analysis and were kept fixed across subjects.
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Figure 2.  Behavioral (4) and cardiovascular (B) effects of MP in controls (black symbols) and alcoholics (gray symbols). A,

Self-reports of drug effects, high, and stimulated were significantly larger in controls than in alcoholics (p << 0.05). Cardiovascular

effects did not differ between groups.

We used linear bivariate regression (two groups, difference between
slopes or intercepts) using the Primer of Biostatistics 4.02 software
package (Glantz, 2002; Casanova et al., 2007), to test the null hypoth-
esis for the differences in slope and intercept of the regression lines
between alcoholics and controls. Statistical significance was set at p <
0.005 to partially account for the multiple comparisons in these ROI
analyses.

The ROI measures were also used to assess the correlations between
changes in metabolism in the regions where MP-induced significant
changes and MP’s behavioral effects using Pearson’s product moment
correlation analysis. Statistical significance was set at p < 0.006 to par-
tially account for multiple comparisons (per Bonferroni for 8 behavioral
measures 0.05/8 = 0.006).

Results
Behavioral and cardiovascular effects of MP and MP
plasma concentration
MP’s behavioral effects were higher for controls than alcoholics
for “high” (ANOVA: group, p = 0.0003; drug, F = 30, p < 0.0001;
interaction, F = 7, p = 0.0001); “drug good” (group, F = 14, p =
0.0006; drug, F = 24, p < 0.0001; interaction, F = 4, p = 0.002);
and for “stimulated,” the effects were longer lasting in controls
than alcoholics (group, not significant; drug, F = 23, p = 0.0001;
interaction, F = 4, p = 0.002). Increases in “restlessness” were
similar for both groups (group, not significant; drug, F = 16, p =
0.0001; interaction, not significant); for “anxiety,” it trended to-
ward increases in controls and decreases in alcoholics (group, not
significant; drug, not significant; interaction, F = 2.5, p = 0.04);
and MP increased “nicotine craving” in alcoholics but not in
controls (group, F = 27, p < 0.0001; drug, F = 6.5, p < 0.0001;
interaction, F = 5, p = 0.0004) (Fig. 2A).

At the end of the study, subjects were asked to rate “drug
liking” (0-10), which was higher for controls (6.2 * 3) than
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alcoholics (4 = 3) and “drug disliking,”
which was higher for alcoholics (6.6 * 3)
than controls (3.8 £ 3) (p = 0.005).

MP increased heart rate and systolic
and diastolic blood pressure, but the ef-
fects did not differ between controls and
alcoholics (Fig. 2B).

Serum concentrations of MP at 15 and
60 min after injection, respectively, were
for the controls 116 = 26 and 52 *+ 11
ng/ml; and for the alcoholics 107 = 16 and
48 = 9 ng/ml; these values did not differ
between the groups.

Effects of MP on brain DA measured
with [ "'C]raclopride
Statistical parametic analysis (SPM)
revealed significant decreases in the
nonspecific binding potential (BPy) of
["'Clraclopride with MP (reflecting DA in-
creases) in striatum, amygdala, and medial
} OFC or OFC (BA 11 and BA 25) both in
— controls and alcoholics (Fig. 3; Table 1).
Comparisons of the A images for the
contrast controls > alcoholics (ppwr <
0.05) showed significant differences in puta-
men/globus pallidum (—16, 2, 6), indicat-
ing that the effects of MP in BP, were
greater in controls than in alcoholics (Fig.
3). There were no significant differences
for the contrast alcoholics > controls.
The correlation between smoking histories (number of ciga-
rettes and years of smoking in the alcoholics; 14 of the 17 alco-
holics were smokers) and MP-induced changes in BP, was not
significant.

Effects of MP on brain metabolism measured with FDG

MP did not change whole-brain glucose metabolism in controls
(placebo: 36.4 £ 5 vs MP: 38.0 = 9 umol/g/min; 5 * 22% in-
crease, not significant) or in alcoholics (placebo: 35.5 = 5 vs MP:
34.2 = 5 pmol/g/min, F = 2.5, p = 0.13; 3 £ 10% decrease, not
significant).

