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A growing number of agents targeting ligand-induced Wnt/β-cat-
enin signaling are being developed for cancer therapy. However,
clinical development of these molecules is challenging because of
the lack of a genetic strategy to identify human tumors dependent
on ligand-induced Wnt/β-catenin signaling. Ubiquitin E3 ligase
ring finger 43 (RNF43) has been suggested as a negative regulator
of Wnt signaling, and mutations of RNF43 have been identified in
various tumors, including cystic pancreatic tumors. However, loss
of function study of RNF43 in cell culture has not been conducted,
and the functional significance of RNF43 mutations in cancer is
unknown. Here, we show that RNF43 inhibits Wnt/β-catenin sig-
naling by reducing the membrane level of Frizzled in pancreatic
cancer cells, serving as a negative feedback mechanism. Inhibition
of endogenous Wnt/β-catenin signaling increased the cell surface
level of Frizzled. A panel of 39 pancreatic cancer cell lines was
tested for Wnt dependency using LGK974, a selective Porcupine
inhibitor being examined in a phase 1 clinical trial. Strikingly, all
LGK974-sensitive lines carried inactivating mutations of RNF43. In-
hibition of Wnt secretion, depletion of β-catenin, or expression of
wild-type RNF43 blocked proliferation of RNF43 mutant but not
RNF43–wild-type pancreatic cancer cells. LGK974 inhibited prolif-
eration and induced differentiation of RNF43-mutant pancreatic
adenocarcinoma xenograft models. Our data suggest that muta-
tional inactivation of RNF43 in pancreatic adenocarcinoma confers
Wnt dependency, and the presence of RNF43 mutations could be
used as a predictive biomarker for patient selection supporting the
clinical development of Wnt inhibitors in subtypes of cancer.

The evolutionarily conserved Wnt/β-catenin signaling pathway
plays critical roles in embryonic development and adult tissue

homeostasis (1, 2). Wnt signaling regulates the turnover of the
transcription cofactor β-catenin and controls key developmental
gene expression programs (3). In the absence of Wnt pathway
activation, cytosolic β-catenin is degraded by the β-catenin destruc-
tion complex, consisting of adeomatous polyposis coli (APC),
AXIN1/2, and glycogen synthase kinase 3α/β (GSK3α/β). Wnt li-
gand activates its two receptors, Frizzled and LRP5/6, and inac-
tivates the β-catenin destruction complex. Stabilized β-catenin
enters the nucleus, binds to the TCF family of transcription fac-
tors, and activates transcription. Secretion of Wnt proteins re-
quires Porcupine (PORCN), a membrane bound O-acyltransferase
dedicated to Wnt posttranslational acylation (4, 5). Precise regu-
lation of Wnt signaling is critical and various feedback control
mechanisms exist to ensure proper signaling output.
Aberrant activation of Wnt/β-catenin signaling has been im-

plicated in tumorigenesis, and many downstream components of
the Wnt pathway are mutated in cancers (6). Truncation muta-
tions of APC are found in 80% of colorectal cancer. Stabilization
mutations of CTNNB1 (β-catenin) and loss of function mutations
of AXIN1/2 are also found in cancers. Despite intense research,
targeting Wnt/β-catenin signaling in cancers harboring down-
stream pathway mutations remains challenging because of the
lack of tractable targets (7, 8). However, there are several potential
targets upstream in the Wnt signaling pathway, and various agents,

including LRP6 antibody (9, 10), Frizzled antibody (11), and Por-
cupine inhibitor (12), are being developed. However, it is chal-
lenging to develop therapeutic agents without a defined patient
population, and we do not have enough knowledge about human
tumors dependent on ligand-induced Wnt/β-catenin signaling.
We have shown that transmembrane E3 ubiqutin ligase ZNRF3

