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Abstract
Purpose—To identify regional network covariance patterns of gray matter associated with
Alzheimer’s disease (AD) and to further evaluate its replicability and stability.

Materials and Methods—This study applied a multivariate analytic approach based on scaled
subprofile modeling (SSM) to structural MRI data from 19 patients with AD and 19 healthy
controls (HC). We further applied the derived covariance patterns to examine the replicability and
stability of AD-associated covariance patterns in an independent dataset [13 AD and 14 HC]
acquired with a different scanner.

Results—The AD-associated covariance patterns identified from SSM combined principal
components mainly involved the temporal lobe and parietal lobe. The expression of covariance
patterns was significantly higher in AD patients than HC (t(36) = 5.84, p= 5.75E–7) and predicted
the AD/HC group membership (84% sensitivity and 90% specificity). In replicability evaluation,
the expression of the forward applied covariance patterns was still statistically significant and had
acceptable discriminability (69% sensitivity and 71% specificity).

Conclusion—AD patients showed regional gray matter alterations in a reliable covariance
manner. The results suggest that SSM has utility for characterizing covariant features, therefore,
can assist us with further understanding covariance patterns of gray matter in AD based on the
view of the network.
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INTRODUCTION
Alzheimer’s disease (AD) is a neurodegenerative disorder. It is typically characterized by
progressive memory impairment, other associated cognitive decline, amyloid plaques,
neurofibrillary tangles in multiple brain regions and regional and global brain volume
atrophy (1–4). Structural magnetic resonance imaging (MRI) has long been used in the study
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of /AD, providing remarkable opportunities to investigate the morphological abnormalities
in brain anatomy. Using different analytic approaches and measurement indices, a large
number of structural MRI studies have demonstrated abnormal changes in gray matter (5–9).
These studies consistently confirm that regional brain tissue atrophy starts at the medial
temporal structures, including the bilateral hippocampus and entorhinal cortex, and
subsequently extends to the posterior cingulate gyrus, medial thalamus and the parietal and
frontal lobes with the advancement of the disease.

Measures from structural MRI have been proposed to serve as AD biomarkers (10,11).
Global and/or regional brain morphometry information provided by structural MRI is
abundant and could be used for the early diagnosis and quantitative evaluation of the disease
progression of AD (12). The brain anatomic structure is a highly complex network system
with different regions that are morphometrically interconnected and influenced by each
other, and these interconnections are affected by aging, disease and other factors (6,13,14).
Untill now, few structural MRI studies have identified AD-related anatomical changes based
on the view of structural networks. Alterations of the covarying pattern in the regional brain
networks, however, could play a vital role in understanding the patterns and features of AD
pathology.

To date, numerous structural MRI studies have applied univariate analysis methods, such as
manually traced or automatically defined regions of interest (ROI), or voxel-based
morphometry (VBM) to investigate gray matter abnormalities in AD (5,7). Voxel-based or
ROI-based univariate analysis approaches can only examine differences in peak voxels and
provide local information but not the inter-regional covarying relationship of gray matter
volumes among different brain regions. In contrast, multivariate analysis methods, such as
scaled subprofile modeling (SSM) (15), view various brain regions as inter-related and
coordinated nodes of an integrated network. SSM establishes a global index (subject score)
that integrates the interregional covarying information over the entire brain volume on a
voxel-by-voxel basis and that, at the same time, is free of multiple comparisons typically
associated with univariate approaches (15,16). Thus SSM may capture the subtle changes
and has greater sensitivity in examining the regional effects in brain tissue components (13).
SSM has been widely and successfully used in brain functional imaging studies (17,18), and
recently in structural MRI studies (13,19–21).

In the current study, we applied the SSM multivariate analytic approach to structural MRI
data from patients with AD and healthy controls (HC). We aimed to identify regional
network covariance patterns of structural MRI gray matter associated with AD and to further
evaluate the replicability and stability of AD-associated covariance patterns in an
independent dataset acquired with a different scanner.