Brain metabolic images were normalized to the individual’s
whole-brain metabolism to accentuate regional effects. The
SPM analyses on these normalized images showed that MP
significantly increased metabolism in cerebellum in both
groups; and in controls, it also increased activity in lateral
OFC, right thalamus (including habenula), and inferior tem-
poral pole (BA 38); and in alcoholics, it also increased activity
in midbrain (Fig. 4; Tables 2 and 3). The SPM also showed that
MP-induced decreases in metabolism in striatum, medial pre-
frontal (including medial OFC), and occipital cortices (Fig. 4;
Tables 2 and 3).

Comparison of the A images (MP—placebo) between controls
and alcoholics (ppwr < 0.05) showed that the decreases in me-
tabolism were significantly larger in alcoholics than in controls in
amygdala (—26, — 2, — 16), OFC (—6, 60, — 24), and caudate/
ventral striatum (—12, 20, — 2) (Fig. 5). There were no differ-
ences in MP-induced increases in relative metabolism between
groups.

The SPM analysis for the correlation between smoking histo-
ries (number of cigarettes and years of smoking) in the alcoholics
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Figure 3.

SPM results for the comparison of MP versus placebo on the BP,, images from [ *'Clraclopride in the controls and in the alcoholic subjects (p, << 0.005). The regions shown are those

where MP decreased BP;, which correspond to the regions where MP increased DA. The contrast controls > alcoholics indicates that MP induced greater decreases in BP,, (reflecting greater DA
increases) in the controls than in the alcoholics. There were no regions where alcoholics showed greater BP,, decreases than the controls. The color scale indicates the t values for the comparisons.

Table 1. Location of regions where BPy, (D2/D3 receptor availability) was
significantly decreased by MP in controls and in alcoholics ( p;,¢-corrected = 0.05,
small volume correction)”

Region Cluster t X y z
Controls
L striatum 6620 9.1 -30 2 —6
R striatum —-22 =2 —4
R medial prefrontal 316 5.4 12 56 -2
14 60 14
L orbitofrontal 831 46 —14 32 —18
0 46 —18
L temporal 33 43 —60 —40 6
R prefrontal 439 41 38 48 28
L orbitofrontal 110 3.8 —-38 26 -=10
Alcoholics
R striatum 2814 74 10 6 =10
L striatum —16 6 10
R orbitofrontal 232 47 2 52 —22
R temporal 187 4.6 66 =50 =2
L orbitofrontal 154 33 —14 32 -22

“MNI coordinates (x, right left; y, anterior posterior; z, superior inferior) along with volume of the cluster (in voxels)
and the t values for the comparisons.
L, Left; R, right.

and MP-induced changes in regional brain metabolism revealed
that it was not significant.

Correlations between MP-induced changes in DA and in
brain metabolism

A voxelwise correlation analysis with SPM showed significant
positive correlations ( prywg < 0.05) both in controls and alcohol-
ics, such that MP-induced decreases in BPy, (reflecting DA in-
crease) were associated with decreases in relative metabolism
(Fig. 5). Thus, the greater the DA increases, the larger the relative

decreases in metabolism. Across both groups, the strongest cor-
relations occurred in subthalamic nuclei, locus ceruleus, anterior
cingulate cortex (ACC), rectal gyrus, and parahippocampal
gyrus. In cortical regions, the correlations in the alcoholics
were stronger and more extensive than in controls (Fig. 5;
Tables 4 and 5).

Comparisons of the correlations between controls and alco-
holics showed that these were significantly stronger and the re-
gression slopes steeper for alcoholics than controls in inferior
frontal cortex, superior frontal cortex, OFC, ACC, lingual and
fusiform cortices, parahippocampal cortex, and precuneus (Fig.
6; Table 6). None of the correlations was stronger in controls than
in alcoholics.

The correlation between MP-induced changes in metabolism
and its behavioral effects was not significant.

Discussion

Here we show that MP induced DA increases in striatum,
amygdala, and medial OFC, whereas it decreased metabolism in
these regions. We also show a positive correlation between MP-
induced BPy, and FDG changes, such that DA increases were
associated with decreases in regional glucose metabolism (nor-
malized to whole-brain). These correlations were significantly
stronger and the slopes were steeper in alcoholics than controls.

