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Abstract
For decades, complement has been recognized as an effector arm of the immune system that
contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been
proposed that are based on the intensification of complement-mediated responses against tumors.
However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role
for complement. Cancer cells seem to be able to establish a convenient balance between
complement activation and inhibition, taking advantage of complement initiation without suffering
its deleterious effects. Complement activation may support chronic inflammation, promote an
immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling
pathways. In this context, inhibition of complement activation would be a therapeutic option for
treating cancer. This concept is relatively novel and deserves closer attention. In this paper, we
will summarize the mechanisms of complement activation on cancer cells, the cancer-promoting
effect of complement initiation, and the rationale behind the use of complement inhibition as a
therapeutic strategy against cancer.
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1. Introduction
Cancer is a major public health problem causing millions of deaths worldwide [1]. In the
United States, one in four deaths is due to cancer [2]. Breast cancer in females and lung
cancer in males are the most frequently diagnosed cancers and the leading causes of cancer
death for each sex (Fig. 1). Despite substantial advances in the chemotherapeutic
management of cancer, more than half of all cancer patients do not respond to therapy or
relapse, dying from metastatic disease. In addition, cancer chemotherapy is usually
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accompanied by severe side effects. These facts have led to the belief that in some tumor
types, traditional therapies have reached a “therapeutic plateau” [3]. More personalized
therapies with higher tumor specificity and less toxicity are a clinical need.

A variety of strategies based on the understanding of the molecular events associated with
cancer initiation and progression are now under intensive investigation. In fact, some
rationally targeted therapies have already shown a remarkable effectiveness in selected
populations [4]. Targeted therapy refers to a new generation of cancer drugs designed to
interfere with a specific target that is believed to have a critical role in tumor cell
proliferation and survival. Most of these strategies are based on the identification of
targetable signaling proteins critical for tumor growth or progression. Alternatively, cancer
therapies directed at immune modulation have also been pursued, but with only modest
advances to date [5, 6]. A better understanding of the molecular interactions between tumors
and the immune system should lead to better anticancer therapies. In this review we will
present emerging data on the relationship between complement, an essential part of the
innate immunity, and cancer progression. We will focus on the therapeutic potential of
targeting complement activation in cancer, examining the rationale behind this strategy and
the aspects that must be investigated before it can be considered an anticancer strategy that
is ready for clinical testing.

2. The complement system
Complement has evolved as a first defense against non-self cells or unwanted host elements.
The spectrum of complement-mediated functions ranges from direct cell lysis to the control
of humoral and adaptive immunity. This system also regulates a number of immunological
and inflammatory processes that contribute to body homeostasis [7]. Complement activities
are mediated by more than 50 circulating or cell surface-bound proteins. There are three
pathways of complement activation: the classical, the alternative, and the lectin pathways
(Fig. 2). The three complement pathways differ in their mechanisms of target recognition
but converge in the activation of the central component C3. After this activation, C5 is
cleaved, and the assembly of the pore-like membrane attack complex (MAC) is initiated.
The enzymatic cleavage of C3 and C5 leads to the production and release of anaphylotoxins
C3a and C5a, two important inflammatory mediators and chemoattractants [8]. Complement
is tightly controlled by several proteins whose main function is to prevent activation.
Complement inhibitors are grouped into two categories, soluble regulators and membrane-
bound regulators. These regulators naturally protect self cells and tissues from unwanted
complement activation [9].

3. Complement activation in cancer cells
Malignant transformation is accompanied by the acquisition of genetic and epigenetic
alterations that distinguish the transformed cells from their normal counterparts. This
process dramatically changes cell-surface proteins, glycosylation, and phospholipids
patterns [10–15]. Cancer-related membrane modifications can be recognized by innate and
adaptive immune mechanisms that protect the host against the development of cancer [16].
This is the basis of the immune surveillance hypothesis, which proposes that the immune
system surveys the body for tumor-associated molecules, eliminating many, if not most,
emerging tumors [17]. The immune surveillance activity is one of the three phases proposed
in the inmmunoediting theory: elimination (immune surveillance), equilibrium, and escape
[18]. If tumor cells are able to get pass the elimination phase, they enter an equilibrium
period during which surviving tumor cells keep dividing and acquiring genetic and
epigenetic abnormalities under the immunological pressure. This pressure contributes to the
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selection of tumor cell variants that are resistant to immune effectors. During the escape
phase, tumor cells effectively evade the immune system.