MATERIALS AND METHODS
Participants And MRI Acquisition

Participants were recruited from two hospitals, Beijing Tiantan Hospital (Group 1) and
Xuanwu Hospital of Capital Medical University (Group 2), Beijing, China, respectively.

In Group 1, there were 19 patients with AD [7 males and 12 females; ages between 55 and
81 years old (mean±SD: 65.2±8.3); mean Mini-Mental State Examination (MMSE): 11.7,
range: 0–23] and 19 HC [12 males and 7 females; ages between 57 and 79 years old
(67.8±6.9); mean MMSE: 29, range: 27–30]. The diagnosis of probable AD was made
according to the International Statistical Classification of Diseases and Related Health
Problems 10th Revision (ICD-10) criteria for dementia. The severity of cognitive
impairment was assessed with the MMSE. HC had no cognitive complaints and did not have
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neurological or psychiatric disorders. The AD group did not differ significantly from HC in
sex ratio (χ2

(1) = 2.63, p= 0.105) or age (t(36) = 1.04, p= 0.110). MRI was performed with a
3.0T Siemens Trio Tim scanner. For each subject, whole-brain T1-weighted, sagittally
oriented 3D anatomical imaging data were acquired using a magnetization-prepared rapid-
acquisition gradient echo (MPRAGE) sequence (TR=2100 ms, TE=3.25 ms, TI=1200 ms,
flip angle=10°, field of view=256×256 mm2, matrix size=256×256 and voxel size=1×1×1
mm3).

For Group 2, the detailed demographic information on participants and scanning parameters
has been reported in our previous study (22). Thirteen patients with AD [6 males and 7
females; ages between 58 and 81 years old (72.1±6.5); mean MMSE: 18.5, range: 12–23]
and 14 HC [6 males and 8 females; ages between 61 and 82 years old (70.4±3.5); mean
MMSE: 28.5, range: 27–29] were included. Volumetric T1-weighted 3D MPRAGE
anatomical MRI data were acquired on a 3.0T Siemens Trio Tim scanner for all subjects
(TR=1900 ms, TE=2.2 ms, TI=900 ms, flip angle=9°, field of view=224×256 mm2, matrix
size=448×512 and voxel size=0.5×0.5×1 mm3).

This current study was approved by the local Medical Research Ethics Committee. Written
informed consent was obtained from all participants.

Image Preprocessing
The spatial preprocessing of structural MRI data was performed using SPM8 (http://
www.fil.ion.ucl.ac.uk/spm) with a DARTEL-based VBM protocol (23,24). DARTEL,
standing for “Diffeomorphic Anatomical Registration using Exponential Lie Algebra”, is a
recently introduced algorithm for diffeomorphic image registration, running as a toolbox in
SPM8. DARTEL utilizes a single constant velocity field to generate diffeomorphic and
invertible deformations. The template creation and image registration are iteratively
implemented and the structural MRI data for each subject are warped to a new template in
each iteration. The first step of the DARTEL-based VBM procedure was to segment the
native space images into rigid-body aligned gray and white matter images of the subjects
(rigid-body aligned to the SPM8 default tissue probability maps). The second step imported
gray matter images to create specific deformation fields by aligning gray matter to a gray
matter template using the DARTEL registration algorithm. The third step used flow fields to
separately warp the native gray matter images to the final template space and further
Montreal Neurological Institute (MNI) space. In addition, the registered gray matter
partitions were multiplied by the Jacobian determinants from the deformations to preserve
the total amount of tissue in the native spaces. Finally, the gray matter maps for all subjects
were smoothed with a 10 mm full width at half maximum (FWHM) Gaussian kernel.

SSM Analysis
Multivariate SSM analysis was performed for the DARTEL-based VBM processed gray
matter volume images using the SSMPCA toolbox in MATLAB (http://
www.feinsteinneuroscience.org). SSM was based on a modified principal component
analysis (PCA), including 1) log-transformation, the initial data matrix (subjects by voxels)
was logarithmically transformed; 2) global normalization, the voxel mean across the whole
brain was substracted from the log-transformed data for each subject, and then the mean
across subjects was subtracted to produce the subject residual profile (SRP) matrix, and 3)
PCA analysis, a subject-by-subject covariance matrix was computed from the SRP matrix,
and subsequently, PCA was performed to acquire subject scaling factors (SSF) (15,16). The
images of both AD patients and healthy control subjects from Group 1 were included to
produce a series of principle components (covariance patterns) and their corresponding SSF
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(subject scores). The SSF value indicates the relative degree of similarity of each subject’s
gray matter map to the corresponding regional covariance patterns.

