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The human microbiome plays a key role in human health and is
associated with numerous diseases. Metagenomic-based studies
are now generating valuable information about the composition
of the microbiome in health and in disease, demonstrating non-
neutral assembly processes and complex co-occurrence patterns.
However, the underlying ecological forces that structure the
microbiome are still unclear. Specifically, compositional studies alone
with no information about mechanisms of interaction, potential
competition, or syntrophy, cannot clearly distinguish habitat-filter-
ing and species assortment assembly processes. To address this
challenge, we introduce a computational framework, integrating
metagenomic-based compositional data with genome-scale meta-
bolic modeling of species interaction. We use in silico metabolic
networkmodels to predict levels of competition and complementarity
among 154 microbiome species and compare predicted interaction
measures to species co-occurrence. Applying this approach to two
large-scale datasets describing the composition of the gut micro-
biome, we find that species tend to co-occur across individuals
more frequently with species with which they strongly compete,
suggesting that microbiome assembly is dominated by habitat fil-
tering. Moreover, species’ partners and excluders exhibit distinct
metabolic interaction levels. Importantly, we show that these trends
cannot be explained by phylogeny alone and hold across multiple
taxonomic levels. Interestingly, controlling for host health does
not change the observed patterns, indicating that the axes along
which species are filtered are not fully defined by macroecological
host states. The approach presented here lays the foundation for
a reverse-ecology framework for addressing key questions concern-
ing the assembly of host-associated communities and for informing
clinical efforts to manipulate the microbiome.

The human body is home to numerous microbial species and
several complex microbial ecosystems. Advances in sequencing

technologies and metagenomics now allow researchers to char-
acterize the composition of species that inhabit the human body
and the variation these communities exhibit in health and in
disease (1–3). Specifically, recent studies of the microbiome have
found tremendous variation among healthy individuals (1) and
demonstrated clear associations between species composition
and several host phenotypes including obesity (4, 5), inflam-
matory bowel disease (IBD) (2), and diabetes (6), as well as with
external factors such as diet (7). These studies further demon-
strated that, as in many other ecosystems, the composition of
species in the microbiome exhibits distinct patterns that clearly
deviate from a random distribution. For example, species com-
position in the human microbiome exhibits a significant check-
erboard pattern, indicating pairs of taxa that exclude one another
from shared environments (8, 9). These patterns are similar to
those seen in macroecological communities, suggesting that
similar pressures may act upon such microbial communities (10).
Analysis of species composition in the gastrointestinal microbiomes
of domesticated animals similarly revealed that deterministic
interactions and niche processes, rather than stochastic neutral
forces, dominate community assembly (11).

These studies provide valuable insights into potentially im-
portant regularities in the structure of host-associated commu-
nities. Just as important, however, is to reveal the underlying
ecological forces that give rise to such regularities. Identifying
these forces and the processes at play in structuring human-
associated communities is crucial for developing a principled
understanding of the mechanisms that maintain microbiome
composition and drive disease-related compositional shifts,
and will ultimately inform clinical efforts to manipulate the
microbiome.
However, revealing the specific underlying forces that govern

the structure of ecosystems and that give rise to specific patterns
is a challenging task (10). Fundamentally different processes and
distinct assembly rules can produce similar patterns (12). Spe-
cifically, two alternative processes can account for an observed
checkerboard pattern. Cody and Diamond (13) suggested a species
assortment model, in which competitive interactions between
species lead to mutual exclusion. Alternatively, a checkerboard
pattern can be attributed to a habitat-filtering model, in which
species have affinities for nonoverlapping niches (14, 15). Com-
positional studies alone, therefore, cannot clearly distinguish
between a species-interaction model and a habitat-filtering model
and may not be able to pinpoint the driving forces that structure
a community.
One way to elucidate community-structuring forces is to sup-

plement compositional studies with prior knowledge or mecha-
nistic models of the interaction between species (15). For
example, if in a given set of communities species that exclude
one another are known to compete for the same set of resources,
one could argue that these communities are structured by species
assortment. Conversely, knowing that species with similar nu-
tritional requirements tend to co-occur suggests that these spe-
cies are sorted by habitat filtering (14). Such information is often
available in macroecological contexts from phenotypic traits or
from feeding habits. In contrast, however, most species of the
human microbiota have only recently been identified and lack
a detailed biochemical description of their nutritional require-
ments and metabolic interactions.
Here, we use recent advances in systems biology and metabolic

modeling to address this challenge, augmenting species compo-
sition and co-occurrence data with computational predictions of
metabolic species interaction. Specifically, the reverse-ecology
framework recently introduced (16–18) provides tools for obtain-
ing insights into the ecology of microorganisms and their envi-
ronments directly from genomic data and reconstructed metabolic
models. Extending this reverse-ecology framework and inte-
grating derived mechanistic models of species interactions with
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co-occurrence data allows us to determine forces driving species
composition in the gut microbiome.