negatively regulates Wnt/β-catenin signaling through promoting
the degradation of Frizzled, and the activity of ZNRF3 is inhibited
by R-spondin proteins (13). Ring finger 43 (RNF43) is struc-
turally related to ZNRF3. Intestinal-specific deletion of both
Znrf3 and Rnf43 induces hyperproliferation of intestinal crypts
and formation of intestinal adenoma in mice (14). These studies
suggest that RNF43 serves as a negative regulator of Wnt/β-cat-
enin signaling similar to ZNRF3. However, a cellular system in
which RNF43 plays a critical role has not been identified, and,
therefore, in vitro loss-of-function studies of RNF43 have not
been possible. RNF43 is frequently mutated in intraductal pap-
illary mucinous neoplasm (IPMN) and mucinous cystic neo-
plasm (MCN) of the pancreas (15,16). IPMN and MCN are
potential precursors to pancreatic ductal adenocarcinoma
(PDAC), which is extremely aggressive and associated with
a dismal prognosis and few proven therapeutic options (17–20).
Here, we studied the function of RNF43 in human pancreatic

adenocarcinoma cells. We found that RNF43 suppressed Wnt
signaling by decreasing membrane levels of Frizzled in pancre-
atic cancer, functioning as a negative feedback mechanism. By
testing Wnt dependency in a large panel of pancreatic cancer cell
lines, we discovered that all cell lines whose proliferation was
strongly inhibited by a Porcupine inhibitor had homozygous
RNF43 loss-of-function mutations. Growth of RNF43-mutant
lines was blocked upon depletion of β-catenin or RNF43 re-
expression. Treatment of RNF43-mutant tumors in vivo with
a Porcupine inhibitor resulted in growth inhibition and differ-
entiation. Therefore, we propose that RNF43 mutation can serve
as a predictive biomarker for identifying Wnt ligand-dependent
pancreatic cancers that may be responsive to upstream Wnt
pathway inhibitors.

Results
Negative Regulation of Wnt Signaling by RNF43 in Pancreatic Cancer
Cells. Because RNF43 is frequently mutated in cystic pancreatic
tumors (15, 16), we hypothesized that RNF43 is an essential
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regulator of Wnt/β-catenin signaling in pancreatic cancer. RNF43
loss-of-function experiments were performed in YAPC, a pan-
creatic adenocarcinoma cell line. Depletion of RNF43 using
two independent siRNAs (Fig. S1A) significantly increased
SuperTopflash (STF) Wnt reporter activity, either in the absence
or presence of Wnt3a conditioned medium (Fig. 1A). LGK974
is a Porcupine inhibitor that specifically inhibits Wnt secretion
and is under clinical evaluation (www.clinicaltrials.gov/ct2/show/
NCT01351103?term=lgk974&rank=1). RNF43 siRNA-induced
STF activity in the absence of exogenous Wnt3a is inhibited by
Porcupine inhibitor LGK974 and IWP-2 (12) (Fig. 1B), indicating
that this activity depends on the expression of endogenous Wnt
proteins. These results suggest that RNF43 actively suppresses
autocrine Wnt/β-catenin signaling in YAPC cells.
We next performed biochemical assays to characterize the

function of RNF43 in YAPC cells. Depletion of RNF43 in-
creased the level of cytosolic β-catenin (Fig. 1C), in agreement
with increased STF reporter activity (Fig. 1A). Dishevelled
(DVL) is an intracellular signaling protein downstream of Friz-
zled, and its phosphorylation is stimulated by Frizzled activation.
Depletion of RNF43 increased phosphorylation of DVL2 (Fig.
1C), suggesting that the activity of Frizzled is increased. Indeed,
depletion of RNF43 markedly increased the cell surface level of
Frizzled (Fig. 1D). To rule out the possibility that the effect of
RNF43 siRNA is mediated by off-target activity, we performed
a cDNA rescue experiment by stably expressing siRNA-resistant

RNF43 (RNF43 siR) in YAPC cells. As seen in Fig. 1E, expression
of siRNA-resistant RNF43 largely abolished the effect of RNF43
siRNA on Frizzled levels, suggesting the activity of RNF43 siRNA
is on target. Depletion of RNF43 also increased the expression
of AXIN2, a β-catenin target gene, and this effect is abolished by
the expression of RNF43 siR (Fig. 1F). On the basis of the
threshold cycle (Ct) values observed in a quantitative RT-PCR
assay, RNF43 is dominantly expressed compared with ZNRF3
in YAPC cells (Fig. S1B). Consistent with the idea that RNF43
targets Wnt receptors for degradation, RNF43 can be coimmu-
noprecipitated with Frizzled and LRP6 (Fig. S2). Together, these
results suggest that RNF43 negatively regulates Wnt/β-catenin
signaling by decreasing membrane expression of Frizzled.