Akaike’s information criterion (AIC) was used to determine the optimal number of principal
components (25). The set of principal components (SSF values) with the lowest AIC value
was entered into a multiple linear regression model to predict AD/HC group membership.
Covariance patterns that were significant as AD/HC predictors were identified with p ≤ 0.05.
Based on the multiple regression results, the AD-related covariance pattern was created as a
linear combination. Thus-generated covariance pattern was converted to a z-score map
standardized by the standard deviation. Voxels with z-scores threshold of z ≥ |1.65| (p ≤
0.05) were visually examined and used to reflect the related brain regions involved in the
covariance network.

Application of the Covarying Patterns to an Independent Dataset: Replicability Evaluation
The covarying patterns that were first identified with SSM analysis based on data from
Group 1 was forward applied to the subjects in Group 2 to evaluate the replicability and
stability of AD-associated covarying patterns. The forward application is the procedure of
calculating subject scores of Group 2 based on the derived covariance patterns from Group
1. These subject scores were mathematically implemented as the topographic profile rating
(TPR) scores for subjects in Group 2. TPR scores, representing the degree to which the
derived covariance patterns were manifest in an independent dataset, were obtained by
multiplying the subject residual profile vector by the previously derived pattern vector (i.e.
the dot product of these two vectors) (16). TPR scores were z-transformed to determine the
sensitivity and specificity of discrimination classification for subjects in Group 2.

RESULTS
Generation of AD-Related Covariance Patterns

The optimal number of principal components was 10 according to AIC. The regression
model including the SSF for the first 10 components significantly predicted the AD/HC
group membership (F(10,27) = 4.42, p= 9.94E–4), and the first component was the most
significant (t(27) = 3.89, p= 5.91E - 4). A linear combination of the first four significant
components, accounting for 49% of the total variance, was the best discriminating pattern
(F(4,33) = 7.82, p=1.51E – 4). The expression of covariance patterns was significantly higher
in AD patients than in the HC group (t(36) = 5.84, p= 5.75E–7) (Fig. 1a). The receiver
operating curve (ROC) analysis demonstrated discrimination classification with 84%
sensitivity and 90% specificity (area under curve = 0.889, SE = 0.059, p= 4.10E–5) (Fig.
1b). Moreover, the expression of covariance patterns was significantly correlated with the
MMSE scores in AD patients (r(19) =−0.479, p= 0.038).

Negative weights in the covariance pattern map represent reduced regional gray matter
volumes in AD patients compared with HC, and vice versa. The gray matter voxel-based
volume decreased mainly in the middle/inferior temporal gyrus, hippocampus,
parahippocampal gyrus, inferior parietal lobule, putamen, caudate nucleus, insula, middle/
superior frontal gyrus, and middle occipital gyrus and was relatively preserved mainly in the
calcarine sulcus, postcentral gyrus, supplementary motor area, paracentral lobule, lingual
gyrus and precentral gyrus (Fig. 2). Table 1 shows specific brain areas, Talairach
coordinates and z values.

Replicability Evaluation
For Group 2, the expression of the forward applied covariance patterns was significantly
higher in AD patients than in the HC group (t(25) = 2.55, p= 0.009) (Fig. 3a). The ROC
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analysis demonstrated discrimination classification with 69% sensitivity and 71% specificity
(area under curve = 0.747, SE = 0.096, p= 0.029) (Fig. 3b).