Results
Reverse-Ecology Framework for Predicting Species Interaction. We
use genome-scale metabolic network models to predict the
interactions between pairs of microbial species. Networks are
reconstructed based on available full genomes coupled with
metabolic annotations (Methods). Such network-based models
are clearly a simplified representation of the underlying meta-
bolic pathways and dynamics, yet they have proved extremely
powerful in elucidating various aspects of microbial metabolism
(19, 20). Specifically, the reverse-ecology framework (18) has
successfully used such models to predict important ecological
attributes, including an organism’s biochemical environment
(16), its interaction with its host or with other species (21–23),
and ecological strategies for coping with cohabiting species (19)
(see refs. 20 and 24 for additional applications). Following this
approach, we use the seed set detection algorithm described in
ref. 16 to analyze the metabolic network of each species. This
graph theory-based algorithm identifies the set of compounds an
organism exogenously acquires from its environment, repre-
senting the organism’s nutritional profile. Given the predicted
nutritional profile of each species, we introduce two pairwise
indices of metabolic interaction (Methods). We define the met-
abolic competition index as the fraction of compounds in a spe-
cies’ nutritional profile that are also included in its partner’s
nutritional profile (Fig. 1A). This provides a proxy for niche
overlap and for the potential level of competition one species
may experience in the presence of the other. We additionally
define the metabolic complementarity index as the fraction of
compounds in one species’ nutritional profile appearing in the
metabolic network but not in the nutritional profile of its partner
(Fig. 1B). Such compounds are used by both species, such that
one acquires them exogenously whereas its partner synthesizes
them from metabolic precursors, suggesting niche complemen-
tarity and potential syntrophy between the two species.
Contrasting these predicted interaction indices with species

co-occurrence patterns allows us to distinguish communities as-
sembled by species assortment from communities assembled by
habitat filtering. Specifically, as described above, a negative cor-
relation between co-occurrence and metabolic competition (or

a positive correlation between co-occurrence and metabolic
complementarity) suggests that community assembly is strongly
affected by species interactions: Species that compete for limited
resources exclude one another from shared habitats, whereas
species with complementary (and potentially cooperative) nutri-
tional requirements tend to co-occur. In contrast, a positive
correlation between co-occurrences and metabolic competition
suggests community assembly by habitat filtering: A specific en-
vironment that offers some set of resources will be inhabited by
species that require these resources (and that accordingly have
similar nutritional requirements), whereas a different environment
(e.g., a different sample) offering a different set of nutrients will
select for a different set of species.

Predicted Interactions Recapitulate Species Interaction Between Oral
Microorganisms. To validate our framework, we first applied it to
predict metabolic interactions among several human oral micro-
biota species whose interactions were carefully characterized.
The human oral microbiota is relatively well described, and many
oral species have already been cultured (25). These species in-
teract via signaling as well as metabolic mechanisms, leading to
a characteristic colonization pattern. Late-colonizing species are
dependent on the presence of early colonizers that attach to the
salivary pellicle for survival in the mouth. Pathogens typically
arrive later in the cycle, once conditions favorable for their
growth are established.
We focused on seven oral species known to influence one

another’s growth in shared environments (Methods) (Table S1A).
These species appear during different periods of dental plaque
formation, ranging from initial colonizers to late-arriving patho-
gens (26). We reconstructed the metabolic networks of these spe-
cies and determined their nutritional profiles, which were then
used to calculate the metabolic competition index and metabolic
complementarity index for each pair (Methods). We found that
our predicted metabolic interaction indices (Table S1 B and C)
capture species’ roles within the community and their behavior
with interacting partners. Specifically, the pair Streptococcus oralis
and Streptococcus gordonii have the lowest metabolic comple-
mentarity and the highest metabolic competition among all pairs.
These two initial colonizers were shown to behave antagonistically
(27, 28) and are expected to exploit similar niches. Furthermore,
in relation to all other species, Porphyromonas gingivalis is the
most complemented and poses the least competition to other
species, which reflects its ability to grow mutualistically with
a wide array of species from all phases of colony formation (28)
(SI Text).
To further evaluate our predicted interactions on a large scale,

