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Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with
current treatments having limited impact on disease progression. Therefore the development of
alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on
the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes,
and has been applied to GBM with increasing promise. We have included selectively replication-
competent oncolytic viruses within this strategy, although the virus acts directly as a complex
biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate
for gene therapy because tumors remain locally within the brain and only rarely metastasize to
other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting
of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of
therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult
stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically
cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to
induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such
as blocking angiogenesis. This review describes current preclinical and clinical gene therapy
strategies for the treatment of glioma.

Treating malignant gliomas, of which glioblastoma (GBM) is the most common and least
curable, remains a daunting challenge even after substantial efforts to develop alternative
therapies. The current standard of care is maximal surgical resection followed by radiation
and temozolomide chemotherapy; however, the median survival still remains less than 15
months.1,2 This poor survival is due to the aggressive and invasive nature of the tumor cells,
resistance to treatment, and the challenges of delivering therapeutics into the brain.3 GBM is
thought to be derived from a small population of glioblastoma stem cells (GSCs), so-called
because of their stem cell-like properties of self-renewal and multilineage differentiation
while being highly tumorigenic.4-6 GSCs have become an important model for studying
GBM because their xenografts mimic the heterogeneous histopathology of the patient’s
tumor from which they were derived7,8 and they remain genotypically similar to the
patient’s tumor, in contrast to serum-cultured cell lines.9 These cells have provided insights
into the origin of tumor-initiating cells and new targets for therapy. Other GBM animal
models include established glioma cell lines (human and rodent) implanted intracranially
into immunodeficient or immunocompetent animals, and genetically engineered mice that
spontaneously develop brain tumors or are induced with viral vectors.10-12
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Gene therapy for GBM is rapidly evolving, with the ultimate goal being specific delivery of
therapeutic genes or oncolytic viruses to eliminate the tumor.13-17 This can result not only in
tumor cell death, but also enhanced immune responses to tumor antigens and disruption of
the tumor microenvironment, including inhibition of angiogenesis/neovascularization.18-20

GBM is a good candidate for gene therapy for several reasons: (1) tumors remain within the
brain with only rare metastases to other tissues; (2) the majority of cells in the brain are post-
mitotic, which allows for specific targeting of dividing tumor cells; (3) tumors are often
accessible neurosurgically for vector administration and sophisticated imaging paradigms
are available; and (4) standard therapies are minimally effective. A range of gene therapy
strategies has been examined in GBM preclinical models and clinical trials. There are 2
basic questions when developing a gene therapy strategy; what gene(s) or sequence(s) to
deliver and how to deliver them (vector and route of administration)? Current strategies
include the use of nonreplicating viral vectors, selective replication-competent oncolytic
viruses, or normal adult stem/progenitor cells for the delivery of cytotoxic genes,
immunostimulatory genes, and genes modulating the tumor microenvironment. Here we
discuss current preclinical and clinical gene therapy strategies for the treatment of GBM.
Although this review focuses on GBM, because of its dire prognosis and the target for most
clinical trials, it is important to recognize that there are many other brain tumors, both
primary (ie, medulloblastoma) and metastatic from other organs,21 which are also targets for
gene therapy.22-32 Similar strategies against other tumors are discussed in recent
reviews.20,33-39

GENE DELIVERY VEHICLES FOR GLIOBLASTOMA
Most gene therapies for GBM use biologic vectors such as viruses or cells. Replication-
defective or non-replicating virus vectors are generated by deleting genes important for viral
replication or in some cases all open reading frames, to limit anti-vector immune responses
and replacing them with therapeutic transgenes. The administered dose of a nonreplicating
virus vector represents the maximum number of possible infected gene-transduced cells,
although efficiency of delivery and infection is usually very low. Thus, any effects of the
delivered and expressed gene must be amplified and affect nontransduced cells, so-called
‘bystander effects’ (Fig 1). Oncolytic viruses are selectively replication-competent in cancer
cells and, thus, able to amplify themselves in situ in the tumor and continue to infect cancer
cells well after initial administration39-41 (Fig 1). Cancer selectivity is often due to defects
commonly found across many tumor types, such as lack of antiviral responses, activation of
Ras pathways, loss of tumor suppressors, and defective apoptosis.42 In addition to their
inherent cytotoxicity, oncolytic viruses can also be used as vectors for gene
delivery.40,41,43,44 Several viruses (Newcastle disease virus [NDV], reovirus, and measles
virus [MV]) have an inherent ability to specifically target cancer cells and upon virus
replication, cause significant cell death and tumor regression. Other viruses (herpes simplex
virus [HSV], adenovirus [Ad], vaccinia virus [VV], vesticular stomatitis virus [VSV], and
poliovirus [PV]) need to be genetically engineered to engender oncolytic activity and safety.
Viruses tested for GBM include both DNA (HSV, Ad, VV) and RNA viruses (NDV, MV,
reovirus, VSV, PV) (Table I).45,46

Stem or progenitor cell-based cancer gene therapy includes the use of neural stem cells
(NSCs) and adult mesenchymal stromal (stem) cells (MSCs) that have an inherent ability to
home to the site of tumors.47,48 Tumor homing of MSCs relies on the expression of soluble
inflammatory mediators that often accompany tumor progression.33 MSCs, often derived
from bone marrow or adipose tissue, or NSCs can be transduced with therapeutic transgenes
for use as gene therapy vectors.33,48 MSCs have some advantages over other stem/
progenitor cells because they are easily acquired from patients (from bone marrow or
adipose tissue) and expanded ex vivo. 48 Conversely, MSCs carry the risk of adversely
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contributing to the tumor microenvironment through promoting angiogenesis, stroma
formation, and immunosuppressive effects. NSCs were the first stem/progenitor cells tested
for homing to GBM tumors and are currently in clinical trial for GBM (Table II).47,49 From
a safety standpoint, stem/progenitor cells must be nontumorigenic, nonimmunogenic, and
should not differentiate into functional cells that could interfere with normal brain activity.