DISCUSSION
The present study performed SSM multivariate analysis of structural MRI data to capture
AD-related regional network covariance patterns. AD patients showed the distributed
effects, such as gray matter volume decreases over multiple brain regions in a covarying
manner. The regions with gray matter volume decreases in AD patients mainly included the
middle temporal gyrus, hippocampus, parahippocampal gyrus, and inferior parietal lobule
(Fig. 2). Additionally, relatively preserved regions were also observed and included mainly
the calcarine sulcus, postcentral/precentral gyrus, supplementary motor area and paracentral
lobule (Fig. 2). More importantly, the forward application of the derived pattern expression
established in Group 1 confirms the replicability and stability of AD-associated covariance
patterns in an independent sample.

AD-associated covariance pattern scores from SSM combined principal components were
significantly higher in AD patients than in HC in both Group 1 (Fig. 1a) and Group 2 (Fig.
3a). Moreover, ROC analysis demonstrated discrimination classification with 84%
sensitivity and 90% specificity in the pattern generation group (Fig. 1b), and it was still
statistically significant and consistent but with somewhat lower sensitivity and specificity in
the independent group (Fig. 3a and 3b). These statistical results suggest that the multivariate
SSM technique could differentiate AD patients from healthy control subjects, as we
expected.

The SSM findings of the interrelated gray matter volume reductions in AD patients from this
current investigation are generally consistent with previous structural MRI studies using
univariate voxel-based analysis methods (5,7,22). In particular, SSM detected the typically
affected brain regions, such as the middle temporal gyrus, hippocampus, parahippocampal
gyrus and subcortical nuclei, including the putamen and caudate nucleus in AD patients.
Volume decreases in the hippocampus and parahippocampal gyrus are considered as the
most valuable structural MRI biomarkers of AD pathology for prediction and early
diagnosis (10,11,26). In addition, SSM also found that gray matter volume reductions within
the parietal lobe involved the inferior parietal lobule. The pathological alteration of the
parietal lobe has been of great importance in the development of AD, and the inferior
parietal lobule may be more vulnerable than other parietal association areas (27). Together
with previous studies, this study demonstrated that SSM detected the covarying patterns
relevant to AD and could be used to characterize anatomical abnormalities in AD patients
compared with HC.

Functional MRI (fMRI) studies demonstrated selective changes of the functional network in
individuals at risk for AD or patients with mild AD (28,29). Greicius et al. found that
resting-state default mode network (DMN) activity distinguished AD from healthy aging
and confirmed that functional connectivity reflected structural connectivity in DMN (28,30).
Seely et al. tested the network degeneration hypothesis in five different neurodegenerative
syndromes and suggested that specific neurodegenerative diseases targeted distinct function-
structure networks (31). It is also interesting to note that AD patients exhibited covariant
volume reductions in gray matter, such as the inferior temporal gyrus, hippocampus,
parahippocampal gyrus, inferior parietal lobule and middle/superior frontal gyrus, in DMN.
The gray matter volume alterations in covarying patterns indicated that these regions were
possibly in the same structural network involved in episodic memory and executive function
impairment in AD (1). The anatomical structure serves as the brain function substrate, and
changes in functional networks are possibly associated with abnormalities in structural
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networks (9,29). Therefore, investigations of brain structural networks help to construct a
relevant neuroanatomy model and provide theory evidence and basis for studies on
functional networks together (31).

This study also found some spare brain regions in which gray matter volumes were
relatively preserved in AD patients compared with the normal controls. These regions were
mainly in the calcarine sulcus, postcentral/precentral gyrus, supplementary motor area and
paracentral lobule. Brain areas with preserved gray matter volumes were also observed in
most univariate voxel-based structural MRI studies (7). The existing documents on the
whole are in agreement with significant gray matter atrophy in the temporal and parietal
lobes with sparing sensor and motor cortices (27,32).