There is no direct evidence to support the contention that complement can eliminate nascent
tumors. However, considering that complement is designed for the recognition of non-self
elements, it is logical to assume that changes in the composition of tumor cell membranes
make these cells a target for complement recognition. Consistent with this assumption, a
number of clinical studies have reported an activation of complement in cancer patients [19–
23]. Indirect evidence for a role of complement in immunosurveillance also comes from the
fact that cancer cells develop a variety of strategies to avoid complement-mediated damage
[24]. Their best-known escape mechanism is the overexpression of complement regulatory
proteins, a subject that has been extensively reviewed [25–29]. According to the
immunoediting hypothesis, this overexpression is indicative of a selective pressure created
by complement activation in the tumor microenvironment that sculpts cancer cells to evade
the harmful effects of complement.

Other indirect evidence of complement activation by cancer cells comes from the increased
complement activity found in biological fluids from cancer patients [30–34]. Complement
activation has also been observed in in vitro studies of cancer cell lines. Lung cancer cells
deposit C5 and generate the active product C5a more efficiently than do non-malignant
bronchial epithelial cells [35]. However, the antigens responsible for this activation and the
pathway/s involved are not yet known. The classical pathway has been identified as the main
contributor to complement activation on subcutaneously inoculated TC-1 cervical cancer
cells [36]. In vitro studies have shown spontaneous activation of the classical complement
pathway by two neuroblastoma cell lines [22]. In the case of primary tumors, there are few
studies pointing to a specific activation pathway. Lucas et al. [21] have suggested that a
tumor-specific immune response occurs in papillary thyroid carcinomas, with activation of
the classical complement cascade. Follicular and MALT lymphomas also deposit elements
of the classical pathway [23], and alterations in this pathway have been described in patients
with chronic lymphocytic leukemia [37, 38]. In contrast, the results of other studies have
suggested that lymphoma and myeloma cells activate the alternative pathway [19, 39–41].
Moreover, both the alternative and the classical pathway seem to be involved in some cases
[42]. The lectin pathway of complement activation has been found to be significantly
increased in colorectal cancer patients [33].

In general, the information about the pathways activated by cancer cells is fragmented. Most
studies on this subject were published years ago, and results are confusing, most likely
because of the high heterogeneity among different tumor types studied. Each tumor has its
own unique antigenic identity and a characteristic profile of complement regulators. This
variety of complement recognition molecules and regulators should result in a diversity of
activation pathways. To make things more complicated, there are extrinsic complement
activation pathways mediated by soluble and membrane-bound proteases, such as serine
proteases of the coagulation and fibrinolysis systems [43–46]. Lung cancer cells can produce
C5a in the absence of serum, likely through the action of an extrinsic pathway mediated by
an uncharacterized trypsin-like serine protease [35]. Thus, a more systematic analysis of the
pathways and mediators by which cancer cells activate complement is needed. Such studies
would greatly improve our understanding of the dynamic interplay between complement and
cancer and would offer the opportunity to identify new molecular biomarkers.

Complement components, or their activation products, have been proposed as markers in
other pathologies in which this system is involved [47–49]. Lung cancer patients show
significantly higher plasma levels of complement proteins and activation fragments than do
control donors [32, 35], and elevated complement levels are correlated with lung tumor size

Pio et al. Page 3

Semin Immunol. Author manuscript; available in PMC 2014 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[30]. Complement-related proteins are also elevated in biological fluids from patients with
other types of tumor [32–34, 50]. More interestingly, complement activity can be associated
with clinical outcome. For example, a positive correlation has been observed between
survival time and the initial activity of the classical pathway of complement in patients with
chronic lymphocytic leukemia [51]. High MASP-2 levels in serum have been found found to
be an independent prognostic marker of recurrence and reduced survival in colorectal cancer
[52]. High levels of complement regulatory proteins have also been associated with poor
prognosis in different malignancies [53–55], and plasma complement components may also
be useful as early predictive markers of response to chemotherapy [56].