we collected from the literature the growth rates of these species
alone and in combinations using saliva as a sole nutrient source
(25). To avoid comparison of absolute growth rate across po-
tentially different conditions, we used this data in a comparative
manner, generating a list of cases in which a given species was
shown to grow better with one species than with another (Methods
and Table S1D). Notably, the well-controlled environments in
which these experiments were performed and our focus on
growth rate comparative analysis allow us to control for all fac-
tors influencing growth of a species (such as habitat hetero-
geneity) except for the presence or absence of interacting
partners. Accordingly, in these growth assays we expected that
species would flourish when their interacting partners exploit
nonoverlapping niches, reducing the potential effects of com-
petition. As expected, we found that species that improve growth
of the partner also tend to have higher metabolic complemen-
tarity and lower metabolic competition with those partners (P <
0.027 and P < 4 × 10−4, respectively; Methods). A more stringent
analysis of this data yielded similar results (SI Text). Combined,
the findings above demonstrate that our metabolic interactions
indices successfully reflect the effect of species interaction
on growth.

Fig. 1. An illustration of model-based prediction of species interaction. The
metabolic network of each species is reconstructed with nodes representing
metabolites and edges connecting substrates to products. The shaped nodes
represent exogenously acquired nutrients (seeds). (A) Evaluating metabolic
competition. The brackets indicate the four and five seed nutrients exoge-
nously acquired by the ellipse- and rectangle-shaped species, respectively.
The two metabolites enclosed in a dashed contour denote shared nutrients
for which the two species may compete. Accordingly, in this illustration, the
competition index experienced by the first species in the presence of the
second is 2/4, whereas the competition index of the second species in
the presence of the first is 2/5. (B) Evaluating metabolic complementarity.
The compounds enclosed in a dashed contour denote nutrients required
by the second species that can be synthesized by the first species. In this
example, the complementarity index of the second species in the presence
of the first is 3/5.
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Predicted Metabolic Interactions and Co-Occurrences in the Gut
Microbiome. We next turned to investigate species interactions
in the gut microbiome. In contrast to the controlled growth
assays described above, here we considered the composition of
naturally occurring communities as measured by metagenomic
sequencing and aimed to elucidate the forces governing the as-
sembly of these communities. Specifically, we focused on a set of
154 prevalent gut species, whose abundances across 124 indi-
viduals were obtained from shotgun metagenomic analysis (2)
(Methods and Table S2A). To quantify the co-occurrence of the
various species we calculated the abundance-based Jaccard
similarity index between all pairs of species (Methods and Dataset
S1B). Using alternative co-occurrence metrics did not qualitatively
change the results reported below (SI Text and Fig. S1). Ge-
nome annotations for all species were collected from ref. 29
(Methods). Following the modeling and analysis procedure dis-
cussed above, the metabolic competition and metabolic com-
plementarity indices were calculated for all pairs of species
(Dataset S1A and Methods).

Comparing Predicted Interactions and Co-occurrence Patterns Suggests
That Habitat-Filtering Shapes the Gut Microbiome.We used these data
to investigate the association between metabolic interaction and
co-occurrence across all samples and all species. Specifically, we
wished to determine whether species that compete with one an-
other tend to co-occur or to exclude. We found that the metabolic
competition index is positively correlated with co-occurrence,
whereas the metabolic complementarity index is negatively corre-
lated with co-occurrence (ρ = 0.211, P < 10−4 and ρ = −0.193, P <
10−4, respectively, Mantel correlation test; Methods; Table S3A).
Notably, although the correlation is relatively mild, it is extremely
significant, with none of the permuted null models (Methods)
producing an equal or higher correlation value. This association
between metabolic interaction and co-occurrence is even
stronger when the analysis is limited to species pairs with coherent
interaction indices (SI Text). As discussed above, these findings
suggest that habitat filtering, rather than species assortment, is the
dominant structuring force in the intestinal microbiome.

