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Chiral drugs show distinct biochemical and pharmacological behaviors in the human body. The binding of chiral drugs to plasma 
proteins usually exhibits stereoselectivity, which has a far-reaching influence on their pharmacological activities and pharmacokinetic 
profiles. In this review, the stereoselective binding of chiral drugs to human serum albumin (HSA), α1-acid glycoprotein (AGP) 
and lipoprotein, three most important proteins in human plasma, are detailed. Furthermore, the application of AGP variants and 
recombinant fragments of HSA for studying enantiomer binding properties is also discussed. Apart from the stereoselectivity of 
enantiomer-protein binding, enantiomer-enantiomer interactions that may induce allosteric effects are also described. Additionally,  
the techniques and methods used to determine drug-protein binding parameters are briefly reviewed. 
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Introduction
Chiral drugs contain at least one chiral center, resulting in 2n-1 
pairs of enantiomers.  Widely used chiral drugs, such as rosu-
vastatin, duloxetine and salbutamol, play an important role in 
treating human diseases[1–3].  In the environment of living sys-
tems, specific binding between molecules (eg, enzymes, recep-
tors, transporters, and DNA) is required for their medicinal 
effect.  Thus, the physiochemical and biochemical properties 
of racemic mixtures and individual stereoisomers can differ 
significantly[4].  In some cases, one enantiomer is active, while 
the other may produce deleterious side-effects, including 
toxicity[5].  

Numerous studies have reported the stereoselectivity of 
chiral drug metabolism and pharmacokinetic profiles[6–11].  
Enantiomers commonly display pharmacokinetic processes 
(eg absorption, distribution, metabolism, and excretion) in a 
stereoselective manner[5, 12–14].  Moreover, the plasma protein 
binding and tissue distribution of some chiral drugs also 
exhibit stereoselectivity[15].  To limit the scope of this review, 
the binding of drugs to tissue proteins is not covered.  Drugs 
bind to plasma proteins with varying degrees, and these bind-
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ings are commonly reversible.  A binding equilibrium exists 
between the bound and free molecules, but only the unbound 
drug exerts efficacy[16].  Moreover, stereoselective binding can 
sometimes significantly affect the amount of free drug present 
in the plasma, and in many cases, this can be species-depen-
dent[17].  Consequently, the characterization of drug binding 
to plasma proteins is an important factor for determining the 
overall pharmacological activity of a drug[18].  

Blood is separated into the blood cells and plasma.  Plasma 
contains various proteins and several function as carriers, 
including human serum albumin (HSA), α1-acid glycoprotein 
(AGP) and lipoproteins[19, 20].  Among plasma proteins, HSA 
and AGP play predominant roles by binding to most drugs[21].  
As a result, the structure, function, and pharmaceutical proper-
ties of HSA and AGP have been extensively investigated[22, 23].  
Fully characterizing the mechanism by which drugs bind 
to proteins such as HAS and AGP has become essential to 
interpret the pharmacokinetic, pharmacodynamic, and toxico-
logical profiles of chiral drugs.  In vivo binding studies using 
plasma samples and in vitro binding studies using plasma pro-
teins, including natural proteins, recombinant fragments and 
variants, are helpful for understanding plasma protein bind-
ing properties.  In addition, recent advances in determining 
the concentrations of enantiomers and fundamental analytical 
techniques are introduced.  Here, we focused our attention on 
the enantioselective binding of chiral drugs to plasma proteins 
and the methods used to evaluate stereoselective binding.
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Methods and models
Because the pharmacological activity of one enantiomer may 
differ from its antipode, it is particularly important to know 
the extent of binding for each enantiomer.  Some methods 
have been proposed to assess protein-binding capabilities 
based on diverse analytical tools[16, 24, 25].  Gilabert et al[26] estab-
lished 3 steps to study the stereoselective binding between 
enantiomers and proteins: 1) equilibration of racemic mixture 
and proteins, 2) separation of the unbound fraction, and 3) 
determination of the concentration of the enantiomers from 
either the free fraction or drug-protein complexes.