Gene therapy strategies can be grouped according to their mechanisms of action. Cytotoxic
gene therapy encompasses oncolytic viruses, as they are inherently toxic to cancer cells
(with the exception of retroviruses), and/or the delivery of directly cytotoxic or prodrug
activating suicide genes (Fig 1). Delivery of immune-modulatory genes should boost
immune responses to tumor antigens and the activity of cytotoxic effector cells. The tumor
microenvironment is composed of normal cells in the tumor and extracellular matrix and is
typically targeted with antiangiogenic genes. Combinations of multiple strategies are likely
to be the best approach to attack these complex tumors.

CYTOTOXIC GENE THERAPY
Oncolytic viruses. Herpes simplex virus

HSV is a human DNA virus that has great potential for GBM therapy because of its natural
neurotropism.50 The HSV genome can be manipulated to introduce mutations/deletions in
nonessential genes that engender cancer selectivity and for insertion of large and multiple
transgenes.43 The ability to eliminate neurovirulence genes and availability of antiviral
drugs means that this lethal pathogen can be used safely in the brain.50 Three oncolytic
HSVs (oHSV) have been or are in clinical trial for GBM; 1716, G207, and G47Δ40 (Table
I). All have both copies of the neurovirulence gene, g34.5, deleted. In addition, the UL39
gene (encodes for ICP6, the large subunit of ribonucleotide reductase) is disrupted in both
G207 and G47Δ, which further enhances specificity and safety, because they can only
replicate in dividing tumor cells. G207 and 1716 were very efficacious in glioma cell line
models and demonstrated safety in clinical trials (Table II). Unfortunately, oHSVs lacking
γ34.5 have limited or no replication in GSCs.7 In contrast to G207 and 1716, G47Δ has an
additional deletion of the gene encoding ICP47, which restores GSC sensitivity.7,51

Additional oHSVs have been developed that replicate in GSCs and are safe in the brain;
Δ68H-6, with a deletion of the beclin1 binding domain in γ34.5 that blocks autophagy52

and MG18L, with a deletion in Us3, an anti-apoptotic gene53 (Table I). One hallmark of
GBM is the presence of a hypoxic microenvironment, which has been shown to maintain
GSC stemness.54 In contrast to other therapies, G207 replicated better in glioma cell lines in
vitro under hypoxic compared with normoxic conditions,55 while G47Δ replicated similarly
in hypoxic and nonhypoxic regions of GSC-derived tumors.56

Adenoviruses
Adenoviruses (Ad) are human DNA viruses that have been extensively studied as gene
therapy and oncolytic agents. Conditionally-replicative adenoviruses (CRAds) typically
have deletions in early genes, E1A or E1B, to target tumor cells because of inactivation of
cellular Rb and p53, respectively, and thus, are not necessary in cancer cells with mutations
in these tumor suppressors.57 Subsequently, it was shown that E1B is necessary for late viral
RNA export, which was complemented in tumor cells.58 ONYX-015, an E1B-55kD gene
deleted CRAd was one of the earliest oncolytic viruses tested in GBM clinical trials, with no
toxicity observed; however, there was no significant efficacy.59 Ad with deletions in E1A,
especially a 24 bp deletion (Delta-24), have been developed as base vectors to accommodate
additional genetic modifications to enhance anti-GBM activity.57 Additional mutations have
also been incorporated into CRAds to enhance efficacy and provide space for the insertion
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of transgenes, for example in E3 (involved in evasion of cellular antiviral responses) and E4
(inactivates p53) genes.60-62

One of the major limitations with using Ad (oncolytic and replication-defective) for gene
therapy is the limited expression of the Ad serotype 5 (Ad5) receptor, Coxsackie-adenovirus
receptor, on cancer cells, including GBM. Therefore, a major avenue to improve oncolytic
Ad is through altering its tropism to more selectively bind to glioma cells. Ad Delta-24 was
modified by inserting an Arginine-Glycine-Aspartic Acid (RGD) peptide (binds to integrins
ανβ3 and ανβ5) into the fiber knob (Delta-24-RGD), which significantly enhanced
infectivity of glioma cell lines and in vivo efficacy.63 Other glioma targeting peptides
introduced into the fiber include an epidermal growth factor receptor (EGFR)vIII binding
peptide (Delta24-EGFR)64 and a polylysine motif (Ad5.pK7) to bind heparan sulfate
proteoglycans. 65,66 Because different Ad serotypes have different cellular receptors, using
different serotype or species (xenotype) fiber knobs or chimeric fibers can alter Ad
tropism.67 Examples include an Ad3 fiber knob (binds to CD80, CD86, and unknown
receptor) and Ad5 fiber chimera (Ad5/3), which had greatly increased glioma infectivity and
cytotoxicity in vitro68,69; Ad5 with canine Ad1 (CK1) or porcine Ad (PK) fiber was more
efficient than Ad5/370; and Ad16p (binds to CD46) and chimpanzee CV23 efficiently
infected GSCs.71 A screen of 16 Ad5 fiber chimeras on primary glioma cell cultures
identified B-group viruses (Ad11, Ad35, Ad50 [bind to CD46, overexpressed in GBM]) as
having greatly increased infectivity compared with Ad5,72 with Ad5/35 extending survival
in vivo.68 These same strategies can be used for targeting replication-defective Ad vectors.64

CRAd replication efficiency and specificity can be improved by using glioma-selective
promoters/enhancers to drive expression of early genes (transcriptionally-targeted) or
transgenes for gene delivery.73 There are a number of promoters/enhancers that are active in
glioma cells (glial fibrillary acidic protein (GFAP), nestin, midkine) or cancer cells
generally (telomerase reverse transcriptase (TERT), survivin, vascular endothelial growth
factor receptor (VEGFR)-1, E2F, Ki67), and these have been used to drive E1A expression
in CRAds and found to selectively replicate in glioma cells.60,68,74,75

