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Viral infections are common causes of fever without an apparent
source in young children. Despite absence of bacterial infection,
many febrile children are treated with antibiotics. Virus and bacteria
interact with different pattern recognition receptors in circulating
blood leukocytes, triggering specific host transcriptional programs
mediating immune response. Therefore, unique transcriptional
signatures may be defined that discriminate viral from bacterial
causes of fever without an apparent source. Gene expression
microarray analyses were conducted on blood samples from 30
febrile children positive for adenovirus, human herpesvirus 6, or
enterovirus infection or with acute bacterial infection and 22
afebrile controls. Blood leukocyte transcriptional profiles clearly
distinguished virus-positive febrile children from both virus-negative
afebrile controls and afebrile children with the same viruses present
in the febrile children. Virus-specific gene expression profiles could
be defined. The IFN signaling pathway was uniquely activated in
febrile children with viral infection, whereas the integrin signaling
pathway was uniquely activated in children with bacterial in-
fection. Transcriptional profiles classified febrile children with viral
or bacterial infection with better accuracy than white blood cell
count in the blood. Similarly accurate classification was shown with
data from an independent study using different microarray plat-
forms. Our results support the paradigm of using host response to
define the etiology of childhood infections. This approach could be
an important supplement to highly sensitive tests that detect the
presence of a possible pathogen but do not address its pathogenic
role in the patient being evaluated.

Analysis of the transcriptional profile of the host may provide
an indirect approach to pathogen detection and disease as-

sessment that can supplement direct approaches, such as culture
or nucleic acid amplification (1). This analysis may be especially
useful when a pathogen is not detected or the pathogenic role of
a detected microbial agent is in question. Circulating blood leu-
kocytes react to pathogens by recognizing pathogen-specific mo-
lecular patterns through pattern recognition receptors leading to
up- or down-regulation of the expression of host genes associated
with immune functions (2, 3), with differential activation of host
transcriptional programs with different pathogens (4). Thus, host
blood transcriptional profiles and representative biomarkers may
be powerful tools for categorizing infection (5).
In previous studies, host transcriptional analysis has been ap-

plied successfully to distinguish acute influenza A infection from
specific bacterial infections (6) and Kawasaki disease from ade-
novirus infections (7), characterize acute invasive Staphylococcus
aureus infections (8), distinguish active tuberculosis from other
infectious and inflammatory diseases (9), and distinguish septi-
cemic melioidosis from sepsis from other causes (10). In addi-
tion, specific blood transcriptional signatures were defined in
adult volunteers challenged with specific respiratory viruses (11).
Analysis of host transcriptional profiles has also been applied
to the diagnosis of inflammatory and hematological diseases
(12–15), including the identification of potential biomarkers
for specific disease entities (5).
In recent studies, we have been able to confirm infection with

specific viruses in most children with fever without a source
(FWS) (16). We hypothesized that these children would have
distinctive blood leukocyte transcriptional profiles associated

with specific viral infection and that it would also be possible to
use blood transcriptional profiles to distinguish children with
viral infection from children with bacterial infection. We also
hypothesized that symptomatic and asymptomatic children in-
fected with the same virus would have distinctively different
leukocyte transcriptional profiles. To test these hypotheses, we
analyzed the blood leukocyte transcriptional profiles of febrile
children with systemic DNA and RNA viral infections compared
with those profiles of afebrile children positive for the same
viruses, febrile children with acute bacterial infection, and virus-
negative afebrile children.