To illustrate enantioselective drug-protein binding, classical 
methods, such as equilibrium dialysis (ED), ultrafiltration (UF) 
and ultracentrifugation (UC), are commonly combined with 
chiral separation techniques[27–29].  ED is an apparatus with 
two compartments separated by a semipermeable membrane, 
and only unbound drug molecules can permeate through the 
membrane.  ED is carried out in solution, and true equilibrium 
is maintained during the whole process.  Although ED has 
several disadvantages (eg, time-consuming, solubility, and 
non-specific adsorption), it is still considered the reference 
method for binding measurements.  UF is a more rapid and 
simple alternative that depends on centrifugation forces and 
a sieve-like membrane to separate drug-protein complexes 
and the free drug.  UC, another type of technique that avoids 
membrane effects, is based on the sedimentation coefficient 
differences of substances.  For extensive reviews of these three 
approaches that discuss their advantages and pitfalls, refer to 
Vuignier[16] and Howard et al[21].  Table 1 briefly summarizes 
the progress made in recent years regarding the methods used 
to study the enantiodifferentiation of chiral drugs with plasma 
proteins.  

With the development of computational models for the 
prediction of drug pharmacokinetics, it is important to gen-
erate models that predict drug binding affinities and stereo-
selectivity to plasma proteins for virtual screening.  In the 
last decade, several models have been developed to study 
the binding between HSA and restricted drug families[45–47], 
and a few global models have been developed based on dif-
ferent approaches, such as genetic function approximation, 
multiple linear regression, heuristic regression procedures 
and ant colony systems[48–50].  Monti et al combined molecular 
mechanisms (MM) and molecular dynamics (MD) with circu-
lar dichroism (CD) to identify the main interactions between 
ketoprofen enantiomers and the surrounding amino acids at 
short distances in bovine serum albumin[51].  Similarly, Yu et 
al took advantage of MM and MD to identify several key resi-
dues that are involved in the enantioselectivity for the binding 
of AGP to mexiletine enantiomers, such as Arg90[43].

Despite the techniques and computational models men-
tioned above, important mathematical drawbacks of param-
eter estimation [eg, protein binding percentage (PB), number 
of binding sites (n), affinity constants (Ka), and enantioselectiv-
ity to the protein (ES)] have been ignored.  Sandblad et al[52] 
calculated the adsorption energy distribution (AED) to pro-

vide a narrower selection of probable models from the surface 
plasmon resonance (SPR) raw data.  Using this method, both 
the R/S-propranolol-AGP and R/S-warfarin-HSA systems 
were heterogeneous, comprising both high-affinity chiral sites 
and weak nonselective sites.  Recently, the novel direct equa-
tions extracted from the classical interaction model allowed 
for advantageous univariate mathematical data treatment, 
providing the first evidence of quantitative (±)-catechin-HSA 
stereoselectivity[40].  Therefore, the integration of robust in vitro 
information with molecular docking estimates could provide a 
synergistic approach for the understanding of stereoselective 
binding.

Stereoselectivity of plasma protein binding to chiral 
drugs
Plasma
Human plasma contains HSA, AGP, lipoproteins, and globu-
lins, which are responsible for the plasma protein binding 
of drugs[53].  All of these proteins can simultaneously bind 
to a drug, and the overall plasma protein binding is the sum 
of each binding.  It is known that HSA accounts for 60% 
of plasma protein, while the amount of AGP is only 3% of 
plasma protein[23].  Plasma protein binding (PPB) limits free 
drug motion and reduces the volume of distribution, renal 
extraction, liver metabolism and tissue penetration.  In con-
trast, drug absorption and half-life increase with PPB[54].  

Chiral drugs with different pharmacological activities 
have been extensively explored due to their stereoselec-
tive pharmacokinetics[55, 56].  To characterize the stereoselec-
tive pharmacokinetics involved in protein binding and/or 
metabolism, several studies have been conducted in vivo and 
in vitro[57].  Herein, we enumerate the cases intending to evalu-
ate the contribution of protein binding and metabolism to 
stereoselective pharmacokinetics in vivo.  Lansoprazole, which 
is extensively metabolized in the liver, is frequently prescribed 
for the treatment of acid-related disorders.  The disposition 
of lansoprazole differed in extensive and poor metaboliz-
ers of CYP2C19, which showed genetic polymorphisms[58].  
Interestingly, Kim et al also investigated that enantioselective 
disposition of lansoprazole in 6 extensive metabolizers and 
6 poor metabolizers, but the enantioselective protein bind-
ing was more important than the effect of CYP2C19 genetic 
polymorphisms[59].  Likewise, the unbound fraction of R-oxy-
butynin (OXY) in human plasma was approximately two-fold 
higher than that of S-OXY, and the metabolic kinetics were 
slightly different for the enantiomers[60].  Therefore, the enanti-
oselective binding to plasma proteins was a major factor that 
was responsible for the stereoselective pharmacokinetics of 
OXY.