MP-induced DA increases

We showed that MP increased DA, as evidenced by decreases in
BPyp, which were significant in striatum (including pallidum),
amygdala, and medial OFC. Multiple studies had reported repro-
ducible decreases in striatal BPy, after stimulant (MP and am-
phetamine) administration using [ ''C]raclopride as well as other
PET D2R radiotracers (Wang et al., 1999; Shotbolt et al., 2011);
our findings are consistent with such studies. A few studies have
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SPM results for the comparison of MP versus placebo on the relative metabolicimages in the controls and in the alcoholic subjects ( p, << 0.005). The contrast shows the regions where

MP increased metabolism (yellow/red) and where it decreased metabolism (blue). The contrast alcoholic > controls indicates the regions where MP induced greater decreases in metabolism (blue)
and greater increases in metaholism (red) in alcoholics than in the controls. The color scale indicates the ¢ values for the comparisons.

Table 2. Location of regions where metabolism was significantly increased or
decreased by MP in control subjects ( py-corrected = 0.05, small volume
correction)”

Region BA Cluster t X y z

Increases

Cerebellum 14905 13.1 2 —54 —40

-2 —46 —18

L post-thalamus 230 49 24 =30 6

L lateral OFC 1,47 651 43 —36 48 —22

—52 18 —6

R hippocampal 36 160 42 30 —42 2

L temporal pole 21,38 272 42 —46 0 —48

R lateral OFC n 293 3.9 30 60 —18
Decreases

R medial frontal n 670 6.1 12 40 =10

L medial frontal 10, 11 3462 5.6 -4 48 22

—28 16 62

R occipital 19 3299 5.1 46 —80 —18

R occipital 19 1291 5.0 4 —80 —14

R putamen 190 48 38 0 14

Linsula 533 4.6 —42 —28 12

L temporal/parietal 37,39 3342 4.6 =50 —70 =10

L caudate 381 44 12 8 12

R postcentral 40 107 3.9 44 —36 38

R superior frontal 8 102 3.7 28 18 56

R caudate 158 3.6 14 12 10

L medial OFC n 128 34 —10 58 -8

“MNI coordinates (x, right left; y, anterior posterior; , superior inferior) along with volume of the cluster (in voxels)
and the ¢ values for the comparisons.

L, Left; R, right.

also reported decreases in BPyp, in amygdala with [''Clraclo-
pride after MP (Volkow et al., 2007b) and with other D2R PET
radiotracers after amphetamine administration in humans
(Riccardi et al., 2006; Slifstein et al., 2009) and in nonhuman
primates (Mukherjee et al., 2005). Although to our knowledge
this is the first report of MP-induced BPy, decreases in OFC
using [''Clraclopride, others had reported BPy,, decreases in
frontal cortex after amphetamine administration using other ra-
diotracers (Narendran et al., 2009; Treadway et al., 2012). Thus,
our findings and those from prior imaging studies suggest that
stimulant drugs administered intravenously increase DA in stria-
tum, amygdala, and OFC (however, see Limitations).

Table 3. Location of regions where metabolism was significantly increased or
decreased by MP in alcoholics ( p-corrected = 0.05, small volume correction)”

Region BA Cluster  t X y z
Increases
R cerebellum 15620 1.2 'y} —56 —38
R occipital 17,18 12 42 22 —104 —4
L occipital 17 260 4.1 =2 —104 2
L post-thalamus 125 3.9 —20 —32 14
Midbrain 175 34 10 —10 —6
—10 e I 1
L occipital 19 108 33 —26 —68 -8
Decreases
R caudate/putamen 17495 58 18 18 =2
L caudate/putamen —10 16 0
Paracentral/precuneus 517 -2 —28 66
R occipital 19 1955 47 44 —80 8
L occipital 19 2749 4.7 —62 —58 —6
R medial frontal 10 176 44 26 48 -10
L temporal pole 20,21 319 44 —44 —34 —32
L temporal pole 21 315 3.6 —56 0 —40
Precuneus 7 106 3.6 —8 —56 36
R medial temporal 21 285 3.4 58 —28 8
R precentral 4,6 304 33 34 —16 52
R precentral 4,6 138 33 48 —28 58
R precentral 4,6 128 3.1 62 -22 38

“MNI coordinates (x, right left; y, anterior posterior; z, superior inferior) along with volume of the cluster (in voxels)
and the t values for the comparisons.

L, Left; R, right.

MP-induced changes in brain activity

MP increased cerebellar metabolism, whereas it decreased rela-
tive metabolism in striatum, amygdala, and medial OFC. Inter-
estingly, the regions with decreases in metabolism were the ones
where MP induced significant DA increases (decreases in
["'C]raclopride’s BPyp).