Results
Transcriptional Profiles of Virus-Positive Febrile Children and Febrile
Children with Acute Bacterial Infection Differed from Profiles of Afebrile
Virus-Positive and -Negative Children. We analyzed microarray
data covering the whole human transcriptome from Illumina
Human HT12 BeadChips consisting of 47,300 probes hybrid-
ized with RNA samples extracted from whole-blood speci-
mens from 30 febrile children [8 children positive for human
herpesvirus 6 (HHV-6), 8 children positive for adenovirus, 6
children positive for enterovirus, and 8 children with acute
bacterial infection]. The same microarray assay was per-
formed on blood samples from 35 afebrile children (2 children
positive for HHV-6, 3 children positive for adenovirus, 8
children positive for rhinovirus, and 22 virus-negative control
children).
By using a strategy based on intersecting various probe sets as

described previously (17), we identified sets of probes that were
significantly up- or down-regulated for each of the virus-positive
groups and the febrile acute bacterial infection group compared
with afebrile virus-negative control children (Fig. 1A). Using this
method, we identified 260 probes with significant up- or down-
regulation specifically in virus-positive febrile children and 1,321
probes with significant up- or down-regulation specifically in
children with febrile acute bacterial infection. Analysis of 260
viral probes revealed substantial overlap in gene expression
profiles for febrile children who were positive for adenovirus,
HHV-6, or enterovirus infection, all of which were very different
from the profiles of most afebrile children (Fig. 1B). Profiles of
virus-positive and -negative afebrile children were indistinguish-
able. Analysis using 1,321 bacterial probes showed similar patterns
of gene expression for most of the children with fever and acute
bacterial infection that differed from those patterns of the other
groups, with a few exceptions (Fig. 1C).
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The extensive differences in gene expression profiles between
febrile and afebrile children were further analyzed for each virus
and acute bacterial infection by principal component analysis and
analysis of genes grouped into Ingenuity canonical pathways (www.
ingenuity.com). Results for HHV-6 are shown in Fig. 2, and results
for adenovirus, enterovirus, and acute bacterial infection are
available in Figs. S1, S2, and S3. Pathways with the most significant
transcriptional changes for children with each of the three viral
infections and acute bacterial infection are shown in Fig. S4.

HHV-6. Comparison of individual probes between HHV-6–posi-
tive febrile children and virus-negative afebrile children yielded
3,467 probes with significant transcriptional changes, including
798 probes with twofold or greater changes (606 up- and 192
down-regulated) (Fig. 2A). Principal component analysis of the
transcriptional profiles revealed clear differences between
the febrile and afebrile HHV-6–positive children (Fig. 2B). The
sample from the one child in the virus-negative afebrile control
group with a transcriptional pattern in the heatmaps (shown in
Fig. 1 B and C) that was similar to the patterns of those children
with febrile infection was classified with febrile infections in the
principal component analysis. The most up-regulated gene was

interferon alpha-inducible protein 27 (IFI27)/interferon-stimulated
gene 12A (ISG12A), which mediates IFN-induced apoptosis by the
release of cytochrome C from the mitochondria and activation
of BAX and caspases (18). Analysis of transcriptional pathways
showed a number of pathways with up-regulation of many
component genes (Fig. 2 C–F).

Adenovirus. The gene expression profile of adenovirus-positive
febrile children (Fig. S1) showed major overlap with the profile
of HHV-6–positive febrile children. Statistical comparison of
transcriptional profiles between adenovirus-positive febrile chil-
dren and virus-negative afebrile children showed 5,604 probes
with significant transcriptional changes, including 847 probes
with a twofold or greater increase (576) or decrease (271) in
expression level. Principal component analysis revealed the clear
differences between the febrile and afebrile adenovirus-positive
children. As was also true for HHV-6, the most up-regulated
gene was IFI27/ISG12A. The pathways with the most significant