Wnt/β-Catenin Signaling Suppresses the Membrane Expression of
Frizzled. Wnt/β-catenin signaling is under exquisite control, with
multiple negative feedback control mechanisms to ensure the
proper signaling output. We and others have shown that ZNRF3
and RNF43 are β-catenin target genes (13, 14). Although such
data suggest that ZNRF3 and RNF43 might suppress membrane
Frizzled as a negative feedback loop, the effect of endogenous
Wnt/β-catenin signaling on Frizzled expression has never been
examined. We found that independent β-catenin siRNAs sig-
nificantly increased the cell surface level of Frizzled in YAPC
cells (Fig. 2A). As expected, depletion of β-catenin decreased the
mRNA levels of β-catenin target genes AXIN2 and RNF43
(Fig. 2B). Consistent with this observation, treatment of Porcupine
inhibitor IWP-2 or LGK974 also increased the cell surface level of
Frizzled (Fig. 2 C and D) and decreased the mRNA levels of
AXIN2 and RNF43 (Fig. 2E). These results suggest that activation
of the Wnt/β-catenin pathway strongly down-regulates the mem-
brane level of Frizzled, likely through increasing the expression of
RNF43 and ZNRF3.

Characterization of RNF43 Mutations in Pancreatic Cancer.Discovery
of LGK974, a potent and selective inhibitor of Porcupine, of-
fered us a unique chemical tool to systematically examine Wnt
dependency in a large panel of pancreatic cancer cell lines. Foci
formation assay was used because it is more sensitive than rou-
tine growth assays such as CellTiter-Glo, and it is less affected by
the different growth rates of various cell lines. Of the 39 pan-
creatic cancer cell lines screened, LGK974 only showed strong
growth inhibitory activity in three cell lines, HPAF-II, PaTu
8988S, and Capan-2 (Fig. S3).
We next sought to determine the genetic lesion that could