4. Promotion of cancer growth by complement
Recognition of cancer cells by the complement system has been traditionally associated with
an effector activity that contributes to the destruction of the tumor cells. Accordingly,
researchers have designed a wide variety of strategies to increase complement activation in
the context of immunotherapy against tumors [29]. However, as early as in 1975, Shearer et
al. reported that complement has the capacity to stimulate growth when cells are treated with
low concentrations of antitumor antibodies [57]. More recent studies have demonstrated a
tumor-promoting role of complement in mouse models [8, 58].

Although the finding that complement elements can act as tumor promoters may be
considered unexpected, the idea is entirely consistent with the cancer immunoediting theory.
Based on this theory, recognition of cancer cells by complement elements creates a selective
pressure that leads to the expansion of new tumor populations that are able to control
complement activation. In this context, cancer cells could take advantage of the convenient
balance created between complement activation and inhibition (Fig. 3)

This new perspective on the role of complement in cancer was proposed in a syngeneic
mouse model of cervical cancer [36]. Complement deficiencies in this model and
pharmacological blockade of complement-related mediators have been associated with
impaired tumor growth [36]. In particular, C5a, a potent chemoattractant and
proinflammatory mediator generated locally in the tumor microenvironment, seemed to be
an essential contributor to tumor growth. Later studies with mouse models have supported
this seminal observation. C5a contributes to lung cancer progression [35], and genetic
complement deficiencies, including C5aR knockdown, impair ovarian tumor growth in mice
[59]. Contrasting results have been obtained in immunodeficient mice injected with human
SKOV-3 ovarian adenocarcinoma cells transfected with mouse C5a. Tumor cells that
overexpress C5a have been found to show a significant reduction in tumor progression [60].
More intriguingly, results obtained in a syngeneic lymphoma model suggest that the impact
of C5a on tumor growth is concentration-dependent [60]. Taken together, all these animal
models support the idea that complement activation is able to regulate tumor growth. A
variety of cancer-related biological processes may be involved in this regulation. In the next
sections, data on the potential role of complement in the modulation of chronic
inflammation, immunosuppression, angiogenesis, and cancer cell signaling will be reviewed.

4.1. Complement in tumor-associated inflammation
Inflammation is a protective biological process that removes harmful stimuli from the
organism. Experimental data support the idea that chronic inflammation and adaptive
immune responses are critically involved in tumor immunosurveillance [61]. Appropriately
polarized inflammation triggered by the use of Mycobacterium bovis impairs bladder cancer
progression [62]. Furthermore, infiltration of certain types of leukocytes within the tumor
microenvironment is associated with anti-tumor T-cell responses and a good prognosis [63–
65].
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Nevertheless, the relationship between cancer and inflammation is complex and subject to
opposing forces. In particular, tumor-associated inflammation can contribute to multiple
hallmark capabilities by supplying bioactive molecules to the tumor microenvironment [66].
Thus, while acute responses are considered part of the defense against neoplastic cells,
sustained inflammation in the tumor microenvironment increases the risk of neoplastic
transformation and has many tumor-promoting effects [67]. Chronic exposure to irritants,
including tobacco smoke, radon, and asbestos, considerably increases the risk of developing
lung cancer [68]. Persistent inflammation is characterized by stromal accumulation of
certain types of cytokines, chemokines, grow factors, matrix remodeling proteases, and
reactive oxygen species [69]. These events critically compromise tissue homeostasis and
create a tumor-supportive microenvironment.