Fig. 1. Identification of virus- and bacteria-specific probes for distinguish-
ing virus-positive febrile children and febrile children with acute bacterial
infection from virus-negative afebrile children. (A) Venn diagram showing
identification of virus- and bacteria-specific probes. Sets of probes differ-
entially expressed in febrile children positive for one or more of three viruses
compared with virus-negative afebrile control children were intersected, and
1,691 pan-virus probes were identified and intersected with the sets of
probes that were differentially expressed in children with febrile acute
bacterial infection compared with virus-negative afebrile control children.
From this analysis, 413 virus- and 1,939 bacteria-specific probes were iden-
tified, and probes specific for individual viruses were also identified. (B and
C) Heatmaps showing gene expression based on (B) 260 virus- and (C) 1,321
bacteria-specific probes in children with febrile and afebrile viral and bac-
terial infections and afebrile virus-negative control children. These probes
were selected in the same manner as 413 virus- and 1,939 bacteria-specific
probes described above, except that, for this selection, we excluded 2 of 22
virus-negative controls, because they had expression profiles very similar to
those profiles with viral/bacterial infections. We also excluded any probes
that were not annotated in GenBank Build36 (National Center for Biotech-
nology Information). F+, febrile, F−, afebrile. Each row represents a gene with
expression value that is normalized to the mean of the afebrile virus-negative
control group, and each column represents one individual. Red represents up-
regulation, and blue represents down-regulation.

Fig. 2. Blood leukocyte transcriptional profiles of febrile and afebrile HHV-
6–positive children compared with those profiles of afebrile virus-negative
children. Microarray analysis was conducted on RNA extracted from blood
samples of 10 children positive for HHV-6 (8 febrile and 2 afebrile children)
and 22 afebrile virus-negative children. (A) Hierarchical clustering of all
probe sets with a statistically significant more than twofold difference be-
tween HHV-6–positive febrile and afebrile virus-negative control children
(FDR at 5%). (B) Principal component analysis of differentially expressed
genes, with each oval representing one child. (C–F) Hierarchical clustering of
differentially expressed genes in A according to their expression intensity in
four Ingenuity canonical pathways of particular interest, which were among
the most strongly activated pathways in HHV-6–positive febrile children.
Each row represents a gene with expression value that is normalized to the
mean of the afebrile virus-negative control group. Gene names are listed to
the left. Each column represents one individual. Red represents up-regula-
tion, and blue represents down-regulation.
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transcriptional changes were also similar to those pathways for
HHV-6 infection (Fig. S4).

Enterovirus. Comparison of transcriptional profiles of enterovi-
rus-positive febrile children and virus-negative afebrile control
children yielded 4,184 probes with significant changes (Fig. S2).
The magnitude of these transcriptional changes was generally
less than the magnitude for adenovirus and HHV-6, and there-
fore, false discovery rate (FDR) was set at 20% to maximize the
possibility of detecting either up- or down-regulated genes. This
procedure yielded 678 probes with twofold or greater transcrip-
tional change (559 up- and 119 down-regulated). As in HHV-6 and
adenovirus infections, IFI27/ISG12A was the most up-regulated
gene. The pathways with the most significant transcriptional
changes in febrile enterovirus-positive children were similar to those
pathways for HHV-6– and adenovirus-positive children (Fig. S4).

Bacteria. Statistical comparison of microarray data between fe-
brile children with acute bacterial infection and virus-negative
afebrile control children yielded 1,234 probes with twofold or
greater change with either up- (850) or down-regulation (384)
(Fig. S3). We did not detect probes with significant differential
expression between Gram-positive and -negative bacterial
infections. The most up-regulated gene was Annexin A3 (14.6-
fold), which regulates calcium-dependent neutrophil secretion
(19), suggesting a defense mechanism against bacteria.

Transcriptional Pathways Were Differentially Activated in Febrile
Children with Viral and Bacterial Infections. A number of Ingenuity
canonical pathways had significant transcriptional changes in fe-
brile children positive for one of three viruses (HHV-6, adenovirus,
and enterovirus) or with acute bacterial infection. Pathways that
were activated in each of four infection groups were role of pattern
recognition receptors in recognition of bacteria and viruses,
TREM1 signaling, and toll-like receptor signaling. A notable
number of genes from the natural killer cell signaling pathway was
down-regulated in each of four infection groups. The IFN signaling
pathway and the activation of IFN regulatory factors by cytosolic
pattern recognition receptors pathway were more activated in fe-
brile virus-positive children compared with febrile children with
acute bacterial infection. In contrast, genes in the integrin signaling
pathway were activated only in bacterial infection. Transcriptional
changes in each of these pathways are displayed in Fig. S4.