In vitro plasma protein binding experiments can provide 
valuable data, but an optimized experimental design is 
required to reach physiological relevance.  As stated previ-
ously, whole plasma proteins studies and the contribution of 
individual proteins to total plasma enantioselective protein 
binding warrant further study.  The stereoselectivity of the 
binding of propranolol (PL) enantiomers to plasma proteins is 
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Table 1.  Binding parameters and techniques for the enantiodifferentiative study of chiral drugs with plasma protein.

  		                                                                                                                              Protein binding estimations		             Refer-
  Chiral drugs	                       Proteins	                   Techniques                        Protein   	     Binding constants                      Enantioselec-     ence
                                                                                                                                   binding (%)                  (K or logK or nK)                          tivity (ES)
 
Phenindamine E1	 Whole plasma	 UF/AEKC			     2.5	 [30]
Phenindamine E2						    
Trimeprazine E1					       1.5	
Trimeprazine E2						    
Promethazine E1					       1.4	
Promethazine E2						    
Rac-zopiclone	 Total plasma 	 EKC	 47±4			   [31]
R-zopiclone			   49±6			 
S-zopiclone			   45±3			 
Nomifensine E1	 Total plasma	 UF/EKC	 58±7			   [32]
Nomifensine E2			   64±4			 
Brompheniramine E1	 HSA	 UF/AEKC		  (9.39±0.10)×102 (mol/L)-1	   2.8	 [33]
Brompheniramine E2				    (2.60±0.17)×103 (mol/L)-1		
Chlorpheniramine E1				    (9.20±0.20)×102 (mol/L)-1	   1.8	
Chlorpheniramine E2				    (1.69±0.17)×103 (mol/L)-1		
Hydroxyzine E1				    (5.30±0.5)×103 (mol/L)-1	   1.2	
Hydroxyzine E2				    (6.30±0.4)×103 (mol/L)-1		
Orphenadrine E1				    (1.26±0.13)×103 (mol/L)-1	 13.3	
Orphenadrine E2				    (1.67±0.13)×103 (mol/L)-1		
R-Amlodipine	 HSA	 ED/Flow 		  (9.91–11.2)×104 (mol/L)-1		  [34]
S-Amlodipine		  Injection-CE		  (9.02–10.4)×104 (mol/L)-1		
R-Propafenone	 HSA	 UF/chiral HPLC		  2.05×103 (mol/L)-1		  [35]
S-Propafenone				    2.08×103 (mol/L)-1		
R-Rotigotine	 HSA	 Partial filling		  (17.6±0.6)×103 (mol/L)-1		  [36]
S-Rotigotine		  -ACE		  (8.90±0.3)×103 (mol/L)-1		
R-Naproxen	 HSA	 EKC		  (4.80±0.40)×105 (mol/L)-1		  [37]
S-Naproxen				    (9.20±1.20)×105 (mol/L)-1		
R-Naproxen-NHBu				    (0.90±0.12)×105 (mol/L)-1		
S-Naproxen-NHBu				    (1.02±0.10)×105 (mol/L)-1		
R-Naproxen-cRGD				    (0.23±0.12)×105 (mol/L)-1		
S-Naproxen-cRGD				    (0.24±0.10)×105 (mol/L)-1		
(–)-Tetrahydropalmatine	 HSA	 ED/HPLC-UV		  1.80×104 (mol/L)-1		  [38]
(+)-Tetrahydropalmatine				    2.20×104 (mol/L)-1		
R-zopiclone	 HSA	 EKC	 36±8	 3.09±0.19 (logK)	   1.95	 [31]
S-zopiclone			   47±6	 3.38±0.19 (logK)		
S-etodolac	 HSA	 UF/chiral HPLC		  5.30×105 (mol/L)-1	   6.06	 [39]
R-etodolac				    0.87×105 (mol/L)-1		
(–)Catechin	 HSA	 UF/CD-EKC	 64	 3.47±0.06 (logK)	   1.5	 [40]
(+)Catechin			   53	 3.28±0.16 (logK)		
Propanocaine E1	 HSA	 UF/EKC	 48.7	 3.20±0.16 (logK)	   1.5	 [41]
Propanocaine E2			   60.1	 3.40±0.14 (logK)		
R-Rotigotine	 BSA	 Partial filling		  (9.40±0.4)×103 (mol/L)-1		  [36]
S-Rotigotine		  -ACE		  (7.30±0.2)×103 (mol/L)-1		
R-Propranolol	 AGP	 Fluorescence 		  2.62×105 (mol/L)-1		  [42]
S-Propranolol		  Spectrophotometry		  8.57×105 (mol/L)-1		
R-Propafenone	 AGP	 UF/chiral HPLC		  2.81×106 (mol/L)-1		  [35]
				    9.74×103 (mol/L)-1 (n2K2)		
S-Propafenone				    7.65×106 (mol/L)-1		
				    9.95×103 (mol/L)-1 (n2K2)		
(–)-Tetrahydropalmatine	 AGP	 ED/HPLC-UV		  9.61×104 (mol/L)-1		  [38]
(+)-Tetrahydropalmatine				    14.6×104 (mol/L)-1		
R-Mexiletine	 AGP	 UF/chiral HPLC	 31±2.8			   [43]
S-Mexiletine			   22±3.2			 
R-Propranolol	 LDL	 HPLC		  (5.20±2.3)×105 (mol/L)-1		  [44]
 				    (1.90±0.1)×105 (mol/L)-1 (n1K1)		
S-Propranolol	  	  	  	 (2.70±0.2)×105 (mol/L)-1 (n1K1)	  