The role of complement in inflammation is well known [70]. Complement breakdown
reactions lead to the generation of powerful immune effectors, such as the anaphylatoxins
C5a and C3a. Anaphylatoxins are potent chemoattractants for eosinophils, monocytes, and T
lymphocytes [71, 72]. In addition, the interaction of these molecules with their receptors
stimulates the release of granule-based enzymes, cytokines, eicosanoids, and reactive
oxygen species, all of which contribute to innate immune functions and/or tissue damage
[71–73]. Deregulated complement activity is involved in the pathogenesis of some chronic
inflammatory diseases [74, 75].

In the case of cancer, transformed cells are recognized by complement but resist
complement attack through the shielding role of complement inhibitors. This controlled
tumor-mediated complement activation provides a permanent source of complement
effectors that could create an inflammatory microenvironment favorable to cancer growth.
Complement-bioactive molecules such as C3-, C4-, and C5-derived fragments, Clq, and
MAC are prominent elements of the inflammatory tumor microenvironment [76], but,
unfortunately, little is known about their function in tumorigenesis. In addition, C3-deficient
mice exhibit an impaired production of the pro-inflammatory cytokine IL-6 after partial liver
resection [77]. IL-6 is a multifunctional cytokine that displays a wide range of biologic
activities in cancer: it inhibits apoptosis, stimulates angiogenesis, and increases drug
resistance in patients with advanced tumors [78]. Activation of C3aR and C5aR increases
IL-6 mRNA expression [79].

Complement activity also stimulates the expression of transforming growth factor β (TGF-
β) [80, 81]. TGF-β displays pro- and anti-tumor effects, depending on the cellular context
[82]. In regard to the relationship between complement and other effectors of innate
immunity, several studies have demonstrated a synergism between complement and toll-like
receptors (TLRs). TLR engagement upregulates nitric oxide synthase-2 and
cyclooxygenase-2 and contributes to tumor-associated inflammation [83]. Both C3a and C5a
increase the activity of TLR2/6, TLR4, and TLR9 and hence the upregulation of the pro-
inflammatory cytokines tumor necrosis factor, IL-6, and IL-1β [84]. Therefore, the role of
complement activation in the stromal accumulation of cytokines and growth factors is
consistent with its contribution to the inflammatory network in cancer.

Another important feature of tumors is their plasticity in adapting to different physiological
conditions. A phenomenon closely related to tumor-associated inflammation is hypoxia [85].
Interestingly, under hypoxic conditions, there is an increase in complement activity because
of a downregulation in the expression of factor H and factor I [86], which could lead to the
generation of C5a and other proinflammatory molecules. This downregulation is a good
example of how tumors engage strategies that not only help them to survive stress but also
contribute to cancer progression. We can conclude that tumors are able to trick the anti-
tumor effects of inflammation in order to polarize immune responses toward those effectors
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that facilitate tumor growth. The biologically relevant interplay between complement and
inflammation encourages the design of future studies to address the contribution of
complement to the modulation of tumor-associated inflammation.

4.2. Complement in immunoregulation
Tumor-mediated immune responses are different from those observed in other pathological
conditions [87]. In the past, researchers considered that the immune responses observed
within tumors were all the consequence of an immune attack. However, tumors also acquire
the ability to circumvent immune recognition and even take advantage of it. Dense infiltrates
of both innate and adaptive immune cells are a common feature of solid tumors and have an
impact on the clinical outcome of cancer patients. The presence of M2-polarized tumor
associated macrophages, myeloid-derived suppressor cells (MDSCs), type II natural killer T
cells, regulatory/tolerogenic dendritic cells, and regulatory T cells (Tregs) is associated with
cancer progression, whereas Ml-polarized tumor associated macrophages, type I natural
killer T cells, and effector T cells contribute to immune-mediated tumor eradication [88–92].
The delicate balance between these opposing cell populations determines the fate of a tumor
(i.e., elimination or promotion).