Unique Sets of Genes Were Associated with Specific Viral and Bacterial
Infections in Febrile Children.Although signaling pathways tended to
be similarly activated among the different viruses tested in this
study, there were significant variations in the expression level of
many individual genes. We identified 2,078 probes with significant
transcriptional changes uniquely present in adenovirus-positive
febrile children, 464 probes uniquely present in HHV-6–positive
febrile children, 594 probes uniquely present in enterovirus-posi-
tive febrile children, and 1,939 probes uniquely present in febrile
children with acute bacterial infection (Fig. 1A). Using the
shrunken centroid algorithm (20), we identified the most in-
formative subsets of these specific gene probes for each of the
individual viruses and acute bacterial infection (Table S1). These
virus-specific transcriptional profiles and the profile specific for
acute bacterial infection are shown in Fig. 3.

Classifier Probes Were Identified to Distinguish Viral and Bacterial
Infections in Febrile Children with Validation on Independent Datasets.
Several of our findings related to pathways and individual genes
suggested that transcriptional profiles unique to either viral or
bacterial infection could be characterized to assist in making this
clinically important discrimination. We compared individual gene-
and pathway-based approaches for selecting probes. For the gene-
based approach, we used a master set consisting of 1,581 (260 viral-
and 1,321 bacterial-specific) probes described above, and a limited
subset of 18 of 1,581 was selected using the shrunken centroid
algorithm as the most efficient classifiers. For the pathway-based

approach, we used the shrunken centroid algorithm to select
22 probes from the IFN signaling pathway (selectively activated
in virus-positive febrile children) and the integrin signaling
pathway (selectively activated in febrile children with acute bacterial
infection). The hybrid approach used 33 probes selected using the
shrunken centroid algorithm from the master set and the IFN sig-
naling and integrin signaling pathways. We selected nine key clas-
sifiers from three sets of classifiers described above and validated
them by quantitative RT-PCR (RT-qPCR). High correlation in
expression level was found for all nine classifier genes between
RT-qPCR and microarray results (Fig. S5 and Table S2). Clas-
sification of cases was carried out using unsupervised hierar-
chical clustering and the K-nearest neighbor algorithm. The true
class of each case was based on virus-specific PCRs and bacterial
cultures as previously described (16). The classifications derived
from the use of probes selected by each approach are shown in
Fig. 4, the signal intensity of the probes is shown in Fig. S5, and
classification performance of each set is summarized in Table 1.
Correct classification based on hierarchical clustering ranged
from 77% to 90% and from 83% to 90% based on the K-nearest
neighbor method.
We used independent datasets from the literature (6) to test

the clinical validity and robustness of our classifier probes for
distinguishing viral and bacterial infection. The validation data
included three different cohorts analyzed using three different
microarray platforms, each of which differed from our platform.
We achieved 95% accuracy in distinguishing viral and bacterial
infection using 1,581 probes and 88–91% accuracy in using the
other three sets of probes (Table 1 and Fig. S6).

Transcriptional Profile Was Superior to Traditional White Blood Cell
Count for Discriminating Bacterial from Viral Infection. Previous
studies indicated that white blood cell count is an imperfect tool
for distinguishing between viral and bacterial infection, a dis-
tinction often used to determine whether to treat the patient
with antibiotics (21, 22). We compared classification based on
transcriptional profiles with classification based on white blood
cell count using a cutoff of 15,000/mm3 as recommended by the
American Academy of Pediatrics in their guideline for the
management of febrile young children 0–36 mo of age (23). We
also analyzed a different set of cutoffs based on age-specific
normal values for white blood cell count used by the clinical
laboratory at St. Louis Children’s Hospital (Materials and
Methods). The classifier gene probes were more accurate for