Vaccinia virus
VV is the vaccine agent used in the eradication of smallpox. This DNA virus has also
demonstrated success as an oncolytic virus, with a rapid lytic replication cycle that occurs in
the cytoplasm and ease of genetic manipulation that allows for the incorporation of
therapeutic transgenes.76 JX-594 (Table III) cytotoxicity in mouse GL261 glioma cells was
significantly better than reovirus or VSVΔM51.77 Although the vaccine strains are
attenuated, there is still concern about replication-competent VV in the brain. Therefore,
additional mutations, such as in thymidine kinase (TK) and vaccinia growth factor, have
been introduced to target cancer cells. A double-deleted VV, vvDD (Table I), was cytotoxic
to human and rat glioma cell lines in vitro and prolonged the survival of immune-competent
rats bearing intracerebral rat gliomas.78 GLV-1h68 (Table I), with reporter genes inserted
into F14.5L, TK, and A56R, was quite attenuated for neurovirulence,79 although systemic
delivery to mice with intracerebral U87 xenografts was ineffective.80 As with other
oncolytic viruses, the combination with radiotherapy significantly improved survival
compared with radiation alone, and radiation increased intratumoral replication of single
mutant VV LIVP 1.1.1 (Table I).80,81

Retroviruses
Retroviruses are positive-strand RNA viruses whose RNA genome is reverse transcribed
into DNA that is integrated into the host genome. Replication-competent gamma-
retroviruses (RCRs) have been derived from murine leukemia virus, which only integrate/
replicate in mitotic cells, providing specificity for dividing tumor cells.82 RCRs are nonlytic
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and noncytotoxic, so to be oncolytic, they must express therapeutic transgenes, usually
cytotoxic or suicide genes (Table III, discussed below). RCRs can incorporate up to 8 kb of
foreign DNA and transgenes are stably expressed because of integration.82

Poliovirus
PV is a human positive-strand RNA virus that is neurotropic and whose receptor (CD155) is
highly expressed on GBM cells. To eliminate neurotoxicity, its internal ribosomal entry site
was replaced with a non-neurotoxic internal ribosomal entry site from human rhinovirus
type 2. This recombinant poliovirus, PVS-RIPO (Table I), is derived from the Sabin polio
vaccine, which further improves safety.83 It was efficacious in inhibiting subcutaneous
glioma tumor growth, and importantly, in vivo serial passage in gliomas did not alter its
specificity.84 PVS-RIPO replication in glioma cells is promoted by activation of Mnk1 and
stimulation of cap-independent translation.85

Newcastle disease virus
NDV is an avian paramyxovirus with a negative-strand RNA genome and is non-pathogenic
in humans. Cancer specificity of NDV relies on defects in antiviral immunity, resistance to
apoptosis, and induction of autophagy found in many cancers, including GBM.86,87 Both
pathogenic (velogenic and mesogenic; MTH68) and nonpathogenic (lentogenic; NDV-HUJ,
Hitchner B1) in poultry strains have been used as oncolytic viruses against GBM88 (Table
I). Another vaccine strain, V4UPM, inhibited tumor growth and induced apoptosis in
U87MG subcutaneous tumor bearing mice.89

Measles virus
MVis a human paramyxovirus with similar oncolytic effects as NDV; however, MV is
known to be neurotropic and in rare human cases causes encephalitis.90 The attenuated
Edmonston vaccine strain is used as the backbone for most recombinant oncolytic MV. The
MV hemagglutinin protein binds to CD46 receptors, which are often highly expressed in
GBM.91 The MV fusion protein causes membrane fusion and syncytia formation, which
leads to apoptosis. The tropism of oncolytic MV can be restricted to GBM by insertion of a
brain-specific micro RNA target sequence that is downregulated in glioma.92 MV can also
be retargeted to GBM by inserting IL13 into hemagglutinin protein that is ablated for
binding to CD46 and SLAM.93 MVexpressing the human carcinoembryonic antigen (MV-
CEA) has shown success in several GBM animal models, including intracranial GSC
xenografts in nude mice.94 Serum levels of CEA are a measure of virus replication. The
safety of MV-CEA has been studied after intracerebral injection in rhesus macaques95 in
advance of clinical trial (Table IV). A MV expressing the sodium iodide symporter (MV-
NIS) has been constructed, which allows for in vivo monitoring of 99mTc or 123I uptake or
in combination with 131I for radiotherapy.96 Oncolytic MV (MV-NIS) has been shown to
infect, replicate, and kill human GSCs and prolong survival of GSC tumor bearing mice.97

Vesicular stomatitis virus
VSV is a negative-strand RNA virus of the Rhabdoviridae family. Although VSV has not
been associated with any human disease, it is neurotoxic in animal models so efforts have
been made to attenuate its neuropathogenicity. VSV is highly sensitive to innate type I
interferon responses, which are often lacking in tumor cells and this allows VSV to
specifically target tumor cells.98 Mutations in the VSV-M protein, in particular at Met-51,
renders the virus unable to block anti-viral innate responses, which improves safety but
doesn’t affect replication in cancer cells.99 VSVΔM51 is efficacious in killing human glioma
xenografts even after systemic delivery,100 and M51R VSV was even effective in U87
glioma cells overexpressing anti-apoptotic Bcl-XL

101 (Table I). To further improve glioma
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specificity, a VSV mutant (VSV-rp30, with single mutations in the P and L genes) was
isolated by serial passage on glioma cells in vitro followed by lack of adsorption to
fibroblasts.102 Unfortunately, this virus was still quite cytotoxic to normal human glia.103