E1 the first elute; E2 the second elute
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the opposite of HSA, but acetyl salicylic acid (ASA) and sali-
cylic acid (SA) significantly displaced the binding of R-PL to 
a greater extent than S-PL from both plasma protein and HSA 
binding sites[61].  These data suggest that ASA and SA do not 
affect the binding of PL to AGP because of the different acid-
base properties of these drugs.  For nomifensine enantiomer E1 
(the first elute, protein binding to HSA 40%±5%), other plasma 
proteins were expected to contribute according to the plasma 
protein binding (58%±7%), but not for E2 (the second elute, PB 
63%±4% and 64%±4% for HSA and plasma, respectively)[32].  
Thus, the relative importance of HSA for binding nomifensine 
enantiomers was confirmed.  The binding of bimoclomol to 
human plasma was stereoselective, and AGP was mainly 
responsible for the preference toward S-bimoclomol, whereas 
HSA did not play a role[62].  Another study showed that HSA 
and human plasma binding tended to be stereospecific in 
regard to S-amlodipine, whereas the opposite binding of its 
enantiomer was observed for AGP[29].

As the amino acid sequence differs among animals, inter-
species plasma proteins exhibit different binding abilities.  It 
has been recognized that preclinical data from animals cannot 
be extrapolated to humans[63].  Further studies also showed 
that stereoselective differences are dependent on species[28, 29].  
Nevertheless, mammalian results are occasionally consistent 
with human disposition[64].  For example, the in vitro concen-
tration ratios of R-MK0767 to S-enantiomer were similar in 
dog and human plasma (1.5–1.7), but the stereoselectivities in 
rat and rabbit plasma were inverted[65].  Although the results 
of enantioselective binding between animal and human are 
complicated, in vitro experiments may help explain some of 
these unusual discrepancies.

Human serum albumin (HSA)
HSA, a single non-glycosylated stranded protein consisting 
of 585 amino acids, is the most abundant protein in plasma, 
reaching high concentrations of approximately 0.5 to 0.7 
mmol/L[66].  He and Carter[67] characterized the atomic struc-
ture of HSA using X-ray crystallography and described it as a 
heart-shaped protein with three homologous domains (labeled 
I, II, and III), each containing two subdomains (A and B) with 
similar structure[68–70].  