Fig. 3. Probes specific for individual viruses and bacteria. Virus- and
bacteria-specific probes were subjected to the shrunken centroid algo-
rithm individually for each of four pathogen groups to find the minimum
number of probes with the greatest ability to differentiate among path-
ogen groups. Each row represents a probe, and each column displays
probes for one febrile child positive for the indicated virus or with acute
bacterial infection.
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distinguishing bacterial and viral infections than either of the
white blood cell criteria (Fig. 4).
To explore the association between gene expression level and

total white blood cell count and counts of specific leukocyte
types, we performed a Pearson correlation test for 4,716 probes
that were significantly different from virus-negative controls in
30 febrile children. Overall, the total white blood cell count was
not associated with gene expression level, but expression of
several clusters of genes was significantly associated with neu-
trophil, lymphocyte, or monocyte counts, suggesting that those
clusters of genes might be activated in specific types of cells

(Fig. S7). Of note, only a few of the classifier probes selected by
the various approaches described above fell into neutrophil or
lymphocyte clusters with borderline significance (P = 0.043–0.049).

Discussion
Our study on groups of young children presenting with FWS
addressed three questions: (i) could we use host transcrip-
tional profiles to distinguish symptomatic from asymptomatic
viral infection, (ii) could we characterize virus-specific tran-
scriptional profiles for two important DNA viruses and one
RNA virus that cause systemic infection in young children, and

Fig. 4. A limited number of classifier probes discriminate febrile children positive for viruses from febrile children with acute bacterial infections: (A) 1,581
gene-based classifiers, (B) 18 gene-based classifiers, (C) 22 pathway-based classifiers, and (D) 33 classifiers selected from gene- and pathway-based classifier
sets. Patients are shown as columns, and probes are shown as rows. Gene symbols are shown in blue for bacterial infection-specific genes and green for viral
infection-specific genes. Expression values presented in the heatmap were normalized to the mean of the afebrile virus-negative control cases. Hierarchical
clustering was used to classify patients into two groups, with the majority of cases classified as either viral (green tree branch) or bacterial (blue tree branch).
Classification as predicted using the K-nearest neighbor algorithm is shown as a bar above each heatmap, with green showing classification as viral and blue
showing classification as bacterial. True class was determined by virus-specific PCR and bacterial cultures, and it is designated by green (viral) or blue (bac-
terial) letters: A, adenovirus; B, bacteria; E, enterovirus; H, HHV-6. Classification based on patients’ white blood cell count is shown beneath each heatmap.
The upper strip shows classification based on age-specific normal values, and the lower strip shows classification based on a cutoff of 15,000 cells/mm3.

Table 1. Prediction accuracy of four sets of classifier probes

Dataset Microarray N*

1,581 virus- and
bacteria-specific probes

without selection†

18 classifiers from 1,581
virus- and bacteria-specific

probes†

22 classifiers from
Ingenuity IFN and

Integrin pathway genes‡

33 classifiers selected using
a combined gene- and

pathway-based approach†‡

Present study Human-HT12 30 27 (90%)§ 26 (87%) 27 (90%) 25 (83%)
Ramilo et al. (6) U133Plus2 22 21 (95%) 21 (95%) 19 (86%) 18 (82%)
Ramilo et al. (6) Human-WG6 24 23 (96%) 22 (92%) 18 (75%) 21 (88%)
Ramilo et al. (6) U133A 91 86 (95%) 82 (90%) 81 (89%) 85 (93%)
Ramilo et al. (6)

and present
study

All three sets 137 130 (95%) 123 (90%) 121 (88%) 124 (91%)