The complement system is critical for the regulation of adaptive T-cell responses [93].
Deficiencies in complement proteins are associated with impaired CD4+ and CD8+ T-cell
effector responses, suggesting that complement can sustain adaptive immune responses
against tumors [94–98]. On the other hand, complement activation can also promote an
immunosuppressive tumor microenvironment. C5a is a potent chemoattractant for MDSCs
that is able to increase the number of highly suppressive polymorphonuclear MDSCs in the
tumor stroma and to facilitate the tumorimmunosuppressive effects of mononuclear MDSCs.
This activation of complement enhances the production of reactive oxygen and nitrogen
species within tumor microenvironment, which is accompanied by a subsequent decrease in
tumor cytotoxic CD8 T-cell responses [36]. In accordance with these functions, the blockade
of C5a in mice bearing lung cancer cells significantly diminishes the number of
polymorphonuclear MDSCs in the spleen and the intratumoral expression of
immunosuppressive mediators [35].

Complement activation also affects the activity of Tregs, an important immunosuppressive
population of T cells. Activation of C5a and C3a receptors in Tregs triggers pAKT-
dependent phosphorylation of the transcription factor Foxol, downregulating the levels of
Foxp3 and, therefore, the suppressive Treg activity [99]. In addition, blockade of C3aR and
C5aR in responder CD4+ T cells can promote their differentiation towards a Treg phenotype
[100]. However, C5a at high concentrations significantly promotes Treg differentiation,
which suggests that this factor may regulate Treg differentiation in a concentration
dependent manner [60].

Other complement effectors can also contribute to tumor-mediated immunoregulation.
Crosslinking of CD46 with C3b or monoclonal antibodies combined with CD3 activation
leads to the development of Tregs [101]. The ligation of the complement C3 activation
product iC3b to CR3 on antigen-presenting cells results in antigen-specific systemic
tolerance [102]. Furthermore, iC3b/CR3 interaction upregulates the expression of TGF-β2
and IL-10, two pivotal contributors of tumor-mediated immunosuppression [102]. Recently,
it has also been demonstrated that iC3b promotes the generation of powerful
immunosuppressing MDSCs [103]. In conclusion, there is evidence to support the
hypothesis that complement modulates the immune response generated by tumor cells.
However, only fragmentary results are available concerning the impact of complement
activation on the immune tumor microenvironment (Table 1). Of note, the outcome with
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respect to tumor growth can depend on the levels of complement effectors in the local tumor
microenvironment [60].

4.3. Complement and angiogenesis
Neoplastic tissues need to be able to grow new blood vessels in order to receive adequate
oxygen and nutrients. Importantly, the aggressiveness of tumors is directly related to the
density of their tumor microvasculature [104], and emerging cancer treatments are based on
the suppression of angiogenesis [105]. The role of complement in angiogenesis has been
studied in a wide range of diseases and experimental models. However, whether
complement is pro- or anti-angiogenic is controversial, and the reported results have
depended on the specific pathological features of the disease being studied.

On the one hand, activation of C5aR polarizes macrophages toward an
angiogenesisinhibitory phenotype in a murine model of retinopathy of prematurity [106].
This phenotype is characterized by the upregulation of anti-angiogenic soluble vascular
endothelial growth factor receptor-1. The secretion of this factor has also been observed in
monocytes in an antibody-independent model of spontaneous miscarriage and intrauterine
growth restriction [107].

On the other hand, C5a enhances endothelial cell migration and tube-like formation in vitro
[35, 59, 108]. C5a triggers human umbilical endothelial cell activation through the
upregulation of genes involved in endothelial adhesion, migration, and angiogenesis [109,
110]. In addition, C5a and C3a stimulate choroidal neovascularization, a common and
severe complication of age-related macular degeneration (AMD) [111]. Also, laserinduced
choroidal neovascularization is accompanied by the presence of C3 and MAC deposits and
the upregulation of the angiogenic factors TGF-β2, vascular endothelial growth factor, and
basic fibroblast growth factor [80]. The importance of complement in choroidal
neovascularization is strongly supported by the involvement of the complement regulator
factor H in AMD. Factor H is present in ocular tissues, and a polymorphic variation
(Y402H) has been shown to be associated with an increased risk for AMD [112, 113].