As a carrier for endogenous ligands such as fatty acid, biliru-
bin and peptides[71], HSA solubilizes hydrophobic compounds.  
It also assists in providing a homogeneous and buffered drug 
distribution through the body and increases the biological 
lifetime of a drug by preventing its metabolism[49].  Accord-
ing to recent reports, two principal hydrophobic binding sites 
for aromatic and heterocyclic molecules were identified in the 
native conformation of HSA[70].  Site I (warfarin-azapropazone 
site) and Site II (indole–benzodiazepine site) are located in 
subdomains IIA and IIIA, which correspond to Sudlow’s Sites 
I and II, respectively.  Another high-affinity binding site (Site 
III) was shown to specifically bind to digitoxin on albumin[72] .

In particular, HSA exhibits the highest potential stereose-
lectivity among all plasma proteins, and it plays a key role 
in the distribution, metabolism and elimination of enantiom-

ers[23].  The protein binding properties of a chiral drug, includ-
ing the specific binding sites and affinity constants, could 
differ among enantiomers, resulting in different biological 
properties.  Therefore, it is important to study the nature of 
the interaction between chiral drugs and HSA.  Cooperative 
and allosteric equilibria between different binding sites and 
competition between multiple drugs or between drugs and 
endogenous ligands make it difficult to interpret HSA bind-
ing properties in vivo[73].  However, alternative methodologies 
have been proposed extensively in vitro.  

Competition interaction
Competitive binding was exploited to determine protein bind-
ing sites using drug displacement assays.  The displacement of 
equilibrium between a racemic drug can weaken the efficacy 
for the more active enantiomer and take the place of their 
antipodes[74, 75].  One example of this is the competitive binding 
between indobufen enantiomers[76].  R-indobufen displaced its 
antipode, thus increasing the steady state concentration of free 
S-enantiomer in patients.  Consequently, the quicker elimina-
tion of the S-enantiomer is associated with its weaker binding 
to HSA.

Usually, displacement experiments using classical markers 
or probes are performed to elucidate specific binding sites in 
vitro[77].  Additionally, in the case of enantiomers sharing the 
same binding site, the binding mechanism may be different.

Using the well-characterized HSA ligand, rac-ibuprofen, 
Zsila et al suggested that leukotriene B4 bound to site II in 
subdomain IIIA using CD displacement experiments[78].  The 
naproxen (NPX) moiety of S-NPX bound to a cyclopentapep-
tide with an arginine-glycine-aspartate sequence (cRGD) bio-
conjugate that is farther from Trp than the R-epimer (approxi-
mately 16 and 6 Å, respectively).  This finding highlights the 
critical role that the absolute configuration of epimeric macro-
molecular systems plays because the chirality of its different 
stereocenter can affect its binding mode to HSA, although both 
bioconjugates bound preferentially to site I[37].  In contrast, 
there is an increasing trend toward investigating chiral recog-
nition in excited states.  The interaction between excited car-
profen (CP) and HSA shows remarkable stereodifferentiation, 
which is reflected by the markedly different triplet lifetimes 
of the two CP enantiomers in both binding sites (site I and site 
II), especially Trp-containing site I[79].

Cooperativity and allosteric interaction
Because the conformational adaptability of HSA extends well 
beyond the immediate vicinity of the binding site(s), coopera-
tivity and allosteric modulation occur among binding sites[73].  
Cooperativity represents a synergistic effect between two 
ligands that are sequentially bound to the different receptor 
sites[80].  Allosteric modulation occurs when the interaction 
between one ligand and HSA changes the interaction of a sec-
ond ligand with the same protein at a separate site.  This inter-
action implies that the simultaneous binding of two ligands 
induces conformational changes of the protein, in addition to 
other factors such as pH, temperature and ionic strength[81, 82].  
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To date, allosteric interactions have been reported to affect the 
binding equilibrium between HSA and endogenous or exog-
enous compounds, such as fatty acids, heme, carbamazepine 
and verapamil[83–86].  