*Total number of cases in the dataset.
†From the datasets in the work by Ramilo et al. (6), 785 of 1,581 gene-based probes were identified.
‡From the datasets in the work by Ramilo et al. (6), 182 of 239 pathway-based genes were identified.
§Number (percent) of cases correctly classified.
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(iii) could we discover viral- and bacterial-specific transcriptional
profiles that distinguish between infections caused by these large
groups of pathogens.
We detected transcriptional changes in multiple genes in

multiple pathways in febrile children who were infected with
DNA viruses, an RNA virus, or bacteria, with substantial overlap
in the specific activated pathways and genes. Interestingly, the
transcriptional profile of febrile children positive for HHV-6 or
adenovirus was dramatically different from the profile of afebrile
children positive for the same viruses, which was indistinguishable
from the profile of virus-negative afebrile children. This finding
has potential practical importance, because the application of
sensitive molecular viral detection tests to clinical medicine may
detect asymptomatic as well as symptomatic infection (16) and
thus, has created a need to determine the clinical significance of
the detection of viral nucleic acid in an individual patient. In an
effort to detect virus-specific transcriptional profiles, we analyzed
host response at the level of up- and down-regulation of individual
genes and functional gene pathways. Despite very substantial
overlap in transcriptional profiles in febrile children positive for
any of the three viruses and with acute bacterial infection, we were
able to detect differences in up- and down-regulation of individual
genes. Additional studies are needed to validate these virus-spe-
cific profiles. In contrast, because of overlap in patterns of pathway
activation, pathway analysis was not useful for distinguishing among
febrile children positive for each of the three viruses that were
represented in the study population.
Other studies have attempted to use host transcriptional sig-

natures to distinguish viral from bacterial infection (6, 11). In the
present study, we used several approaches to developing a panel
of probes that could make this important distinction. First, we
developed a panel of individual gene probes selected simply on
the strength of their statistical association with type of infection.
Second, we drew selectively on genes from two pathways that
were differentially activated: the IFN signaling pathway, acti-
vated in febrile virus-positive children, and the integrin signaling
pathway, activated in children with acute bacterial infection.
Third, we used a hybrid approach, in which we selected genes
from each of the gene- and pathway-based approaches. Overall,
the best classification was achieved with the large set of gene-
based probes (1,581) selected on the basis of statistical associa-
tion with type of infection. However, each of the three shrunken
approaches that used between 18 and 33 probes functioned al-
most as well.
Because we did not have a sufficient number of subjects in our

study to have both a training set and a validation set, we vali-
dated the performance of our probe sets using three previously
published microarray datasets (6). This approach was compli-
cated by the difficulty of comparing across different microarray
platforms. Despite this limitation, our probes were still able to
achieve classifications that were 88–95% concordant with the
classifications of the validation sets. It is also important to rec-
ognize that the etiology of infection in subjects in the validation
sets was not as rigorously defined as in our study, and it is
possible that some of the subjects in those studies may have
been misclassified.
Our study has shown that host blood transcriptional signatures

associated with broad categories of infectious etiology can be
defined in young children with FWS and are of superior pre-
dictive value than current white blood cell count-based criteria in
discriminating febrile children with viral from bacterial infection.
Presently, the use of gene expression microarray as a practice for
bedside decision making would not be practical. However, in-
dividual predictive biomarkers may be of more clinical value.
Studies to evaluate candidate biomarkers derived from our dataset
are underway.
Our study has a number of limitations. Most importantly, the

number of children positive only for each virus under study was
limited, reflecting the difficulty of recruiting children into ex-
perimental studies and also, the fact that a large number of fe-
brile children in our original study was infected with more than