VSV-p1-GFP, a first-position reporter gene virus, was identified in a screen of VSV mutants
for selective cytotoxicity in glioma cells and not normal glial cells, even in the presence of
interferon-α, and found to be non-neurovirulent in mice.103 Recently, a semireplication
competent VSV vector system was created (srVSV; Table I), where viruses lacking the viral
polymerase (ΔL) were combined with viruses lacking the glycoprotein (ΔG) so that only
cells infected with both viruses could replicate by providing proteins in trans. This virus
combination was as efficacious as wild-type VSV in subcutaneous human G62 xenografts
and as opposed to the wild-type virus, did not cause any neurotoxicity.104

Reovirus
Reovirus is a double-stranded RNAvirus that is nonpathogenic to humans. Serotype 3 was
originally shown to have oncolytic activity, with replication dependent upon activated Ras
pathways that are often present in cancer cells including GBM.105 Reovirus type 3 has had
success in several in vivo studies106,107 and is one of the only genetically unmodified
oncolytic viruses to enter clinical trial (Reolysin [Oncolytics Biotech Inc, Calgary, Canada];
Table II). 108 Recently, it was demonstrated that all 4 serotypes of reovirus have oncolytic
activity against primary GBM cells in vitro.109

Stem cells as oncolytic virus carriers
A new approach to deliver oncolytic viruses to brain tumors is to use stem cells as a carrier
system.110 Several groups have demonstrated that MSCs and NSCs can support Ad infection
and replication.111-114 An advantage of this approach to oncolytic virus alone is that stem
cells can be delivered intravascularly, evading anti-viral immunity, and then extravasate into
the brain, or intracranially at a distance from the tumor. After intravascular administration,
MSCs loaded with Ad-Δ24RGD, but not Ad-Δ24-RGD alone, migrated to and infected
intracerebral gliomas, resulting in a significant increase in survival.113 When compared
directly, both human MSCs and NSCs loaded with CRAd-S-pk7 (Table I) supported Ad
replication and migration to tumors, however, loaded NSCs were significantly better than
MSCs in extending survival.111 Additional studies with CRAd-S-pk7 loaded HB1.F3 NSCs,
which are currently in clinical trial, demonstrated that the infected NSCs retained their
tumor homing, supported Ad replication, and gave rise to infected tumor cells in vivo.114

Cytotoxic or suicide gene/prodrug therapy
Cytotoxic chemo- and radiotherapy have been the standards of care for GBM patients, with
limited success mostly because of their negative effects on surrounding healthy tissue and
small therapeutic indexes. Suicide gene therapy involves delivery of a prodrug activating
enzyme (suicide gene) that converts nontoxic prodrugs to cytotoxic metabolites.35 The most
common suicide gene/prodrug combination is HSV thymidine kinase (TK)/ganciclovir
(GCV). Phosphorylated GCV is only toxic to dividing cells and can spread to surrounding
cells (bystander effect) through gap junctions (Fig 1). Earlier TK gene therapy trials
typically used replication-defective retrovirus and adenovirus vectors, and have been
reviewed.115 Other suicide gene/prodrug combinations are also under investigation for
GBM,18 using viral vectors and stem/progenitor cells. The yeast enzyme cytosine deaminase
(CD)/5-fluorocytosine (5-FC) prodrug system is similar to the TK system. CD converts the
nontoxic prodrug 5-FC into the cytotoxic metabolite 5-FU.35 Toca 511, a RCR that
expresses CD, was shown to prolong survival in 2 immunocompetent mouse models of
GBM.116 Purine nucleoside phosphorylase (PNP), which converts F-araAMP to diffusible
toxic 2-FA, was inserted into a RCR (ACE-PNP; Table III). Treatment of intracranial
gliomas with ACE-PNP had no effect on tumor growth, while administration of F-araAMP
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significantly extended survival with a second round of F-araAMP further extending survival,
although all mice eventually succumbed to disease.117 Other cytotoxic strategies are to
express secreted pro-apoptotic proteins, such as tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) or mda-7/IL-24 that are selectively active in tumor cells118,119 or
cytotoxins, such as Pseudomonas exotoxin, that are fused to a ligand (IL-13) for a glioma-
specific receptor120 (Table IV).

Because TK/GCV therapy was shown to induce an antitumor immune response,
combinations with immunomodulatory genes are an obvious strategy. The most promising
combinations for GBM are replication-defective Ad expressing TK with the immune-
stimulatory cytokine fms-like tyrosine kinase 3 ligand (Flt3L) to recruit dendritic cells.
Intratumoral delivery of AdTK and AdFlt3L (Table IV) achieved increased survival in rat
and dog syngeneic glioblastoma models, including with multifocal tumors.121,122 This was
associated with the development of immune memory against GBM antigens.123,124 Helper-
dependent gutless or high capacity adenovirus vectors have all their viral genes eliminated,
so they induce only minimal anti-adenovirus immune responses and provide cloning space
for up to 35 kb.125 A bicistronic gutted adenovirus vector is being prepared for clinical
use.126,127

A large problem with the earlier studies with replication-defective vectors was the limited
number and distribution of TK transduced glioma cells. To overcome this, lymphocytic
choriomeningitis virus-pseudo-typed lentiviral vectors were generated, which had a high
transduction efficiency in vivo, including GSCs, compared with a few cells with retroviral
vectors, such that GCV treatment greatly prolonged survival.128 One way to improve the
distribution of cytotoxic, or other therapeutic, genes is to use migratory stem or progenitor
cells (NSCs and MSCs) that are attracted to the tumor.47,48 NSCs expressing TK (NSCtk;
Table IV) directly implanted into intracranial C6 tumors led to complete tumor regression in
67% of treated animals.129 NSCtk were then shown to migrate to intracranial tumors when
delivered to distant sites from the tumor.130 A human immortalized NSC line, HB1.F3,131

transduced with CD migrated across the brain to implanted gliomas132 and significantly
reduced intracranial glioma size after treatment with 5-FC.133 The F3-CD NSCs are
currently in clinical trial for GBM (Table II).