The results are consistent with our findings in healthy controls
showing decreases in striatal metabolism (Volkow et al., 1997)
and in cocaine abusers also in amygdala and medial OFC after
intravenous MP administration (Volkow et al., 2003) and with
studies in nonhuman primates showing that acute cocaine de-
creased glucose metabolism in striatum and limbic cortex (in-
cluding OFC) (Lyons et al., 1996) and that it decreased cerebral
blood volume in striatum and frontal cortex (Mandeville et al.,
2011). They are also in agreement with fMRI studies reporting
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SPM results for the voxelwise analysis where the correlations (positive) between MP-induced changes in BP,; (reflecting DA increases) and regional brain metabolism (reflecting

changes in brain activity) were significant for the controls and the alcoholic (p, > 0.001). Decreases in BPy; reflect DA increases, such that positive correlations indicate that DA increases are
associated with decreases in metabolism. There are more extensive cortical correlations in the alcoholics than in the controls. The color scale indicates the ¢ values for the comparisons.

Table 4. Locations where the SPM voxelwise analysis showed significant
correlations between MP-induced changes in BPy, and MP-induced changes in
relative metabolism in controls (p, < 0.001)"

Table 5. Locations where the SPM voxelwise analysis showed significant
correlations between MP-induced changes in BPy, and MP-induced changes in
relative metabolism in alcoholics (p, < 0.001)°

Region BA X y z t Region BA X y z t
Thalamus VL 24 —16 8 9.73 Parahippocampal 36 30 0 —32 13.91
Pons 6 —34 —20 8.9 Insula 48 —46 —6 4 11.58
Subthalamic 6 —18 —6 826  Lingual 27 8 —36 -8 1.1
Rectal gyrus 25 2 20 —14 8.4 Pons -2 —32 —12 7.81
Parahippocampal 28 —10 —4 —16 6.02 ACC 24 -2 34 10 10.93
Rectal gyrus 25 2 10 —16 593 Medial OFC n 0 38 -2 8.53
Amygdala 34 —12 —8 —40 6.26 Medial OFC n -2 30 —6 8.06
Parahippocampal 28 —20 2 —30 5.57 ACC 24 10 28 18 10.48
Parahippocampal 36 —26 -2 —34 512 ACC 32 8 36 20 9.04
ACC 24 —8 26 14 5.72 Cerebellum —14 —30 —24 10.28
ACC 24 6 4 26 5.14 Insula 48 —44 6 0 8.32
ACC 24 0 32 16 4.88 Insula 48 —36 —16 14 7.67
“Corresponding BA and MNI coordinates (x, right left; y, anterior posterior; z, superior inferior) and the t values of the Lateral OFC 4 48 20 —20 7.59
correlations. Lateral OFC 45 48 24 10 7.55
VL, Ventrolateral. Frontal 47 40 30 4 497
SMA 6 2 -2 48 7.49
SMA 6 10 0 54 4.77
decreases in BOLD signal in ventral striatum after cocaine ad-  Precuneus 7 2 —66 40 7.3
ministration in cocaine abusers (Breiter et al., 1997; Kufahl et al.,  Cuneus 23 6 —68 26 547
2005, 2008). Combined, these findings suggest that stimulant  DLPFC 9 6 52 38 6.59
drugs decrease striatal activity in the human brain and may also ~ Medial frontal 10 8 58 32 6.16
reduce activity in amygdala and OFC. However, others have re-  Middlefrontal % 2% >4 32 535
. Middle OFC 1 8 68 —14 6.59
ported no effects of cocaine on caudate or putamen (Kufahl et al., Middle OFC " " o ¢ 634
2005), or reductions in putamen and increases in caudate (Ris- Ml e ’
- edial frontal 10 6 64 20 5.79
inger et al., 2005; Kufahl et al., 2008). The reason(s) for these e 2 40 % —% 6.39
discrepancies are unclear and may relate to regional differences in  (erebellum 30 — —-30 5.03

sensitivity and dynamics of the responses to stimulant drugs.

Different from humans, in the rat, DA agonists increase stri-
atal metabolism (most studies), whereas DA receptor antagonists
decrease striatal metabolism (Mandeville et al., 2011). The differ-
ences in the striatal metabolic response to DA agonists between
humans and rats have been hypothesized to reflect a predomi-
nance of DIR (excitatory) over D2R (inhibitory) in rats, in con-
trast to a predominance of D2R over DIR in humans and
nonhuman primates (Mandeville et al., 2011).