Few studies have addressed the role of complement in tumor angiogenesis in vivo. No effect
on tumor angiogenesis was observed after the blockade of C5aR in a murine cervical tumor
model [36]. Similarly, in a lung cancer model, there were no differences in tumor vascular
density when animals were treated with a C5aR antagonist, although the expression of basic
fibroblast growth factor, a potent mitogen and chemotactic factor for endothelial cells, was
significantly reduced within the tumors [35]. In contrast, genetic C3 and C5aR deficiencies
have been found to be associated with reduced vascularization in a mouse model of ovarian
cancer [59]. It is clear that the effect of complement on tumor angiogenesis is under the
influence of uncharacterized variables that merit further investigation.

4.4. Complement and cancer cell signaling
Complement participates in several transduction pathways involved in tumor progression.
Tumor cells evade lysis by the use of protective mechanisms that limit the formation of
functional MAC pores [114]. Non-lytic complement activation leads to the generation of
bioactive products that may be involved in pro-oncogenic signaling pathways [115].
Deposition of sublytic doses of MACs induces ion shifts that promote proliferation,
differentiation, and resistance to apoptosis [116]. Sublytic MACs activate cancer-associated
signaling pathways involving MAPK, phosphatidylinositol 3-kinase, Ras, and p70 S6 kinase
[117–119]. In addition, sublytic doses of complement inhibit apoptosis by blocking
apoptosis drivers such as FLIP, caspase-8, Bid, and inducing the phosphorylation of Bad
[116]. In oligodendrocytes, sublytic complement activation induces RGC-32 [120], a
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molecule upregulated in several human malignancies that complexes with CDC2/cyclin Bl
to positively regulate cell cycle activation [121, 122].

Other complement components can participate in the activation of relevant signaling
pathways. Clq binding to frizzled receptors activates canonical Wnt signaling in a murine
model of aging [123], and Wnt signaling pathways regulate various processes that are
important in the pathogenesis of cancer [124]. The anaphylatoxins C5a and C3a trigger
signaling pathways that mediate survival and antiapoptotic responses in a wide range of
cells. They activate MAPK and AKT signaling in leukocytes [125, 126] and protect neurons
against cell death [127, 128]. C5a upregulates the expression of the hepatocyte growth
factor-c-Met axis in injured liver [129]. The activation of this pathway has mitogenic and
anti-apoptotic effects and is deregulated in many tumors [130]. The C5a/C5aR axis also
upregulates phospholipase C β2 [131], phospholipase D [132], and cyclins E and Dl [129].
In addition, C5a enhances the transactivation of epidermal growth factor receptor [109], a
therapeutic target in many tumors [133].

5. Complement inhibition for cancer treatment
Activation of the complement system by tumor cells was long believed to act only for
benefit of the host. In fact, intense research has been devoted to the use of complement to
improve the efficacy of anticancer therapies based on monoclonal antibodies [29]. The Fc
regions of membrane-bound therapeutic antibodies interact with the heterooligomeric Clq
complex and activate the classical pathway. Complement activation leads to formation of
MAC and fosters opsonization. In addition, complement can synergize with other antibody-
mediated mechanisms of action. Many therapeutic strategies designed to overcome the
protection mediated by complement inhibitors or to improve complement-mediated effector
responses have been developed and tested experimentally in both in vitro and animal models
[26, 134–136]. However, recent findings proposing novel complement-mediated roles in
tumor progression provide preliminary evidence of the potential utility of a distinct
therapeutic option: complement inhibition as an anticancer therapy (Fig. 4).

Despite the ubiquitous presence of complement, relatively few side effects have been
reported for complement-directed therapy [137, 138], in contrast to the high toxicity
associated with traditional anticancer chemotherapeutics. A wide repertoire of chemical
inhibitors targeting complement has been developed and are currently in preclinical or
clinical development [138, 139]. In 2007, the US Food and Drug Administration approved
the use of the first complement-specific drug eculizumab, an antibody against complement
component C5. This approval was a breakthrough in the complement field that validated the
complement system as a therapeutic target [139]. Since then, a multifaceted armory of
therapeutic inhibitors has been proposed for the diverse array of complement-mediated
pathologies [138]. However, when thinking about the best complement-related therapeutic
options to treat cancer, many more questions than answers arise.