confer Wnt dependency. Because RNF43 is a negative regulator
upstream of the Wnt pathway mutated in cancer, we performed
RNF43 exon sequencing in all pancreatic cancer cell lines.
Strikingly, all three LGK974-sensitive cell lines had mutations of
RNF43 and loss of wild-type allele (HPAF-II, E174X; PaTu
8988S, F69C; Capan-2, R330fs) (Fig. 3A). E174X and R330fs
mutations truncate the majority of RNF43 protein and most
likely inactivate the protein. The functional consequence of
F69C mutation is less clear. To define the function of the F69C
mutation, we stably expressed C-terminal HA-tagged wild-type
RNF43, RNF43 lacking the RING domain (ΔRING), and RNF43
F69C in YAPC cells. Consistent with the function of RNF43 in
regulating Frizzled turnover, overexpression of wild-type RNF43
decreased the membrane level of Frizzled, whereas overexpression
of RNF43 ΔRING showed dominant-negative activity and in-
creased the membrane level of Frizzled (Fig. 3B). Overexpres-
sion of RNF43 F69C modestly increased the membrane level of
Frizzled (Fig. 3B), suggesting that the F69C mutant has partial
dominant-negative activity upon overexpression. Further, overex-
pression of RNF43 ΔRING, and to a lesser degree overexpression
of RNF43 F69C, increased DVL2 phosphorylation (Fig. 3C) and
potentiated Wnt3a-induced STF reporter activity (Fig. 3D). These
results suggest that RNF43 negatively regulates Wnt signaling
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Fig. 1. Negative regulation of Wnt signaling by RNF43 in pancreatic cancer
cells. (A) Depletion of RNF43 increases STF activity in YAPC pancreatic cancer
cell line. YAPC-STF cells were transfected with indicated siRNA in the absence
or presence of Wnt3a conditioned medium (CM), and STF luciferase reporter
activity was measured. pGL2 siRNA is a negative control. (B) RNF43 siRNA-
induced activation of STF depends on endogenous Wnt. YAPC-STF cells were
transfected with indicated siRNA and then treated with DMSO or 1 μM
porcupine inhibitor LGK974. STF reporter activity was then measured. (C)
Depletion of RNF43 increases cytosolic β-catenin and phosphorylation of
DVL2. (D) Depletion of RNF43 increases the cell surface level of Frizzled
(FZD). YAPC cells were transfected with indicated siRNA, and membrane
levels of Frizzled were analyzed by flow cytometry using pan-Frizzled anti-
body 18R5. (E) Flow cytometric analysis of membrane Frizzled in YAPC cells
stably expressing empty vector (EV), siRNA-resistant RNF43, and transfected
with indicated siRNA. (F) Depletion of RNF43 increases expression of AXIN2.
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through decreasing membrane expression of Frizzled, and that
F69C is an inactivating mutation of RNF43. We sought to un-
derstand why F69C mutant is inactive in suppressing Wnt sig-
naling. Although the expression of F69C mutant in total lysates is
comparable to that of wild-type RNF43 (Fig. 3C), the level of
F69C mutant on the cell surface is much lower than that of wild-
type RNF43 in FACS assay (Fig. 3E). These results suggest
that F69C mutation significantly inhibits membrane targeting of
RNF43. Targeting of RNF43 to the plasma membrane is most
likely critical for its Wnt inhibitory activity. Introduction of one
extra cysteine residue into the extracellular domain of RNF43
might affect correct pairing of cysteine residues and block proper
folding and membrane targeting of RNF43.
We next examined the function of RNF43 in RNF43-mutant

cell lines. Although depletion of RNF43 increased DVL2 phos-
phorylation in YAPC and PK1, two pancreatic cancer cell lines
with wild-type RNF43, depletion of RNF43 in HPAF-II, PaTu
8988S, and Capan-2 cells did not increase DVL2 phosphorylation
(Fig. 3F). Consistently, depletion of RNF43 increased the cell
surface level of Frizzled in RNF43–wild-type, but not in RNF43-
mutant, pancreatic cancer cell lines (Fig. 3G). Taken together,
these results suggest that Frizzled levels are no longer inhibited
by RNF43 in pancreatic cancer cell lines with RNF43 mutations.

RNF43 Mutation Predicts Sensitivity to Wnt Inhibition in Pancreatic
Cancer Cell Lines. We next characterized Wnt dependency in
pancreatic adenocarcinoma cell lines. In foci formation assay,
LGK974 strongly inhibited the growth of RNF43-mutant cells
(PaTu8988S, HPAF-II, and Capan-2), without significant effect
on RNF43–wild-type cells (PK1 and YAPC) (Fig. 4A). Impor-
tantly, the growth inhibitory effect of LGK974 in RNF43-mutant
cells was rescued by exogenous Wnt3a (Fig. 4A), suggesting that
the effect of LGK974 was mediated by blocking Wnt secretion.
Immunoblot and quantitative PCR assays indicated that LGK974
decreased the expression of MYC, a β-catenin target gene (21)
and increased the expression of cyclin-dependent kinase inhibitor
p21 in RNF43-mutant, but not RNF43–wild-type, cell lines (Fig. 4
B and D). LGK974 decreased cytosolic β-catenin (Fig. 4C) and
inhibited the expression of the β-catenin target gene AXIN2 (Fig.
4D) in both RNF43-mutant and RNF43–wild-type cell lines, de-
monstrating that all these cell lines have active autocrine Wnt
signaling. LGK974 blocked EDU incorporation in RNF43-mutant
cell lines, suggesting that Wnt inhibition in these cells leads to cell