One advantage of the SSM method is that each participant has a subject score representing
its contribution to the expression of covariance patterns. This single score can be used free
of the concern of using multiple comparisons to characterize AD differences (with regard to
normal controls in this study) in the clinical setting. The correlation analysis showed that the
subject scores were significantly negatively correlated with the MMSE scores in the AD
group. Such negative correlation suggested that greater expression of the covariance patterns
was associated with poorer clinical performance in AD patients. To make this subject score
objective and reliable, its sensitivity and specificity need to be examined using an
independent dataset. In the current study, a forward calculation was performed to evaluate
the ability of the identified covariance patterns to differentiate AD patients from controls.
Satisfactorily, AD patients in Group 2 demonstrated a significantly greater reflection of the
covariance patterns established in Group 1 (Fig. 3a). It should be noted that the number of
samples in Group 2 is small, the data were acquired from a different scanner and the subject
scores had relatively greater variability. Nevertheless, ROC analysis still indicated
discriminability with acceptable sensitivity and specificity (Fig. 3b).

In addition, we also conducted a univariate VBM analysis in Group 1. No voxels survived at
the threshold of p ≤ 0.05 when corrected for multiple comparisons. When the significance
level was set at uncorrected p ≤ 0.05, the locations of gray matter volume alteration in AD
patients compared to HC were similar to the multivariate SSM based findings. The
similarity of pattern is often used as a way to validate multivariate techniques such as SSM
(13). The univariate approach can only examine differences in peak voxels, while
multivariate SSM integrates covariance information and identifies gray matter volume
changes across all voxels; moreover, the SSM subject scores do not need multiple
comparison correction, while statistics based on the univariate approach do. The SSM
method emphasizes the covariance information of imaging data and yields interrelated
morphological features and a representation of the defined network patterns, thus SSM may
detect the subtle regional alterations and has greater sensitivity (13,19). Our results from
both univariate and multivariate methods confirmed this perspective.

The coordinated variations in brain anatomical regions are affected by various factors. In
recent years, multivariate analytic techniques aiming at the interrelationship among brain
regions, have been increasingly utilized to evaluate neural networks in different populations
(6,13,19,31,33). A small number of structural MRI studies using SSM primarily focused on
healthy aging (13,20,21). These studies successfully captured age-associated networks of
regional covariance in structural MRI data in normal aging and provided an important basis
for exploring the interrelationship of gray matter volume in AD in the present study. In
contrast to reports on covariance patterns of normal aging, there are relatively few AD-
related network studies in structural MRI and the covariance patterns and features of AD
pathology are still poorly understood. Using a multivariate small world approach, He et al.
found both decreases and increases in cortical thickness intercorrelations in the parietal and
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temporal cortex implying aberrant changes in cortical morphometry in AD patients (6).
Alexander et al. investigated gray matter network associated with risk for AD using SSM in
young to middle-aged adults (19). Our current study indicated that gray matter damage
affected broad networks in AD.

In conclusion, AD patients showed regional gray matter alterations in a covarying manner.
More importantly, the forward application suggests that the identified regional covariance
patterns are reliable and generalizable. Although the size of the sample is relatively small in
the current study, but is comparable to the other published SSM reports in structural MRI
studies (19,20). Our results suggest that multivariate SSM analysis of structural MRI is a
potentially suitable approach for identifying network-based AD biomarkers. We believe that
network features contribute to explore the underlying architectures of complex brain
networks in AD patients. SSM findings in this study can assist us with further understanding
covariance patterns of gray matter in AD based on the view of the network.
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Figure 1.
The statistical results based on AD-associated covariance pattern scores in Group 1. (a) The
scatterplot of covariance pattern scores. The covariance pattern scores were calculated from
the linear combination of the four significant principal components in 19 AD patients and 19
HC. The expression of covariance patterns was significantly higher in AD patients than in
the HC group. (b) ROC curve of discriminability from the expression of covariance patterns.
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Figure 2.
Covariance pattern map in gray matter volume in AD patients compared with HC in Group
1. Negative weights (“hot” colors) in the map represent reduced regional gray matter
volumes in AD patients compared with HC, and positive weighs (“cold” colors) illustrate
increases. The color bar represents the z scores, and the left of the plane is the left of the
brain.
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Figure 3.
The statistical results of replicability evaluation according to the forward application in
Group 2. (a) The scatterplot of AD-associated covariance pattern scores. (b) ROC curve of
discriminability for the forward application.
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