Metabolic Interactions of Species’ Partners and Excluders.Given this
observed correlation, we next sought to determine whether our
framework could distinguish species that tend to significantly co-
occur with a given species from those that tend to exclude it. For
every species in our set, we defined as partners those 25% of
species with which it has the highest co-occurrence index, and
excluders as the 25% with which it has the lowest co-occurrence
index. Using different threshold values for defining partners and
excluders did not qualitatively change the findings reported be-
low (SI Text). We compared the mean competition and com-
plementarity indices of partners and excluders for each species.
We found that in 82% of the species (127 out of 154; P < 2 × 10−4,
permutation analysis; SI Text) the mean competition index with
partners is higher than with excluders and that in 86% of the
species (133 out of 154; P < 1 × 10−4, permutation analysis; SI
Text) the mean complementarity index is lower with partners
than with excluders (Fig. 2). Moreover, this partners and ex-
cluder separation is particularly strong when the analysis is lim-
ited to species pairs that exhibit consistent co-occurrence
patterns across different host health states (SI Text and Fig. S2).
Examining various ecological attributes, we additionally verified
that this separation of partners and excluders is consistent across
species and does not typify species with any specific ecological
label (SI Text and Table S4). We further demonstrated that
metabolic versatility does not explain the observed association
between co-occurrence and metabolic competition (SI Text).

Habitat Filtering in the Gut Microbiome Cannot Be Explained by the
Co-Occurrence of Phylogenetically Related Species. Previous studies
have found that phylogenetically related species tend to co-occur
in the gut (2, 30). Because functional capacity and nutritional
preferences are strongly linked to phylogeny (16, 31), we wished

to confirm that the above association between co-occurrence and
nutritional profile overlap is not a simple derivative of phyloge-
netic relatedness. To this end, we used 16s rRNA sequence
similarity to estimate the phylogenetic distance between the
various species in our analysis. We found that metabolic in-
teraction and co-occurrence are still significantly correlated even
when controlling for phylogenetic distance (Table S3A). Thus,
although phylogenetically related species do co-occur in the gut
(2), this alone cannot account for the observed habitat-filtering
signature. To further control for phylogeny, we additionally
examined the correlation between metabolic interaction and co-
occurrence within each phylum separately. We observed a similar
trend, wherein co-occurrence correlates positively with metabolic
competition and negatively with metabolic complementarity
(Table S3B). Notably, the magnitude of the correlation between
metabolic interaction and co-occurrence within phyla is mark-
edly higher compared with the correlation observed across all
species, suggesting that the impact of various structuring forces
varies at different phylogenetic scales (Discussion).
To further examine the link between metabolic interaction,

phylogenetic relatedness, and co-occurrence in detail, we binned
all species pairs by both metabolic competition index and phy-
logenetic distance and calculated the average co-occurrence in
each such bin. As demonstrated in Fig. 3A, phylogenetic re-
latedness is correlated with metabolic competition index (ρ =
0.457, P < 10−4, Mantel correlation test). However, for a given
phylogenetic distance, we still observed an increase in co-oc-
currence as the level of competition increases. To more rigor-
ously validate this finding, we additionally examined whether the
competition index with partners (as defined above) differs from
the competition index with excluders across different phyloge-
netic distances. We again found that partners are associated with
significantly higher metabolic competition than excluders across
all phylogenetic distances (Fig. 3B). Additional analysis compar-
ing competition, complementarity, and phylogeny in distinguish-
ing partners vs. excluders can be found in SI Text and Fig. S3.

Compositional Shifts Associated with Host Health and Body Mass
Index Do Not Fully Account for Observed Habitat-Filtering Patterns.
The above findings suggest a habitat-filtering model, wherein
some properties of the gut environment govern variation in
species composition. Notably, previous studies of the gut micro-
biome identified a strong association between species composition
and both obesity (4, 5, 24) and IBD (2, 24), suggesting these may
be major environmental filters influencing community composi-
tion. Here, we examined whether these host states can solely
account for the observed habitat-filtering patterns. To this end,
we portioned the 124 samples into four groups: healthy/lean,
healthy/obese, IBD/lean, and IBD/obese. If host state is indeed
the sole environmental determinant affecting species filtering,
the correlation reported above between co-occurrence and meta-
bolic interaction should disappear when considering samples