It was previously reported that the simultaneous binding of 
S-warfarin and S-benzodiazepines demonstrated mutual and 
exceedingly enhanced binding[87].  Due to the different kinetic 
features of warfarin enantiomers binding to HSA, Fitos et al[88] 
explained that S-lorazepam acetate allosterically enhanced the 
binding of S-warfarin by accelerating the relaxation kinetics 
of S-warfarin.  A majority of the studies regarding allosteric 
interactions involved only qualitative observations.  Chen 
and Hage[89] used a biointeraction chromatography technique 
to provide quantitative information on both directions of an 
allosteric effect, especially for a multisite binding agent.  Aside 
from the effects of secondary interactions or the nonspecific 
binding of phenytoin, the coupling constant for the effect of 
L-tryptophan on phenytoin was accurately determined to be 
a negative allosteric interaction.  This result is quite different 
from the results of direct competition on the effects of pheny-
toin toward L-tryptophan.  Therefore, examining the interac-
tion between two ligands in both directions on a multisite 
binding agent is necessary.  They also applied the previously 
described chromatography techniques to study the allosteric 
effects of R- and S-ibuprofen on the binding of benzodiaz-
epines to HSA[85].  Additionally, detailed information on the 
identity of the ligand binding pocket(s) and specific amino 
acid(s) of HSA that are responsible for this allosteric effect is 
needed.  Lammers et al[90] showed the stereoselective bind-
ing of flurbiprofen (FBP) enantiomers and their methyl esters 
to HSA using time-resolved phosphorescence.  Based on the 
phosphorescence lifetimes, R-flurbiprofen quenched Trp more 
effectively than S-flurbiprofen, in contrast to its methyl esters.  
However, the quenching constants of 3×10-7 (mol/L)-1·s-1 for 
R-FBP and 2.5×10-7 (mol/L)-1·s-1 for its antipode were not influ-
enced by methylation, suggesting that stereoselectivity existed 
in the accessibility of HSA Trp-214.  Recently, single amino 
acid mutants and HSA conformational rearrangements were 
reported to elucidate their governing role in allosteric ligand 
binding[91].

Recombinant domains of HSA
Recombinant HSA domains are a useful tool for characterizing 
the stereoselective binding properties of chiral drugs, and they 
also represent a suitable platform for the characterization of 
ligand binding.  Based on the quasi-independence of the three 
HSA domains, proteolytic and chemical cleavage have been 
used to produce fragments of HSA to define binding sites[92, 93].  
Considering the folding of the domains and their viability as 
“stand alone” proteins, the cloning and expression of inde-
pendent recombinant domains of human serum albumin was 
introduced[94].

To study the accurate localization of ketoprofen and mexi-
letine binding sites on HSA, Shi et al[95] produced three highly 
purified recombinant HSA domains, each of which had a 
specific ligand binding site.  They found that HSA DOM III 

possessed the chiral recognition ability for the ketoprofen 
enantiomers, whereas HSA DOM II recognized the mexiletine 
enantiomers.  Recombinant fragments of native proteins pro-
vide an indispensable contribution, but we doubt that they 
could completely displace the native functional protein.  For 
example, measurements of ochratoxin A (OTA) complexes 
with recombinant proteins using fluorescence spectroscopy 
revealed that it bound to all domains, but the binding con-
stants decreased in the series as follows: DOM II>>DOM 
III>DOM I[96].  Interestingly, the OTA binding constant for 
DOM II (7.9×105 (mol/L)-1) was smaller than the largest con-
stant for HSA by nearly a factor of 7, whereas the binding con-
stant for OTA with DOM III [1.1×105 (mol/L)-1] was similar to 
that of the secondary binding site for HSA.

Additionally, the essential structural elements required 
for the formation of functional ligand binding sites on HSA 
remain unclear.  A defined set of five recombinant proteins 
comprising combinations of domains and/or subdomains 
of the N-terminus were prepared to investigate the binding 
mechanism of warfarin to the stand-alone protein fragments[97].  
The primary warfarin binding site was centered in subdo-
main IIA and received indispensable structural contributions 
from subdomain IIB and domain I, but domain III was not 
involved in this binding site.  Aside from the characterization 
of the warfarin binding site, the kinetic step(s) in the binding 
mechanism between enantiomers and albumin may also be 
responsible for chiral discrimination.  The binding of warfarin 
to albumin occurred in at least two steps — a rapid diffusion-
controlled step and a slower rate-limiting step[98].  Domain 
fragments of recombinant human albumin that possessed a 
functional warfarin binding site, corresponding to domains 
1 and 2 (D12) and domains 2 and 3 (D23), were produced to 
demonstrate that the preference for the R-enantiomer can 
largely be explained by these domains, particularly the obser-
vation that D12 had a faster rate for R-warfarin binding in the 
second step[99].