In alcoholics, MP-induced metabolic decreases in ventral
striatum, OFC, and amygdala were more extensive than in con-
trols despite their attenuated DA increases, which is consistent
with prior imaging studies identifying these as regions that were
impaired in alcoholics (Makris et al., 2008). Although the effects
of MP were reported as more aversive in alcoholics than in con-
trols, the correlation between the regional metabolic changes and

“Corresponding BA and MNI coordinates (x, right left; y, anterior posterior; z, superior inferior) and the t values of the
correlations.

SMA, Supplementary motor area; DLPFC, dorsolateral prefrontal cortex.

the behavioral effects was not significant, so we cannot establish
their contribution to this aversive response.

Correlation between MP-induced BPy, and

metabolic changes

To assess the effects of DA increases on brain activity, we corre-
lated the changes induced by MP in BPy, with those in regional
brain metabolism. These correlations showed a positive associa-
tion, which indicates that, in the human brain, DA increases trig-
gered by intravenous MP (seen as decreases in BPy,) are
associated with decreases in metabolic activity in subcortical re-
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lation between D2R and metabolism in a
given region would not just be a function
of D2R levels but of the relative predomi-
nance of D2R-expressing projection neu-
rons, which would affect metabolism
downstream, versus that of D2R-
expressing interneurons, which would af-

Rpc:0.92 04 Rarc: 0.87

Regn: 041, 13

-0.2

o0 0% % fect metabolism locally. Therefore, the

lack of a correlation in striatum suggests
that the decreases in metabolism induced
--X, by MP predominantly reflect the
changes in activity of terminals (pre-
sumably from dopaminergic stimula-

Ry 0.93 . .. . . .
e tion) projecting into the striatum (i.e.,
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o1 00 o1 o2 o3  cortex, thalamus, or midbrain). In con-
trast, the correlation in cortical and sub-
cortical regions could reflect the
modulatory role that D2R-expressing
®- - - interneurons have on local activity
o (Gorelova et al., 2002).

Rac: 0.95 In alcoholics, the correlations were sig-

Delta BP,, (MP —PL)

Figure 6.

inferior.

Table 6. Locations where SPM voxelwise correlations between MP-induced
changes in BP, and changes in regional metabolism were significantly greater for
alcoholics than controls”

X oy z Controls (r)  Alcoholic(r) F,p

LACC -2 3 10 068 0.96 13, p < 0.0001
RACC 10 28 18 0.52 0.94 8,p < 0.001
RACC 8 36 20 0.46 0.93 9,p < 0.0001
Inferior frontal BA 45 48 24 10 043 0.87 9, p < 0.0001
Inferior frontal BA 45 40 30 4 —0.07 0.75 12, p < 0.0001
SMABA 6 10 0 54 0.31 0.76 8,p < 0.002
Superior medial Frontal 6 52 38  0.07 0.81 1, p < 0.0001

8 58 32 —0.06 0.85 13, p < 0.0001
Middle OFC 8 68 —14 0.64 0.92 7,p < 0.004
Fusiform 40 —28 —26 041 0.87 9, p < 0.0001
Lingual 8§ —36 —8 0.43 0.93 10, p < 0.0001
Parahippocampal 30 0 —32 001 0.95 10, p < 0.0001
Precuneus 2 —66 40 —0.02 0.79 8,p < 0.002

“MNI coordinates (x, right left; y, anterior posterior; z, superior inferior), the correlation values (r) for the controls and
the alcoholics, and the F values for the comparisons of the correlations and their significance level ( p). None of the
correlations in controls was greater than in alcoholics.

L, Left; R, right; SMA, supplementary motor area.

gions, ACC, rectal gyrus, and parahippocampal gyrus. The results
from these correlations are also consistent with an inhibitory
effect of DA, mediated by D2R (presumably also D3R) in the
human brain.