Fig. 2. Partner species have higher metabolic competition than excluder
species. Each bar represents a target species with the bar height represent-
ing the difference between the mean competition index with its partners
and the mean competition index with its excluders. In total, 82% of species
have higher metabolic competition index with partners (blue bars).
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from each of these controlled groups separately. We determined
the co-occurrence of all species pairs within each group (Dataset
S1 C–F) and calculated again the correlation between meta-
bolic interaction indices and co-occurrence. We found that in
all groups, co-occurrence still correlates positively with metabolic
competition and negatively with metabolic complementarity
(Table S3C). We similarly found that controlling for additional
host attributes, including nationality and enterotype, does not
change this pattern (SI Text). Taken together, these findings
imply that the host factors examined do not fully explain the
impact of the host gut environment on the composition of the
microbiota and that other (and potentially yet unknown) factors
contribute to habitat filtering in the gut environment and to
observed species co-occurrence patterns.

Analysis of Data from the Human Microbiome Project Validates a
Habitat-Filtering Model. Finally, to validate and extend our results,
we set out to examine whether the various patterns reported
above can be observed in an additional and independent dataset
describing the composition of the human microbiome. To this
end, we used recently obtained data from the Human Micro-
biome Project (HMP), a large-scale effort to characterize human-
associated microbial communities across five major body areas
and ∼300 healthy individuals (1). We collected the relative
abundances of 335 species (Dataset S2A) across 690 HMP
shotgun metagenomic samples (Methods). From these data,
the co-occurrence of all species pairs was determined (Data-
set S2C). The metabolic competition and complementarity in-
dices of all species pairs were determined as described above
(Dataset S2B).
We first examined the association between metabolic in-

teraction indices and co-occurrence across all samples and all
species. As observed above for the intestinal microbiome, co-
occurrence correlates positively with the metabolic competition
index and negatively with the metabolic complementarity index
(Dataset S2D), suggesting that the human microbiome is globally
structured by habitat filtering. This observation is somewhat
expected, given the gross differences between the five major
body sites sampled, the distinct characteristic organisms in each
(1), and the tendency of species to co-occur across related spe-
cific subsites (30). The obtained correlations are relatively weak
but are highly significant (Mantel correlation test; Methods) and
further increase when controlling for phylogeny (Dataset S2D).
Considering data from intestinal samples alone, we again ob-

served a similar correlation pattern, validating a habitat-filtering
model as the dominant assembly mechanism in the gut in this
second independent dataset (Dataset S2D). We further examined

whether this model represents a general plan for structuring
host-associated microbial communities or whether communities
in other anatomical sites are potentially subject to different
structuring forces. Partitioning samples according to body site
and repeating our analysis we found that in communities inhab-
iting the airways, skin, and the urogenital tract, co-occurrence
similarly correlates positively with metabolic competition and
negatively with metabolic complementarity (Dataset S2D). These
correlations remain significant when controlling for phylogeny. In
the oral community, the observed correlation is generally weaker,
probably owing to relatively low number of genomes available and
the pooling of several subsites (SI Text).

Discussion
Much effort has recently been placed on using co-occurrence to
predict interactions of microbial species, either globally (32) or
within the human microbiome (1, 2, 30). These studies provide
valuable insights into nonrandom regularities in community
composition but may not be sufficient to pinpoint the underlying
forces giving rise to these regularities. The framework presented
in this study, combining species abundance information with
mechanistic modeling of species interactions, renders feasible
a more principled analysis of these structuring forces. Specifi-
cally, we showed that predicted metabolic interactions correlate
with co-occurrence patterns and that species with similar nutri-
tional profiles tend to co-occur, suggesting that habitat filtering is
the dominant structuring force of the human microbiome.
Groups of species that feed on the same compounds are directly
influenced by the availability of those compounds in the envi-
ronment and accordingly covary in abundance across hosts.
Clearly, community assembly in the gut is a complex process.