Human MSCs can migrate in the brain or after carotid artery injection in a range of GBM
mouse models, including to GSC-derived and immunocompetent genetically induced
(replication-competent avian leukosis virus splice acceptor (RCAS)-Ntv-a) tumors.134-136

Different viral vectors have been used to transduce MSCs including, retrovirus, lentivirus,
adenovirus, and baculovirus.137,138 A number of suicide genes (TK, CD, rCE) have been
introduced into MSCs and shown to be effective with prodrug in treating intracranial glioma
models139-143 (Table IV). Unfortunately, some of these studies were performed by co-
implanting the MSCs with the glioma cell lines,142,144 which obviates the migratory
advantage of this strategy.

Cytotoxic pro-apoptotic secreted proteins, especially TRAIL, are another popular class of
transgenes to introduce into stem/progenitor cells, and several studies have shown
therapeutic effects and increased apoptosis in glioma xenograft models135,138,145,146 (Table
IV). MSCs, as normal cells, are resistant to TRAIL,135 however many glioma cells are also
resistant to TRAIL despite the expression of TRAIL receptors. To overcome this, MSC-
TRAIL was combined with a lipoxygenase inhibitor MK886, which increased DR5 (TRAIL
receptor) and decreased anti-apoptotic protein expression, leading to prolonged survival in
vivo.147 Differentiated embryonic stem cells or induced pluripotent stem cells have some
potential advantages; they can be stably genetically-modified, proliferate indefinitely, and
could be established with a whole range of HLA types for immunologic matching. Mouse
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embryonic stem cells expressing TRAIL or mda-7 have been generated by site-specific
recombination and then terminally differentiated into astrocytes, which migrate in vivo and
induce apoptosis.148,149 However, treatment activity in orthotopic glioma models has not
been demonstrated. Induced pluripotent stem cells were differentiated into NSCs, which
were then transduced with TK using baculovirus, and shown to migrate from the
contralateral hemisphere and inhibit tumor growth after GCV treatment.150

IMMUNE-STIMULATORY GENE THERAPY
The immune-privileged state of the brain is a major obstacle to immunotherapy against brain
tumors.151 The brain has a limited supply of antigen-presenting cells and lacks lymphatics
that impede immune cells from exiting the brain parenchyma.152 In addition, the GBM
induced microenvironment is very immunesuppressed, with elevated regulatory T cells and
myeloid-derived suppressor cells.153 Despite these challenges, significant progress with
immune-mediated gene therapy strategies has been achieved. Replication-defective Ad
expressing Flt3L was shown to enhance survival in a syngeneic rat glioma model and this
was associated with increased infiltration of DCs.154 This strategy was improved when
combined with tumor cell death to provide tumor antigens for the recruited DCs, as shown
with the Ad-tk combination.124 A similar strategy has been described using oHSV
expressing Flt3L. G47Δ-Flt3L significantly extended survival in the mouse CT2A glioma
model, with about 40% long-term survivors compared with G47Δ-Empty (no transgene),
which had minimal effect155 (Table III).

Another immunotherapy strategy is to express cytokines to enhance adaptive immune
responses. JX-594, a TK-deleted VV expressing granulocyte macrophage colony stimulating
factor (GM-CSF; Table III), is currently in clinical trials for peripheral tumors.156 In 2
immunocompetent GBM models, JX-594 inhibited tumor growth and increased survival,
which was associated with increased GM-CSF-dependent inflammation.77 JX-594 replicated
in most human GSCs tested in vitro, although considerably less than in U87, and was
cytotoxic in those GSCs that supported virus replication.157 IL-12 is one of the more potent
anti-tumor cytokines, driving a TH1 response.158 Several groups have delivered IL-12 using
a variety of gene therapy vectors. A γ34.5-deleted HSV-1 expressing mouse IL-12 (M002;
Table III) was shown to retain its oncolytic activity and perform better than other oHSVs in
rodent models of GBM.159 In addition, M002 was tested in nonhuman primates and
demonstrated no toxicity, but increased activation of nonhuman primates lymphocytes.160

The same oHSV construct expressing human IL-12 has been produced for human trial
(M032; Table II). MSCs expressing IL-12 (UCB-MSC-IL12M; Table III) inhibited GL26
intracranial tumor growth and prolonged survival when administered in the contralateral
brain hemisphere. 161 The surviving mice were protected from re-challenge with GL26 cells
in both contralateral and ipsilateral sides of the brain, indicating a memory response against
tumor antigens.161

DISRUPTING TUMOR MICROENVIRONMENT
Targeting the tumor microenvironment is an attractive approach because it consists of
normal cells that should not develop resistance to the therapy. Normally, neovascularization
is a tightly regulated balance between naturally occurring angiogenesis activators and
inhibitors, however, in tumors the dividing cancer cells outgrow the normal vasculature,
increasing hypoxia and the expression of proangiogenic factors.162 GBM is a highly
vascularized tumor, but there are limitations to current antiangiogenic drugs such as
bevacizumab (Avastin [Genentech, South San Francisco, CA]), an anti-VEGF monoclonal
antibody, which have a negative effect of increasing glioma invasiveness and don’t
significantly improve overall survival.162 Developing alternative strategies such as
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combination therapies, including targeting multiple angiogenic pathways, might be a better
strategy, especially since inhibiting angiogenesis is cytostatic and not cytotoxic. A number
of antiangiogenic factors have been expressed from oHSV. Angiostatin, an endogenous
inhibitor of angiogenesis, was inserted into G47Δ.163 A single treatment of G47Δ-mAngio
(Table III) significantly extended survival of glioma-bearing mice over nontransgene
containing G47Δ, and this was associated with decreased microvascular density and VEGF
expression.163 Combining a lower dose of G47Δ-mAngio with a low (non-invasive) dose of
bevacizumab further improved survival.163 Expression of other naturally occurring
angiogenesis inhibitors, vasculostatin and CXCL4 (PF4), have also been shown to improve
the efficacy of oHSV in human glioma models 164,165 (Table III). IL-12, in addition to its
immunostimulatory activity is also antiangiogenic in GSC-derived gliomas (Cheema T,
Rabkin SD; unpublished results). An adenovirus expressing isthmin, an angiogenesis
inhibitor derived from the brain of Xenopus, inhibited angiogenesis and intracranial tumor
growth.166 Antiangiogenesis in combination with suicide gene therapy, using MSCs
transduced with endostatin (an endogenous antiangiogenic substance) and the prodrug
activated enzyme, carboxylesterase 2 (Table III), exhibited antitumor activity in an
intracranial model of GBM by inhibiting angiogenesis and cytotoxicity.144

