Skip to main content
. 2013 Jul-Sep;5(3):148–157.

Table 1.

The Weka classifier models and their accuracy of prediction on the independent test set

Classifier Accuracy (%) Classifier Accuracy (%) Classifier Accuracy (%)
NBTree 77.1435 Random forest 71.6437 Voted perceptron 60.9159
SMO 76.9305 Classification via regression 71.1627 IB1 60.7905
Decision table 76.2861 Bayes Net 71.1209 IBk 60.7905
Attribute selected classifier 76.2233 Rotation forest 70.4308 Multilayer perceptron 59.7449
Filtered classifier 76.1188 LADTree 70.2217 Naïve bayes multinomial 58.9921
Bagging 75.366 LogitBoost 69.6989 Complement naïve bayse 58.9293
Decorate 75.0314 ADTree 68.4442 Naïve bayes simple 58.7829
JRip 74.4458 FT 68.2978 Naïve bayes 58.5529
END 74.3622 AdaBoostM1 67.2313 Naïve bayes multinom updateable 58.5529
Nested Dichotomies Class Balanced ND 74.3622 RandomTree 66.1857 Naïve bayes updateable 58.5529
Nested Dichotoies Data Near Balanced ND 74.3622 Raced incremental logitBoost 65.0774 DMNBtext 57.7373
Nested Dichotomies ND 74.3622 OneR 63.279 Threshold selector 56.3363
Ordinal class classifier 74.3622 Conjunctive rule 62.4843 RBF network 56.0435
J48 74.3622 KStar 61.9824 VFI 51.7984
PART 74.3413 LWL 61.857 Classification via clustering 50.2928
J48graft 74.3413 Decision stump 61.857 CV parameter selection 49.9791
Random sub space 74.2158 SPegasos 61.7942 Grading 49.9791
Simple cart 73.923 Multi boost AB 61.7315 Multi scheme 49.9791
LMT 73.6303 NNge 61.7315 Stacking 49.9791
Ridor 73.4421 Bayesian logistic regression 61.606 StackingC 49.9791
BFTree 73.3166 Logistic 61.5851 Vote 49.9791
DTNB 73.1493 Multi class classifier 61.5851 ZeroR 49.9791
REPTree 72.3756 Simple logistic 61.376 Hyper pipes 49.9164
Random committee 71.9155 Dagging 61.2505