Habitat filtering and species assortment are not mutually exclu-
sive in structuring communities (14). For example, primary
consumers of polysaccharides may compete over fiber such as
cellulose (33), yet they also release oligosaccharides, which are
consumed by other species (34). Our analysis identifies habitat
filtering as a principal force but clearly does not imply that direct
species interactions do not play a role. The detrimental effects of
competition over nutrients may, for example, be mitigated by the
sheer abundance of resources, coupled to the naturally high
turnover rate in the intestine. Species may, however, still com-
pete over other resources, resulting in lower overall growth (35).
Previous studies of the composition of the microbiome have

highlighted phylogeny as a key determinant of co-occurrence
patterns (2, 30). However, our analysis demonstrates that although
phylogenetic relatedness is correlated with both co-occurrence
and metabolic interaction, phylogeny cannot fully account for the
observed habitat-filtering pattern. In fact, the intensity of the
habitat-filtering signature increases within phyla, indicating that
it may be stronger at finer phylogenetic resolutions. These findings
potentially contrast with recent observations of bacterial diversity
in the oral cavity, where significant community structure was
demonstrated at the level of genera but not of species (8). Our
results may further suggest a strong tendency toward convergent
genomic evolution in the gut and potential pressure acting on the
evolution of intestinal microbes away from functional diver-
sification (31).
Clearly, however, care must be taken in interpreting these

results. Scale, for example, is an important factor and must be
taken into account. Considering the variation in pH, nutrient
content, oxygen content, and other environmental attributes
among the various body sites studied by the HMP, a signature of
habitat filtering is probably expected when studying whole-body
species co-occurrence patterns: Different body sites will clearly
select for very different sets of organisms. Our findings are in line
with previous studies demonstrating that body site has the
greatest influence in determining species composition, with less
variation observed across individuals (1). However, our analysis
of each body site and specifically of the gut microbiome indicates
that even when most variation in these factors is controlled,

Fig. 3. Habitat filtering in the gut microbiome across varying phylogenetic
distances. (A) Heat map of ranked co-occurrence score, binned by phylogenetic
distance (x axis) and metabolic competition index (y axis). The color of each bin
represents the mean co-occurrence of all pairwise associations within it. Evi-
dently, even among species pairs with a given phylogenetic relatedness, mean
co-occurrence tends to increase with metabolic competition (red regions at the
top of the heat map). (B) Average metabolic competition index and SE of
partners and excluders vs. phylogenetic relatedness. At any level of phyloge-
netic relatedness, species have more similar nutritional profiles (significantly
higher metabolic competition index) with partners than with excluders (P <
0.05 in all bins, one-tailed Mann–Whitney U test; see also Table S3E).
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organisms are further filtered on a local scale by as yet un-
determined environmental factors.
Specifically, focusing on the gut microbiome, we demonstrated

that several host phenotypes that were suggested to affect
composition such as obesity, IBD, or host nationality are not the
sole determining axes along which species are filtered, suggesting
subtler environmental and ecological determinants. A likely
candidate is the biochemical content, to which host diet is the
key contributor. Diet has been demonstrated to be a strong
predictor of intestinal microbiota composition (7, 36) and may
accordingly be the primary link between host macroecological
state and community composition. Specifically, diets that provide
a surplus of nutrients preferred by a subset of the community will
increase the abundance of those species, in accordance with
a habitat-filtering process (37).
Clearly, the models used in this study are a simplification of the

underlying biology and have several limitations. First, connectivity-
based models and topological analysis cannot fully quantify the
strength of metabolic interactions. For example, our method
weighs each overlapping compound equally in determining met-
abolic competition, ignoring the potential contribution of each
compound to growth or constrains on reaction fluxes. Similarly,
our method aims to quantify the set of compounds both species
potentially require, but without prior knowledge about nutrient
availability it is hard to determine which compound these species
will actually compete for. Notably, constraints-based approaches
can potentially overcome some of these limitations by explicitly
modeling the environment and by incorporating constraints on
fluxes and nutrient uptake (38). However, in contrast to the ho-
mology-based networks used in this study, such models require
detailed biochemical data and a manually curated reconstruction
process and are accordingly not yet available for the vast majority
of gut species studied here.
Moreover, it is important to note that although nutrient

availability is an important factor, metabolic interactions are not
the only determinants of partner preference among microbes.
Adhesion, coaggregation, signaling, and antibiotic tolerance are
critical to community assembly. For example, it has recently been
shown that microbes form discrete ecological units that co-
operate in the production of antibiotics (39). As molecular
methods improve, multiple “meta-omic” data types (such as
metaproteomic and metametabolomic data) are becoming avail-
able, providing insights into such complex interspecies processes.
Developing advanced analytic and modeling frameworks that
integrate these data types is one of the major challenges mi-
crobial ecology currently faces (40, 41). Specifically, modeling
and predicting the full range of species interactions and validating
predicted interactions via model systems (42) can dramatically
improve our understanding of the microbiome in health and
in disease.
Notably, elucidating the assembly rules of the microbiome