cycle arrest (Fig. 4E). Further, LGK974 induced the expression of
differentiation markers MUC2 and MUC5A/C (Fig. 4D) and in-
creased mucin production as visualized by Alcian Blue staining
(Fig. 4F) in RNF43-mutant cells, consistent with cellular differ-
entiation. LGK974 also strongly inhibited the proliferation of
PaTu 8988S and HPAF-II in soft agar assay (Fig. 4G). Capan-2
cannot be tested because it does not grow in soft agar assay.
Note that although many cell lines had autocrine Wnt signaling,
only RNF43-mutant lines clearly depend on autocrine Wnt sig-
naling for growth (Fig. S3). Therefore, RNF43 mutation status
can potentially be used to enrich for patients who are likely to
respond to upstream Wnt inhibitors.
Frizzled proteins potentiate both canonical Wnt/β-catenin

signaling and noncanonical Wnt signaling. Therefore, mutational
inactivation of RNF43 would conceivably increase both canonical
and noncanonical Wnt signaling (13). We used β-catenin shRNA
to determine the contribution of Wnt/β-catenin signaling to the
growth of the pancreatic cancer lines. Inducible expression of
a previously validated β-catenin shRNA (22) strongly inhibited
the proliferation of RNF43-mutant (PaTu8988S, HPAF-II, and
Capan-2), but not RNF43–wild-type (PK1 and YAPC) pancre-
atic cancer lines (Fig. 5A). Depletion of β-catenin also decreased
the expression of β-catenin target gene AXIN2 and MYC and
increased the expression of p21, MUC2, and MUC5A/C in
RNF43-mutant cell lines (Fig. 5B and Fig. S4). These results
suggest that the effect of LGK974 on cell growth is likely me-
diated by canonical Wnt/β-catenin signaling. We next examined
whether RNF43 mutation is required for the growth of RNF43
mutant cells. As seen in Fig. 5C, expression of wild-type RNF43,
but not LacZ or RNF43 ΔRING, significantly inhibited the
proliferation of RNF43-mutant PaTu 8988S and HPAF-II cells
but had no effect on RNF43-wild-type YAPC cells. Reintro-
duction of wild-type RNF43 presumably overcomes the minor
dominant negative activity of endogenously expressed RNF43
F69C in PaTu 8988S cells. Capan-2 cannot be tested in this assay
because viral infection efficiency of this cell line is too low, and
we could not obtain stably infected cells by using retrovirus
expressing LacZ or RNF43 ΔRING. Together, these results
suggest that Wnt/β-catenin signaling enhanced by RNF43 muta-
tion is driving the proliferation of RNF43-mutant pancreatic
cancer cells and that suppression of Wnt/β-catenin signaling in
these cells induces cell cycle arrest and cellular differentiation.
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Fig. 2. Wnt/β-catenin signaling suppresses membrane ex-
pression of Frizzled in pancreatic cancer cells. (A) Depletion
of β-catenin increases the cell surface level of Frizzled. YAPC
cells were transfected by indicated siRNA, andmembrane levels
of Frizzled were analyzed by flow cytometry. (B) Depletion of
β-catenin decreases mRNA level of AXIN2 and RNF43. Cells
were treated as in A, and relative mRNA levels of indicated
genes were analyzed by quantitative RT-PCR. (C–E) Porcupine
inhibitor increases the cell surface level of Frizzled. YAPC cells
were treated with 3 μM IWP-2 or 1 μM LGK974 and subjected
to flow cytometry analysis for membrane Frizzled (C and D)
or gene expression analysis by quantitative RT-PCR (E).
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Blocking Wnt Secretion Inhibits the Growth of RNF43-Mutant Pancreatic
Tumors in Vivo. To analyze the role of Wnt pathway activation in
the maintenance of RNF43-mutant pancreatic tumors in vivo, we
used two PDAC xenograft models (HPAF-II and Capan-2) (Fig.
6A). Treatment of mice bearing HPAF-II xenografts with
5 mg/kg LGK974, oral gavage (p.o.) twice daily (BID) for 14 d
resulted in significant inhibition of tumor growth (T/C = 33%)
relative to vehicle treatment. Furthermore, treatment of mice
bearing Capan-2 xenografts with 5 mg/kg LGK974, p.o. BID for
35 d achieved tumor stasis (T/C = 5%). Consistent with the
mechanism of action of LGK974, expression of the β-catenin
target gene AXIN2 was decreased in treated HPAF-II and Capan-2
xenografts (Fig. 6B). Similar to in vitro findings in RNF43-mutant
PDAC cells, treatment with LGK974-induced cell cycle arrest and
differentiation within the xenograft tumors (Fig. 6 C and D).