While the complexity of the complement response offers numerous potential targets, it also
poses a major challenge. One of the most critical aspects to be considered is the optimal
point of intervention within the complement cascade [140]. Although the effects of
complement inhibition are still somewhat speculative, both advantages and disadvantages
can be anticipated for the inhibition of complement at different steps of the activation
cascade (Table 2). For example, inhibition of the Clq complex by the C1 inhibitor (Cl-INH),
a protease inhibitor approved by the FDA for the treatment of hereditary angioedema [141],
would effectively shut down the activation of the classical pathway while preserving the
beneficial functions of the other initiating pathways. Alternatively, a blockade further
downstream would eliminate effector activities common to different activation pathways.
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C5a has been shown to be a key mediator in the regulation of cancer growth by complement
[35, 36, 59, 60]. Selective inhibition of the binding of C5a to its receptors could obstruct the
protumoral microenvironment without depleting the defensive potential of complement
activation. Drugs that inhibit C5a generation (e.g. eculizumab) or neutralize the C5a-C5aR
interaction (e.g. PMX-53) are in different stages of clinical or preclinical development [142].
To date, little attention has been paid to the evaluation of their applicability against cancer.
In addition, the involvement of other effector molecules, such as C3a and its receptor C3aR,
has not yet been addressed and should not be neglected.

Compstatin (and its analogs) is a cyclic tridecapeptide that prevents the cleavage of C3 into
its active fragments C3a and C3b and, therefore, affects the most central step in the
complement cascade [143, 144]. Inhibition of complement at this level efficiently blocks all
activation, amplification, and effector routes and should be seriously considered for cancer
applications. Unfortunately, compstatin does not work on mouse C3 [145], restricting its
evaluation in standard preclinical models of cancer. Therefore, for a comprehensive
validation of this drug in the cancer field, alternative strategies need to be designed.

Irrespective of the treatment strategy, additional cancer models are needed to further validate
the concept of complement inhibition for anticancer therapy. Most current in vivo models
are based on heterotopic implantation of tumors cells. There is a need for testing orthotopic
models, in which tumor cells are implanted into the organ of origin in models that allow a
more suitable interaction between tumor cells and the surrounding stroma. Mouse models
for spontaneous or chemically induced tumors can also provide more relevant information
about the role of complement in the modulation of the tumor microenvironment.

Models of metastasis will also provide very useful information. Furthermore, the use of
complement-directed drugs in combinatorial therapies should be considered. For example,
given that complement inhibition can override tumor-dependent immunosuppression, this
therapeutic approach could use to supplement antitumor vaccines. It has been hypothesized
that the deposition of sublytic doses of MAC induces protection from immune clearance
[146]. In this context, therapeutic inhibition of complement may increase the efficacy of
cell-based tumor immunotherapies [146].

There are many challenges and limitations that can impede progress in this field. A more
detailed understanding of the intricate network established between complement and cancer
is crucial to bridging the gap between promising preclinical trials and effective clinical
treatments. For example, despite our accumulating knowledge about the role of complement
in cancer, the activating molecules that initiate the complement cascade in cancer cells are
essentially unknown. Due the high heterogeneity of human cancer, it is possible that
different activation pathways and mechanisms may be involved, and different strategies
maybe needed to treat different tumor types. The role of complement at particular stages of
tumor progression must also be considered. In addition, translational problems between
mouse and human systems are expected to be also encountered. It is well-known that bench
results do not necessarily translate to bedside efficacy, and truly effective applications will
be only demonstrated in the clinical setting (Fig. 5).