STATUS OF CLINICAL TRIALS FOR GBM
In the past, gene therapy clinical trials for GBM patients have been promising as far as
safety, with no maximum tolerated dose reached in any trial; however, overall benefits were
marginal compared with the standard of care. Preclinical success of newer gene therapy
strategies for GBM has led to greater optimism. Oncolytic viruses, nonreplicative viral
vectors and NSCs are all currently being investigated in clinical trials for patients suffering
from GBM (Table II). Oncolytic viruses make up the majority of the currently active clinical
trials for GBM. Second generation oncolytic viruses have demonstrated safety in humans in
previous clinical trials, and these viruses and third generation viruses are being further
pursued.40 oHSV G207, which exhibited safety and anecdotal efficacy in an early phase 1
clinical trial, was examined in a phase 1b trial (Table II). This trial demonstrated only a
marginal increase in survival of patients; however, it was the first study to demonstrate
oHSV replication in vivo.167 A clinical trial using G47Δ, a third-generation derivative of
G207, has been initiated in Japan (Table II). M032, an oHSV expressing hIL-12, is entering
clinical trial for patients with recurrent/progressive GBM (Table II). A retargeted and tumor
specific CRAd, AdV-delta24-RGD, is the only oncolytic Ad currently in phase 1 clinical
trials for GBM patients (Table II).

Several RNA viruses are being assessed in the clinic. Reolysin, a nonengineered reovirus
was well-tolerated and safe in a phase 1 trial and is being assessed in a phase 2 (Table II).108

NDV-HUJ was well-tolerated in GBM patients in a phase 1 study, no toxicity was observed,
and a maximum tolerated dose was not achieved, and one out of 11 patients had a complete
response to treatment (Table II). 168 Other ongoing phase 1/2 trials with RNA viruses
include, MV-CEA and PVS-RIPO (Table II). The RCR, Toca 511, expressing CD is also
being analyzed in GBM patients (Table II).

Several groups are investigating the effects of nonreplicating Ad expressing TK (Ad-tk)
(Table II). Cerepro, the commercial name for the Ad-tk developed by Ark Therapeutics
(London, UK), has made it through phase 3 clinical trial, and the results are currently being
examined by European officials, with the fate of this therapy remaining uncertain.169 A
phase 1B trial with Ad-tk/valacyclovir as an adjuvant therapy at the time of resection
followed by radiation and temozolomide treatment demonstrated no toxicity in GBM
patients,170 and efficacy is being examined in phase 2 trials (Table II). The majority of past
and present clinical trials involve the use of replication-defective or replication-competent
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viral vectors for direct delivery of therapeutic genes to the tumor. However, a feasibility
study is currently being performed using the genetically-modified NSC line, HB1.F3
expressing CD delivered intracerebrally (Table II).

CURRENT CHALLENGES FACING GBM GENE THERAPY AND FUTURE
DIRECTIONS

Malignant tumors within the brain remain a therapeutic challenge; however, current
strategies being tested in animal models as well as in the clinic show promise. The brain
environment differs greatly from other organs in the body and is an obstacle in treating brain
tumors. The blood-brain barrier restricts access to the brain, including gene therapies
directed at GBM. Thus, delivery of gene therapy vectors often requires direct injection into
the tumor bed at the time of biopsy or surgery, or the complicated setup of catheters into the
brain. The lack of lymphocytes and the overall immunosuppressive nature of GBM make it a
difficult target for immunotherapy. Specificity and spread of gene therapy vectors also
remains a challenge in treating GBM. Replication-competent viruses and tumor-homing
stem or progenitor cell therapy have the added benefit of motility and spread throughout the
tumor, while replication-defective vectors must rely on an efficient bystander effect.
Designing vectors that combine cytotoxic, immune-stimulatory, and antiangiogenic genes is
a future direction of gene therapy for brain tumors. It will also be important and likely
therapeutically beneficial to combine gene therapy with other therapeutic modalities,
including the standards-of-care.
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Abbreviations

Ad adenoviruses

Ad5 adenovirus serotype 5

CD cytosine deaminase

CEA carcinoembryonic antigen

CRAds conditionally-replicative adenoviruses

5-FC 5-fluorocytosine

Flt3L fms-like tyrosine kinase ligand

GBM glioblastoma

GCV ganciclovir

GM-CSF granulocyte macrophage colony stimulating factor

GSCs glioblastoma stem cells

HSV herpes simplex virus

MSCs mesenchymal stromal (stem) cells

MV measles virus

MV-CEA measles virus expressing the human carcinoembryonic antigen
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MV-NIS measles virus expressing the sodium iodide symporter

NDV Newcastle disease virus

NSCs neural stem cells

oHSV oncolytic herpes simplex virus

PNP purine nucleoside phosphorylase

PV poliovirus

RCRs replication-competent gamma-retroviruses

tk or TK thymidine kinase

TRAIL tumor necrosis factor-related apoptosis-inducing ligand

VEGF vascular endothelial growth factor

VSV vesticular stomatitis virus

VV vaccinia virus
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Fig 1.
Gene therapy strategies for brain tumors.
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Table I