Discussion
In this study, we have demonstrated that RNF43 serves as a
negative feedback regulator of Wnt pathway in pancreatic cells
by suppressing membrane expression of Frizzled. We have shown

that Wnt/β-catenin signaling potently inhibits Frizzled membrane
expression, likely through induction of RNF43. These findings
provide an explanation for why pancreatic cancer cells acquire
mutations in RNF43 to escape from this powerful negative feed-
back regulation and achieve increased Wnt/β-catenin signaling.
Three Wnt-dependent pancreatic adenocarcinoma cell lines have
been identified by using the Porcupine inhibitor LGK974 and,
strikingly, all of these cell lines harbor RNF43 loss-of-function
mutations. The proliferation of these RNF43-mutant cell lines
in vitro is inhibited upon β-catenin depletion or RNF43 reex-
pression, and their growth in vivo is also inhibited by LGK974.
Our data establish RNF43 as a tumor suppressor in pancreatic
adenocarcinoma and suggest that the presence of RNF43 muta-
tions may serve as a useful biomarker for patient selection during
the clinical development of Wnt inhibitors.
ZNRF3 and RNF43 are transmembrane E3 ubiquitin ligases

that potently inhibit Wnt signaling through targeting Wnt receptor
for degradation (13, 14). These E3 ligases have a relatively small
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nant Wnt3a in foci formation assay. (B) LGK974 decreases the protein ex-
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extracellular domain similar to protease-associated domains, which
are found in proteases and membrane receptors and have unknown
function (23). We discovered that R-spondin interacts with the
extracellular domain of these E3 ligases and inhibits their function
(13). ZNRF3 and RNF43 have a large intracellular domain, which
also likely plays a regulatory role. How ZNRF3 and RNF43 spe-
cifically recognize Frizzled/LRP6 complex is still not clear. It is
possible that both the extracellular domain and intracellular do-
main ofZNRF3 andRNF43are involved inWnt receptor targeting.
The Wnt/β-catenin signaling pathway is critical for the devel-

opment of the exocrine pancreas (24–27). Inhibition of Wnt/

β-catenin signaling disrupts acinar but not islet cell development
(24, 25, 27). Conversely, inducible expression of stabilized
β-catenin in the pancreas of adult mice increases the prolifera-
tion of acinar cells with minimal effects on islet cells in adult
mice (28). Recent evidence suggests there is an ongoing and
selective requirement for Wnt/β-catenin signaling in the adult
exocrine pancreas, promoting acinar cell self-renewal and re-
generation (29). Future studies will be needed to elucidate the
role of RNF43 in the regulation ofWnt/β-catenin signaling during
pancreatic development and homeostasis. Like KRAS mutations,
RNF43 mutations are found at a high frequency in pancreatic
cancer precursor lesions IPMNs and MCNs (16), suggesting that
RNF43 mutations may contribute to the initiation of PDAC.
There is mounting evidence that acinar cells, through a process of
ductal reprogramming, may serve as the cell of origin of PDAC
(30–34). In mice, activation of oncogenic KRAS in adult acinar
cells is insufficient to induce PDAC (31). Aberrant Wnt/β-catenin
signaling in acinar cells due to inactivation of RNF43may provide
an additional stimulus needed to promote proliferation and tu-
morigenesis. Importantly, increased Wnt/β-catenin signaling re-
sulting from RNF43mutation is also required for maintaining the
transforming phenotype of pancreatic cancer lines. Wnt de-
pendency of RNF43 mutant cell lines is remarkable consider-
ing all these cell lines also have KRAS mutation.
There is growing evidence that Wnt pathway activation may