α1-acid glycoprotein (AGP)
AGP, also called orosomucoid, is a major binding protein for 
basic drugs and a diversity array of ligands[42, 57, 100].  Because 
AGP has only one drug-binding site, its binding to each mol-
ecule differs from albumin.  The drug-binding properties of 
AGP are saturable and displaceable[101].  Human AGP is pres-
ent in the plasma of healthy subjects at concentrations between 
0.6 and 1.2 mg/mL, accounting for approximately 1% to 3% of 
the total protein[102].

AGP is an acute phase reactant protein, and its serum con-
centration may increase up to three- or four-fold as a result of 
inflammation or immunological response[103, 104].  The serum 
level of AGP significantly increases in renal disease patients, 
and the concomitant reduction in the free concentration of the 
S-alprenolol, with a large binding constant, was higher than 
that of the R-isomer, which has a small binding constant[105].  
To study the impact of plasma protein binding on pharma-
codynamics, Steeg et al[106] indicated that the plasma protein 
binding of S-propranolol was restricting its effects on heart 
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rate due to the elevated AGP concentration.
The AGP molecule consists of a single polypeptide chain of 

183 amino acids with up to five asparaginyl linked glycans[107].  
In addition to the high heterogeneity of glycans, polymor-
phisms have also been identified in the protein portion or 
AGP[108].  F1S variants are encoded by the AGP A gene, and 
the A variant is encoded by the AGP B gene[109].  Although the 
binding activities of many racemic drugs to AGP are known 
to be stereoselective, the effect of the AGP subfractions has not 
been fully elucidated.

The stereoselective binding of coumarin-type anticoagulants 
to AGP F1S variants was the same as native AGP binding with 
the S-enantiomers of warfarin and acenocoumarol[110].  Simi-
larly, Zsila et al reported that both AGP and the F1S variant 
preferred binding to (–)-mefloquine, whereas the stereoselec-
tivity was reversed for the A variant[111].  Warfarin enantiomers 
had a higher binding affinity for the F1S variant compared to 
the A variant, and the dissociation constants for the F1S and A 
variants differed by 12.6-fold for the S-enantiomer and 8.3-fold 
for the R-enantiomer[109].  The affinity of AGP for (+)-tetrahy-
dropalmatine (THP) was notably higher than (–)-THP, and the 
F1S variants of AGP proved to be the key variants for (–)- and 
(+)-THP binding[38].  Deramciclane effectively displaced acri-
dine orange-10-dodecyl bromide, a high-affinity fluorescent 
probe of native AGP, binding to variant A, whereas it was less 
effective displacing the same probes bound to the F1S variant; 
this phenomenon could not be caused by its enantiomer[112].  
Apart from the different enantioselective binding ability 
of AGP genetic variants, their relative concentrations also 
influenced the stereoselective binding results[113].  These data 
prompted us to further study the AGP phenotype that affects 
drug disposition in humans and its possible influence on phar-
macologically relevant variables.

Lipoprotein
Plasma lipoproteins are a group of binding agents that are 
known to interact with solutes in serum, and they can bind 
several basic and neutral hydrophobic drugs[114].  Because 
apolipoprotein and lipid constituents of lipoprotein are chiral 
compounds, their enantioselective binding should be consid-
ered.

Recently, the interactions between R/S-propranolol and 
low-density lipoprotein (LDL) were studied by using HPAC[44].  
Two types of interactions occurred between R-propranolol 
and LDL, whereas only the second interaction was observed 
for R-propranolol, which involved saturable binding with an 
association equilibrium constant (Ka) of (5.2±2.3)×105 (mol/L)-1 

at 37 °C.  This study was the to provide information regard-
ing LDL chiral selectivity.  In another study, halofantrine 
enantiomers showed some stereoselectivity for lipoprotein 
binding in vitro, but they did not show stereoselectivity for 
plasma protein binding[115].  

Perspectives
Given the importance of stereoselective binding to plasma 
proteins and that approximately 50% of marketed drugs are 

racemates, it would be extremely useful to develop in vitro 
models to evaluate and predict binding affinities and relevant 
sites.  Recently, the recombinant domains of HSA and variants 
of AGP have become powerful tools to elucidate the stereose-
lective binding properties of chiral drugs in vitro.  However, 
further studies are needed to determine whether the binding 
results are consistent in vivo.
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