goes beyond gaining a better understanding of basic ecological
processes and has profound clinical implications. Specifically,
one of the key challenges of human microbiome research is the
development of intervention strategies for driving the intestinal
microbiota to favorable states and for microbiome-based therapy
(20, 43). In this context, our observation that habitat filtering
dominates the assembly of the intestinal community suggests that
certain species can be targeted with relatively little concern
about their interaction with other members of the community.
Similarly, high levels of niche overlap among community mem-
bers may indicate that dietary supplements may not be precise
enough to target species individually. An extended framework
for analyzing species interactions within clinical settings could
play a key role in the development of microbiome-based treat-
ments. For example, identifying the set of compounds for which
species compete could inform dietary-based intervention efforts,
safe drug development, species isolation, and colonization
studies (17, 44). This study and the framework introduced here
are an important first step in this direction, highlighting the
opportunities and challenges ahead.

Methods
Species and Community Data. We obtained a list of seven oral microbial
species from ref. 28. This list comprises species that have been isolated and
had their growth on saliva assayed. A list of prevalent gut microbial species
was obtained from ref. 2. This list comprises 155 bacterial species for which
whole genome sequence is available and that had sequence coverage >1%
in a metagenomic sample from at least 1 of 124 individuals analyzed (Table
S2A). A set of ecological attributes for each species was obtained from the
Prokaryotic Genome Project tables at the National Center for Biotechnology
Information (Table S2B).

Abundance data for these metagenomic samples were obtained from ref. 2.
Species abundance was calculated as the sum of sequence length from
reads unambiguously mapped to a unique region of a species’ genome,
normalized by the total length of the unique portion of the species’ genome
sequence. To account for different sequencing depth across samples, ge-
nome coverage was normalized to 1 Gb of sequence. Using this shotgun
sequencing-based method to estimate the abundance of each genome in
the community provides a natural approach to coupling species abundance
data with the genomic data used to reconstruct the species’ metabolic
networks (discussed below). For each metagenomic sample, nationality,
body mass index, and health state (IBD/healthy) of each contributing in-
dividual was recorded. For Danish individuals, the enterotype was also
recorded. Species abundances were normalized to reflect relative abun-
dances. Species co-occurrence was defined as the similarity in abundance
profiles as measured by the continuous Jaccard similarity index (SI Text).
We further demonstrated that our co-occurrence measures are robust to
the number of individuals sampled (SI Text and Fig. S1).

Metabolic Network Reconstruction.We obtained genomic data for all organisms
from the Department of Energy Joint Genome Initiative’s Integrated Microbial
Genomes project (IMG, http://img.jgi.doe.gov) (29). For each species, the list of
genes mapped to the Kyoto Encyclopedia of Genes and Genomes (45) orthol-
ogous groups (KOs) was downloaded (Table S2A). We used these data to re-
construct the genome-scale metabolic network of each species. Networks were
represented as directed graphs with nodes representing compounds and edges
representing reactions linking substrates to products. A detailed description of
the reconstruction procedure can be found in ref. 16.

Analysis of Growth Data of Oral Species. Growth rate of species was obtained
from several previous studies (25) (SI Text) that describe growth assays of
multiple oral species in various combinations. We generated a list of all
species trios for which we can comparatively determine partners’ influence
on growth (Table S1C). Specifically, each trio is defined as a target species
(e.g., P. gingivalis) and two partner species: a favored partner (e.g., Aggre-
gatibacter actinomycetemcomitans) and a disfavored partner (e.g., Fuso-
bacterium nucleatum), such that the target species grows better with the
favored partner than with the disfavored partner. We used the paired Stu-
dent’s t test to confirm that the metabolic interaction indices associated with
favored partners are significantly different from those associated with the
disfavored partners. To validate these results with increased stringency, we
additionally used a manually curated dataset, obtaining qualitatively similar
results (SI Text).