contribute to the maintenance and/or progression of PDAC (35).
Expression profiling of Wnt pathway components and immuno-
histochemistry for nuclear β-catenin indicate that the Wnt/
β-catenin pathway is commonly activated in PDAC (36-39). The
level of cytosolic and nuclear β-catenin is positively correlated
with pancreatic intraepithelial neoplasia grade and development
of PDAC (36, 39), suggesting that β-catenin signaling promotes
the progression of PDAC. Wnt ligands, such as WNT2b,
WNT7b, and WNT11, are strongly expressed in PDAC cell lines
(38), raising the possibility of autocrine Wnt pathway activation.
Consistent with autocrine Wnt pathway activation, we have
found that LGK974 decreases the expression of AXIN2 in 22
of 34 (65%) pancreatic cancer cell lines in vitro (Fig. S3). The
presence of Wnt/β-catenin pathway activation is necessary but
not sufficient to confer Wnt dependency (Fig. S3). Only PDAC
cell lines with autocrineWnt signaling and RNF43 loss-of-function
mutations showed clear sensitivity to LGK974 in a foci forma-
tion assay. These results suggest that RNF43-mutant PDACs
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may have a higher probability of being Wnt ligand-dependent
compared with RNF43–wild-type tumors.
Not all PDAC cell lines with RNF43 mutations are sensitive to

LGK974. We have found three pancreatic cancer lines carrying
homozygous mutations of RNF43, PaTu8988T (F69C), Panc10.05
(M18fs), and PL45 (M18fs), that are not sensitive to LGK974 (Fig.
S3). Note that PaTu 8988S and PaTu8988T were derived from the
same patient, and Panc10.05 and PL45 were also derived from
the same patient. These results suggest that additional molecular
mechanisms can render RNF43-mutant tumors independent of
Wnt signaling.
To maximize the benefits of targeted cancer therapeutics, it is

critical to identify those patients most likely to respond to a ther-
apy. Several agents, including Porcupine inhibitor, Frizzled anti-
body, and LRP6 antibody, are being developed to inhibit ligand-
inducedWnt/β-catenin signaling. However, the clinical development
of these agents is challenging because it has been difficult to
identify Wnt ligand-dependent human tumors. A patient se-
lection strategy based on expression of Wnt ligands or Wnt
inhibitors may not be sufficient. Indeed, many pancreatic ade-
nocarcinoma cell lines with autocrine Wnt/β-catenin signaling do
not depend on Wnt for in vitro growth (Fig. S3). Furthermore,
β-catenin signaling can be activated in a ligand-independent
manner (39), so a strategy based on nuclear accumulation of
β-catenin would not be reliable either. Our study has established
RNF43 as a tumor suppressor that inhibits upstream Wnt sig-
naling in pancreatic adenocarcinoma models. Our finding that

all pancreatic cancer cell lines showing strong Wnt dependency
carry RNF43 mutations suggests that the presence of RNF43
mutations may serve as a predictive biomarker for selecting
patients likely to respond to upstreamWnt pathway inhibitors. In
addition to pancreatic tumors, RNF43 is also mutated in endo-
metrioid carcinoma of the uterus (40), mucinous ovarian tumors
(41), and liver fluke-associated cholangiocarcinoma (42), sup-
porting the evaluation of upstream Wnt inhibitors in these
clinical indications.

Materials and Methods
Pancreatic cancer cells and HEK293 cells were grown in medium recom-
mended by ATCC supplemented with 10% FBS. Retrovirus or lentivirus was
produced from HEK293 cells by standard virus packaging procedure using
FuGENE 6 (Roche) transfection reagent. Pancreatic cell lines expressing STF
reporter, RNF43 constructs, or doxycycline (DOX)-inducible β-catenin shRNA
were generated by viral infection and drug selection.

siRNA transfection was performed by using Dharmafect 1 transfection
reagent (Dharmacon). Detailed methods are described in SI Materials
and Methods.
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