Oncolytic viruses against GBM

Oncolytic virus Virus Mutations (for tumor selectivity and safety) Animal model(s) Reference

G207 HSV γ34.5Δ, ICP6−, LacZ+ Nude, i.c. U87 [171]

G47Δ HSV γ34.5Δ, ICP6−, ICP47Δ, LacZ+ Nude, i.c. U87, GSC [7, 51]

1716 HSV γ34.5Δ [172]

MG18L HSV US3−, ICP6− Nude, i.c. GSC [53]

Δ68H-6 HSV γ34.5 BDDΔ, ICP6− Nude, i.c. U87, GSC [52]

Ad-Δ24RGD Ad E1AD24Δ, RGD-4C Nude, i.c. U87 [63]

ICOVIR-5 Ad E1AD24Δ, RGD-4C, E2Fpromoter-E1A Nude, i.c. U87MG [173]

CRAd-S-pk7 Ad polylysine modified fiber knob, survivin promoter-E1A Nude, i.c. U87 [65]

Ad5/35.GΔ-Ki Ad GFAP promoter-E1A, Ki67 promoter-E4, Ad 35 fiber knob Nude, i.c. U251 [68]

Ad5/35.IR-E1A/TRAIL Ad Ad 35 fiber knob, E1BΔ, TRAIL+ SCID, s.c. U87 [174]

vvDD VV TKΔ, VGFΔ Rat, i.c. F98 & RG2 [78]

GLV-1h68 VV F14.5L−, TK−, HA− Nude, s.c. C6 [79]

Nude, i.c. U87 [80]

LIVP 1.1.1 VV TK− Nude, i.c. U87 [80]

PVS-RIPO PV HRV2 IRES
Sabin vaccine strain

Rat, i.c. U87MGDEGFR;
Nude, s.c. U-118 [84, 175]

MTH68/H NDV mesogenic vaccine variant [176]

V4UPM NDV V4 vaccine variant Nude, s.c. U87 [89]

Hitchner B1 NDV SCID, s.c. U87 [177]

MV FmiR7 MV Edmonston-B vaccine strain, miR7+ NOD/SCID, s.c. U87 [92]

MV-GFP-HAA-IL-13 MV Edmonston-B vaccine strain, hIL-13+, HAA (CD46− & SLAM−) Nude, i.c. GSC [93]

MV-CEA MV Edmonston-B vaccine strain, CEA+ Nude, i.c. GSC [97]

MV-NIS MV Edmonston-B vaccine strain, NIS+ Nude, s.c. U251 [96]

Nude, i.c. primary GBM

VSVΔM51 VSV ΔM51 Nude, i.c. U87 [100]

VSV-M51R VSV M51R Nude, s.c. U87 [101]

VSV-rp30 VSV
Pmut, Lmut

(VSVwt serial passage)
SCID, i.c. U87 [178]

srVSV VSV VSV-ΔL + VSVΔG SCID, s.c. G62 [104]

Abbreviations:Ad, adenovirus; BDD, γ34.5 beclin-1 binding domain; CEA, carcinoembryonic antigen; CD, cytosine deaminase; EGFR, epidermal
growth factor receptor; GBM, glioblastoma; GSC, glioblastoma stem cells; HA, hemagglutinin; HRV2, human rhinovirus type 2; HSV, herpes
simplex virus; i.c., intracranial; IRES, internal ribosomal entry site; MV, measles virus; NDV, Newcastle disease virus; NIS, sodium iodide
symporter; PNP, purine nucleoside phosphorylase; PV, poliovirus; PVS-RIPO, recombinant poliovirus; RCR, replication competent retrovirus; s.c.,
subcutaneous; TK, thymidine kinase; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; VGF, vaccinia growth factor; VSV,
vesicular stomatitis virus; VV, vaccinia virus.
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Table II

Recent and ongoing gene therapy clinical trials in patients with GBM

Therapy Type Phase Protocol Results Reference

G207 HSV 1b 1.5 × 108 pfu at time of biopsy;
 1 × 109 pfu into tissue
 surrounding resected tumor
 2–5 d after biopsy

Median survival; 6.6
months
 from G207.
No toxicity

[167]

G47Δ HSV 1-2 Dose escalation, × doses (n=3) WHO JPRN-UMIN000002661

M032
(hIL-12)

HSV 1 (1) Dose escalation: 1 × 105–3
 × 109 pfu (n = 3–6)
(2) 15% of the MTD administered
through catheters implanted
at the site of tumor; then 85%
of MTD into the resected
tumor site

Gene transfer protocol 0801-
899

Delta-24-RGD-4C Ad 1 Dose escalation – 8 doses
 (n = 3)

NCT00805376

Reolysin RV 1-2 Dose escalation up to 1 × 109

 TCID50

safe, well tolerated [108]
NCT00528684

NDV-HUJ NDV 1-2 (1) Dose escalation of 0.1, 0.32,
 0.93, 5.9, and 11 BIU IV
 followed by × cycles of 55
 BIU.
(2) × cycles of 11 BIU and then 2
 doses of 11 BIU weekly

MTD not reached, no
toxicity,
 1/11 patients had
complete
 response

[168]

MV-CEA MV 1 (1) MV administered to resected
 cavity
(2) MV administered IT and then
 resected cavity

NCT00390299

PVS-RIPO PV 1 IT injection through catheters
 implanted at time of biopsy of
 1 × 108 − 1 × 1010 TCID50

NCT01491893

Toca 511
(CD)

MLV 1-2 Dose escalation: single IT
 injection, 3–4 wk later 6-d
 cycles with oral 5-FC (130
 mg/kg) repeated monthly

NCT01156584

Toca 511
(CD)

MLV 1 Injection (4 dose levels) into
 resection cavity, 7 wk later
 8-d cycle of oral 5-FC
 repeated ×3

NCT01470794

AdV-tk
(Advantagene,
 Woburn, MA)

RD-Ad 1b Dose escalation:3 × 1010 −3 ×
 1011 vector into tumor bed at
 resection followed by
 valacyclovir, radiation, TMZ

Safe, quickened the
effects of
 radiation

[170]

Ad-tk RD-Ad 2 Survival rate and recurrence-
 free survival rate

NCT00870181

AdV-tk (Advantagene) RD-Ad 1b Dose escalation followed by
 GCV, radiation, and TMZ

NCT00751270

AdV-tk (Advantagene) RD-Ad 2a 3 × 1011 vector into tumor bed
 followed by valacyclovir 1–3
 days later and radiation at
 3–7 days.