Predicting Metabolic Competition and Complementarity. We use the seed set
of each species as a proxy for its nutritional profile. The seed set represents
the minimal set of compounds an organism exogenously acquires to syn-
thesize all other compounds and can be inferred from the topology of its
metabolic network using a previously published method (16). Given these
nutritional profiles, two interaction indices were calculated for each pair of
species: the metabolic competition index and the metabolic complemen-
tarity index. The metabolic competition index represents the similarity in
two species’ nutritional profiles. It is calculated as the fraction of compounds
of query species X’s seed set that are also present in the seed set of a target Y.
Because seed compounds are associated with a confidence score (see ref. 16),
this fraction is calculated as a normalized weighted sum. This index provides
an upper bound for the amount of competition one species can encounter
from another. Using an additional and previously described seed set-based
metric for competition produced qualitatively similar results (SI Text). The
metabolic complementarity index represents the complementarity in two
species’ nutritional profiles and provides an upper limit for potential syn-
trophy. To this end, we modified the host–parasite biosynthetic support
score (21) to reflect potential complementarity between pairs of microbial
species. Specifically, the score is calculated as the fraction of seed com-
pounds of a query species X that are producible by the metabolic network of

12808 | www.pnas.org/cgi/doi/10.1073/pnas.1300926110 Levy and Borenstein

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/st02.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/st02.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/st02.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/pnas.201300926SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/pnas.201300926SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/pnas.201300926SI.pdf?targetid=nameddest=SF1
http://img.jgi.doe.gov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/st02.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/pnas.201300926SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/st01.docx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/pnas.201300926SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1300926110/-/DCSupplemental/pnas.201300926SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1300926110


a target Y but are not a part of Y’s seed set. These may also represent
compounds essential to one organism that its partner may provide. Notably,
neither of these indices is necessarily symmetric.

Estimation of Phylogenetic Relatedness. We used the level of similarity be-
tween the 16s rRNA gene as a proxy for the evolutionary distance between
species. The 16s rRNA gene sequences for 143 species were collected from
IMG (29) or from the GreenGenes database (46). For 16s analysis, we fol-
lowed the procedure described in ref. 31.

Evaluating the Correlation Between Co-Occurrence Scores and Metabolic
Interaction Indices. To calculate the correlation between co-occurrence and
metabolic interaction, we generated two matrices, the first listing the co-oc-
currence scores between all species pairs and the second listing the predicted
interaction index (either competition or complementarity). Because co-oc-
currence scores are generally symmetric whereas interaction indices are not
(discussed above), we also generated a symmetric version by replacing each
element in the interaction matrix with the mean of each value and that op-
posite the diagonal. The Spearman correlation between the upper triangles of
the co-occurrence matrix and the interaction matrix was calculated. To de-
termine the significance of this association, we used a permutation-based
Mantel test. The rows and columns of the co-occurrencematrixwere randomly
permuted, preserving species identities (i.e., row and column orders are per-
mutedsimilarly). Foreachof10,000permutedmatrices,weagaincalculatedthe
Spearman correlation, and the P value is the fraction of permutated matrices
with correlations as high as or higher than the original. To control for phylo-
genetic relatedness, an additional matrix that describes the phylogenetic re-
latedness between all species was generated (discussed above), and the

Spearman partial correlation of the interaction and co-occurrence matrices,
controlling for phylogenetic relatedness, was calculated. Significance was
determined using the same permutation approach described above.

Analysis of HMP Community Data. We obtained shotgun metagenomic com-
munity profiling data from the Human Microbiome Project Data Analysis and
Coordination Center Web site (http://hmpdacc.org/HMSMCP/). These data
represent relative abundance of bacteria and archaea at different taxonomic
levels, as determined by the MetaPhlAn pipeline (47). MetaPhlAn enables es-
timation of species abundances and comparison across metagenomic samples
of different sequencing depths. In total, 397 species level taxa were classified
among 690 samples. Each sample represents one of five major body sites. Be-
cause MetaPhlAn does not identify taxa at the strain level, representative
genomes were selected from IMG. Where possible, genomes marked “Human
Microbiome Project (HMP) Reference Genomes” were selected. In cases in
which multiple genomes were available, the genome with the greatest num-
ber of KOannotations, and then the greatest number of genes, was selected. A
list of the 335 species from theMetaPhlAn profile and representative genomes
is available in Dataset S2A. Abundance of these species in each sample was
renormalized in the samemethod as with the MetaHIT data. Percent similarity
of the 16S rRNAgenewas used to estimate phylogenetic relatedness as before,
analyzing 314 species with representative 16S sequences.
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