one virus, thus disqualifying the children from the present study.
Also, samples were obtained at different times and were not
always from the same time period with respect to the onset of the
illness. However, the children were all highly febrile at the time
that the sample was obtained, and therefore, we are confident
that most children were in the acute phase of their infection.
Another concern is that cases and controls were not matched
according to demographic characteristics, especially race. How-
ever, our statistical analysis did not reveal race as an important
confounding variable. It is possible that some study subjects were
infected with other agents for which we did not test. Lastly, the
RNA that was analyzed was extracted from whole-blood sam-
ples, thus representing a pool of a variety of leukocyte pop-
ulations. It is possible that differences among study groups might
reflect differences in the distribution of leukocytes in the pe-
ripheral blood. However, our statistical analysis of possible cor-
relations between gene expression and leukocyte composition of
the sample did not support this concern. It is also possible that
differences among groups would be sharpened by extracting
RNA from specific leukocyte populations. Despite these con-
siderations, the identity of many virus-specific classifier genes
was similar to a previous study on respiratory viral infections
(11). Finally, as is true for many gene expression microarray
studies, our study was challenged by dimensionality, because the
number of parameters measured vastly exceeded the number of
study subjects (15). We used statistical corrections for multiple
comparisons. Nevertheless, additional studies to replicate our
findings are required.
Studies on host blood transcriptional profiles can be considered

as a paradigm shift, providing clues about infectious pathogens
through interrogation of host gene expression patterns (1). Host
transcriptional analysis may prove to be a useful test method,
supplementing sensitive pathogen-based nucleic acid amplifica-
tion assays and also providing clues about etiology when
no pathogens are confirmed from the direct detection of
microbial pathogens.

Materials and Methods
Subjects. Subjects were drawn from a study of children between 2 and 36 mo
of age with FWS (Table S3) and afebrile children having ambulatory surgery
who were recruited at St. Louis Children’s Hospital as described previously
(16). The febrile and afebrile groups were similar with respect to age, sex,
and season of recruitment, but they differed with respect to race, with more
African-American children in the febrile group (57% vs. 13%). Patients were
enrolled according to Institutional Review Board-approved protocol. In-
formed consent was obtained from parents or guardians of all patients. The
study was approved by the Washington University Human Research Pro-
tection Office. Each subject was tested for multiple viruses in blood and
nasopharyngeal samples using panels of virus-specific PCR assays as de-
scribed (16). Subjects were selected for the study of gene expression profiles
if they were positive for only a single virus in one or both samples. The
viruses included were adenovirus, HHV-6, enterovirus, and rhinovirus. Also
included were subjects who had a definite bacterial infection (bacteremia,
urinary tract infection, skin and soft tissue infection, or bone or joint in-
fection) as well as a group of subjects selected from the afebrile control
group whose samples were also negative for all viruses tested (16).

Specimens. In addition to whole-blood and nasopharyngeal samples for virus-
specific PCR and high-throughput sequencing, a blood sample was collected
in a Tempus Blood RNA Tube (Applied Biosystems) and stored at −80 °C for
subsequent gene expression analysis.

RNA Preparation. Total RNA was isolated from whole blood collected in
Tempus Blood RNA Tubes (Applied Biosystems) according to the manu-
facturer’s instructions. RNA quality was determined by electropherogram
(showing 28S, 18S, and 5S bands) and RNA integrity number (RIN; generally,
a >7 RIN indicates good quality RNA) using an Agilent 2100 Bioanalyzer
(Agilent). All but three of the RNA preparations had RIN scores ≥7.0. Total
RNA concentration was obtained from an absorbance ratio at 260 and 280 nm
using a NanoDrop ND-100 spectrometry instrument (NanoDrop Inc.).
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Gene Expression Microarrays. The microarray assays were carried out at the
Genome Technology Access Center in Washington University in St. Louis
(https://gtac.wustl.edu). Briefly, RNA transcripts were amplified by T7 linear
amplification with the Illumina 3′IVT Direct Hybridization Assay Kit (Illumina
Inc.), and biotin-labeled cRNA targets were hybridized to the Illumina Hu-
man-HT12 v4 Expression BeadChips (>47,000 probes), which were scanned
on an Illumina BeadArray Reader. Scanned images were quantitated by
Illumina Beadscan software (version 3). Quantitated data were imported
into Illumina GenomeStudio software (version 2011.1) to generate ex-
pression profiles and make data quality assessment. These data have been
deposited into Gene Expression Omnibus database at the National Center
for Biotechnology Information (accession no. GSE40396).