6. Final remarks
Based on a number of in vitro studies and preclinical models, the concept of blocking
complement for the treatment of cancer is gaining recognition. However, the mechanisms
and functional effects of complement-specific deregulation on the tumor microenvironment
are still unclear. More work is needed to elucidate the complex processes by which cancer
cells control complement activation and how complement effector activities influence tumor
progression. Additional animal models have to be tested to define the best treatment
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strategy, and biomarkers should be development to guide the selection of patients and
individualize treatment. At present, we can conclude that complement-related anticancer
strategies are a promising challenge and offer hope for successfully fighting cancer.
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MAC membrane attack complex

TGF-β transforming growth factor β

TLR toll-like receptor

MDSC myeloid-derived suppressor cells

Tregs regulatory T cell

AMD age-related macular degeneration

C1-INH C1 inhibitor
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Highlights

- Several studies suggest that cancer cells efficiently activate complement

- Cancer cells establish a balance between complement activation and
inhibition

- Complement activation exerts tumor-promoting activities

- Complement inhibition may serve as a therapeutic strategy against cancer
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Fig. 1.
Estimated new cancer cases (incidence) and deaths (mortality) for the leading cancer types
worldwide in 2008. Source: Globocan 2008 (http://globocan.iarc.fr/)
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Fig. 2.
Simplified scheme of the pathways of complement activation. Patternrecognition molecules
such as Clq, MBL (mannose-binding lectin), or ficolins bind to surface structures and
initiate the formation of the classical C3 convertase. The alternative C3 convertase results
from spontaneous hydrolysis of C3 (tick-over). C3 convertases cleave C3 into C3b and C3a.
Deposition of C3b leads to the generation of additional C3 convertases (self-amplification)
and the C5 convertase, which cleaves C5 into C5a and C5b. In the terminal pathway,
interactions between components C5b, C6, C7, C8, and C9 lead to the formation of the lytic
membrane attack complex (MAC). The C3b degradation fragments iC3b and C3d
participate in phagocytosis and are linked to adaptive immune responses. While the C3b and
its degradation fragment iC3b participate in both phagocytosis and in adaptive immune
response, the C3dg fragment is only involved in adaptive immune responses. The
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anaphylatoxins C3a and C5a trigger immune reactions upon binding to their receptors
(C3aR, C5aR, C5L2). Complement regulators (indicated in red) prevent unwanted
complement activation (C1INH: CI inhibitor; C4BP: C4 binding protein; FI: Factor I; FH:
Factor H).
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Fig. 3.
The complement system has a dual action in cancer. Experimental data support the idea that
complement is activated by tumors. However, some studies also suggest that malignant cells
evade the harmful effects of complement and make use of some complement effector
molecules to promote cancer growth. Unfortunately, the exact mechanisms and
consequences of this duality are not very well known.
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Fig. 4.
Potentially useful, although antagonistic, complement-based anti-cancer therapeutic
strategies. Both activation and inhibition of complement can be proposed to treat cancer. In
both cases, the cancer-promoting balance between activation and protection would be
destroyed. For example, elimination of complement regulators would lead to an increase in
tumor-control activities mediated by complement (e.g., lysis, opsonization,
immunostimulation). On the other hand, complement inhibition would eliminate tumor-
promoting activities, such as immunosuppression, chronic inflammation, or angiogenesis,
which may be hampering other immune effector responses. In this context, combination
with immunotherapies or chemotherapies would be advantageous.
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Fig. 5.
Sequential steps needed to validate anti-cancer targeted strategies before they can be
translated to the bedside.
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Table 2

Potential points of therapeutic intervention to inhibit complement for cancer treatment.

Intervention point Drug example Hypothetical advantages and disadvantages of each intervention point

Pathway-specific
Inhibition

Cl-INH Advantages:

Preserve the beneficial functions of the other initiating pathways

Supported by a genetic models of cervical cancer (C4 KO)

Disadvantages:

More than one pathway may be involved in cancer progression

C3 inhibition Compstatin Advantages:

Broadest effect

Supported by genetic models of cervical and ovarian cancer (C3 KO)

C5 inhibition Eculizumab Advantages:

Intact complement deposition at the C3 level

Avoids the sublytic effect of MAC

Disadvantages:

No tested in in vivo cancer models

C5a/C5aR
Inhibition

PMX-53 Advantages:

Experimental data supporting the protumoral activity of C5a

Supported by preclinical models of cervical, ovarian, and lung cancer

Disadvantages:

Only one effector molecule is inhibited, while others may also be important
(e.g., C3a)
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