NCT00589875

HB1.F3 (CD) NSC 1 HB1.F3 into tumor bed
 following resection. Oral
 5-FC every 6 h for 4–10 d

NCT01172964

Abbreviations:Ad, adenovirus; BIU, billion infectious units; CD, cytosine deaminase; HIL-12, human interleukin 12; HSV, herpes simplex virus;
IT, intratumoral; MLV, murine leukemia virus; MTD, maximum tolerated dose; MV, measles virus; pfu, plaque forming unit; NCT#, from
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clinicaltrials.gov; NDV, Newcastle disease virus; NSC, neural stem cells; PV, poliovirus; RD-Ad, replication-defective Ad; TCID50,50% tissue

culture infectious dose; TK(ortk), thymidine kinase; TMZ, temozolomide.
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Table III

Gene therapy vectors “armed” with therapeutic genes

Gene therapy Vector Trangene(s) Animal model(s) Reference

ACE-CD MLV CD/5-FC Nude, i.c. U87
Rat, i.c. RG2

[182, 183]

Toca 511 MLV CD/5-FC Balb/c, i.c, CT26; and
B6C3F1, i.c. Tu-2449

[116]

ACE-PNP MLV PNP/F-araAMP Nude, i.c. U87 [117]

JX-594 VV
(TK)

Murine GM-CSF Rat, i.c. RG2;
C57BL/6, i.c. GL261

[157]

G47Δ-Flt3L HSV Flt3L C57BL/6, i.c. CT-2A [184]

M002 HSV Murine IL-12 B6D2F1, i.c. 4C8;
SCID, i.c. D54MG

[160]

UCB-MSC-IL12M MSC IL-12p40 N-glycosylation mutant C57BL/6, i.c. GL26 [161]

AF-MSC-endostatin-sCE2 MSC Endostatin, sCE2 Nude, i.c. U87MG
1 CPT11 prodrug

[144]

G47Δ-mAngio HSV Angiostatin Nude, i.c. U87 [163]

HSVQ-Vstat120 HSV Vstat120 Nude, i.c. U87DEGFR [164]

G47Δ-PF4 HSV PF4 (CXCL4) Nude, s.c. U87 [165]

Ad-isthmin RD-Ad Xenopus isthmin Nude, i.c. U251 [166]

CRAdRGDflt-IL24 Ad mda7/IL-24 Nude i.c. D54MG [74]

Abbreviations:Ad, adenovirus; GM-CSF, granulocyte macrophage colony-stimulating factor; HSV, herpes simplex virus; MLV, murine leukemia
virus; MSC, mesenchymal stromal cell; RD-Ad, replication-deficient Ad; sCE2, carboxylesterase 2; UCB-MSC, umbilical cord blood-derived
MSC; Vstat, vasculostatin.
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Table IV

Nonreplicating cytotoxic gene therapy vectors and cells

Gene therapy Vector Transgene Animal model(s) Additional treatment Reference

LCMV-GP pseudo-typed MLV HSV-TK Rat, i.c. GSC GCV [128]

VSV-G pseudo-typed MLV HSV-TK Rat, i.c. GSC GCV [128]

Ad-TK 1 Ad-Flt3L Ad HSV-TK, Flt3L Rat, i.c. CNS-1 GCV [123]

Ad-stTRAIL Ad TRAIL Nude, i.c. U87, U251 [179, 180]

Ad.5/3-mda7 Ad mda7 /IL-24 Nude, i.c. primary GBM [181]

Ad-mhiL-4.TRE.mhIL-13-PE Ad Mutated IL-13 fused to PE Nude, i.c. U251
Rag1−/−, i.c. human primary
 xenograft
C57/B6, i.c. GL26-H2

[120]

NSCtk NSC HSV-TK Rat, i.c. C6 GCV [130]

HB1-F3 (F3-CD) NSC CD Rat, i.c. U373MG 5-FC [132]

MSCtk MSC HSV-TK Rat, i.c. C6 GCV [143]

HSV/TK MSC HSV-TK Nude, i.c. U87 GCV [140]

MSC-CD MSC CD Rat, i.c. C6 5-FC [142]

UCB-TRAIL MSC stTRAIL Nude, i.c. U87 [138]

MSC-S-TRAIL MSC secreted, extracellular
TRAIL
 domain fused to hFlt3L

SCID, i.c. GSC [135]

hMSC S-TRAIL MSC secreted TRAIL Nude, i.c. U87 [146]

hAT-MSC.TRAIL MSC TRAIL Rat, i.c. F98 [145]

Abbreviations:Ad, adenovirus; 5-FC, 5-fluorocytosine; Flt3L, fms-like tyrosine kinase ligand; GCV, gancyclovir; HSV, herpes simplex virus; i.c.,
intracranial; LCMV, lymphocytic choriomeningitis virus; MLV, murine leukemia virus; MSC, mesenchymal stromal cell; NSC, neural stem cell;
PE, pseudomonas exotoxin; stTRAIL, secretable trimeric TRAIL; TK, thymidine kinase; TRAIL, tumor necrosis factor-related apoptosis-inducing
ligand; UCB, umbilical cord blood; VSV, vesicular stomatitis virus.
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