Interestingly, the correlations with metabolism were observed
in cortical and subcortical regions that have relatively low levels
of D2R, whereas the correlation in striatum, which is the region
with the highest D2R levels, was not significant. This is likely to
reflect the fact that changes in regional metabolism after stimu-
lation predominantly reflect activity in terminals and not in the
cell body (Schwartz et al., 1979). Thus, the strength of the corre-

02 -01 00 01 02

Regression plots for the controls and the alcoholics for the correlation between MP-induced changes in BP, and
changes in relative metabolism. The negative values for ABP,; reflect lower BP,, measures with MP (i.e., DA increases with MP),
and negative AFDG reflect lower values with MP (decreased metabolism with MP). Open symbols and dashed lines represent
controls; and closed symbols and continuous lines represent alcoholics. STN, Subthalamic nucleus; L, left; R, right; Sup, superior; Inf,

Reap: Q0L  pificantly stronger and the slopes steeper
than in controls, such that MP-induced
DA increases (which were attenuated in
alcoholics) were associated with greater
reductions in cortical and subcortical me-
tabolism (which were enhanced in alco-
holics). Interestingly, regions that showed
stronger correlations in the alcoholics are
ones that show relatively high levels of
D3R mRNA expression and D3R levels
(ACC and rectal gyrus) (Suzuki et al., 1998; Tupala et al., 2003)
and thus could reflect sensitized responses to D3R stimulation.
However, they could also reflect an impaired modulation of DA
signaling. For example, decreases in inhibitory GABAergic sig-
naling in alcoholism (Kumar et al., 2009) could result in reduced
GABA modulation of DA signaling, allowing for the stronger
correlations. Indeed, alcoholics compared with controls show
decreased metabolic responses to the GABAergic enhancing drug
lorazepam as measured with PET and FDG (Volkow et al.,
1993a), decreased GABA concentration as measured with MRS
(Behar et al., 1999), and decreased GABA-benzodiazepine recep-
tor levels as measured with SPECT (Lingford-Hughes et al.,
1998). However, glutamate or other neurotransmitters (i.e., se-
rotonin), which are also impaired in alcoholism (Ridge et al.,
2008; Nishikawa et al., 2009), could also contribute to the
impaired modulation of DA signaling in alcoholics.

Limitations
The specific to nonspecific binding ratio for [''C]raclopride in
extrastriatal regions is low, so we cannot exclude the possibility
that changes in OFC and amygdala reflect nonspecific binding.
Although prior studies had used [ ''C]raclopride to measure D2/
D3R availability in extrastriatal regions in disease (Pavese et al.,
2003; Ribeiro et al., 2009; Pavese et al., 2010; Politis et al., 2011)
and to assess DA changes after stimulation (Sawamoto et al.,
2008; Stokes et al., 2010), more work is necessary to corroborate
that BPp, decreases in extrastriatal regions reflect DA increases.
MP was given 5 min before [''C]raclopride, which was fol-
lowed 90 min later by FDG; thus, the effect of MP on DA was
measured when MP was rapidly getting into the brain, whereas
the effect on metabolism was measured when MP’s levels in brain
had stabilized (Volkow et al., 1995). Because the initial brain
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uptake of MP (when injected intravenously) is associated with its
rewarding effects, which return to baseline 20-30 min after its
injection even when MP brain levels are still high (Volkow et al.,
1995), the sequential administration confounds the interpreta-
tion of the relationship between the DA increases produced by
MP and its regional brain metabolic changes. Therefore, the met-
abolic changes have to be interpreted as reflecting changes in
activity that follow the fast DA increases induced by MP. We
chose this design to avoid giving two MP doses to the subjects and
having to scan them on four different days. However, despite this
limitation, the design is still valid because the pharmacological
effects of MP persist for at least 2-3 h (Patrick and Markowitz,
1997), which is within the time window of the FDG measures.
Moreover, at 90 min (time of FDG injection), the concentration
of MP in brain is still very high (Volkow et al., 1995). Further-
more, based on the MP plasma concentration obtained at 60 min
(4852 ng/ml), the predicted plasma levels at 90 min (~25-30
ng/ml) would have been higher than those associated with MP’s
therapeutic effects (6—15 ng/ml) (Patrick and Markowitz, 1997).
Finally, when we measured the effects of MP 1 min after its intra-
venous administration, we observed a similar pattern of changes
in regional brain glucose metabolism to those reported in this
study, including decreases in striatal and medial OFC metabolism
and increases in cerebellar metabolism (Volkow et al., 2003).

In conclusion, our findings are consistent with a predominant
inhibitory effect of DA in the human brain presumably mediated
by the prominence of dopamine D2/D3 receptors that is en-
hanced in alcoholic subjects.
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