Microarray Data Analysis. Expression profiles generated in the GenomeStudio
were imported into Partek Genome Suite (version 6.6; Partek Inc.), and data
quality was assessed across individual samples using principal component
analysis and hierarchical clustering analysis that could identify any specific
sample clusters that were associated with nonexperimental factors (such as
chip effect, age, sex, and array quality control metrics); 5 of 70 samples that
had the lowest number of detectable probes were identified as outliers and
eliminated without additional analysis. A total of ∼26,300 probes that had
been detected (detection P value < 0.01) in at least 1 of 70 samples was kept
in downstream statistical analysis and quantile-normalized for differential
expression analysis.

Differential Expression Analysis. ANOVA was performed in Partek Genomics
Suite in order to derive genes with differential expression in viral and bac-
terial infection and afebrile controls, and to account for variance from
hybridization date and individual chips. P values from the ANOVA were
corrected for FDR q value. With the exception of symptomatic enterovirus
infection as stated in Results, all analysis was conducted with P value < 0.05
and FDR at 5%. Partek was also used to generate all heatmaps and principal
component analysis plots.

Pathway Analysis. Pathways that were most activated for each virus and
bacterial infection were identified from the Ingenuity pathway analysis (In-
genuity Systems) library of canonical pathways. The significance of the asso-
ciation between the dataset and the canonical pathway was assessed in two
ways: (i) the ratio of the number of up- and down-regulated probes from the
dataset included in the pathway divided by the total number of probes that
included in the canonical pathway and (ii) statistical evaluation using Fisher
exact test of the probability that the association between the genes in the
dataset and the canonical pathway is explained by chance alone.

Identification of Classifier Genes, Class Prediction, and Unsupervised Hierarchical
Clustering. We used the K-nearest neighbor classification algorithm em-
bedded in the Prediction Analysis of Microarrays tool to identify classifier

genes presenting the highest capability to discriminate the two classes of
bacterial and viral infection (20). With 10 nearest neighbors and 10-fold cross-
validation, Prediction Analysis of Microarrays calculates misclassification error
rate in the training set of data for each of two classes according to varying
thresholds (a unique statistical parameter). A threshold is chosen when the
misclassification error is minimized for both classes to define a subset of
probes from the entire training dataset designated as classifier probes. These
classifier probes were used for class prediction on all testing datasets. We also
used hierarchical clustering with the complete linkage algorithm to eval-
uate the accuracy of classification.

RT-qPCR Validation Assays. Primers and probes were purchased from Life
Technologies (Applied Biosystems), and master mix was from Quanta Bio-
sciences (Gaithersburg,MD) for RT-qPCR assays. The assays were carried out in
triplicate on an ABI 7500 real-time PCR instrument following the manu-
facturer’s protocols. All assays had >80% PCR efficiency and <15% co-
efficient of variance in triplicate reactions.

Correlation Between Gene Expression Profile and White Blood Cell Counts and
Differentials. The Pearson test was used to find significant correlations of
differentially expressed genes with white blood cell and differential counts in
30 febrile cases. The differential expression was defined with P < 0.05 and
fold change >1.5 in comparisons between febrile groups and healthy con-
trols. The original P value of the correlation coefficient was adjusted by
multiple test correction, and the adjusted P value was set at 0.05 for sig-
nificance. Age-specific normal values for white blood cell count used by the
clinical laboratory at St. Louis Children’s Hospital were <1 wk: 5.0–30.0 K/cu
mm; 1 wk to 1 mo: 5.0–20.0 K/cu mm; 1 mo to 2 y: 6.0–17.5 K/cu mm; 2–6 y:
5.0–15.5 K/cu mm; 6–12 y: 4.5–13.5 K/cu mm; and >12 y: 3.8–9.8 K/cu mm.
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