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ABSTRACT

We propose a periodic—normal mixture (PNM) model
to fit transcription profiles of periodically expressed
(PE) genes in cell cycle microarray experiments.
The model leads to a principled statistical estima-
tion procedure that produces more accurate esti-
mates of the mean cell cycle length and the gene
expression periodicity than existing heuristic
approaches. A central component of the proposed
procedure is the resynchronization of the observed
transcription profile of each PE gene according to
the PNM with estimated periodicity parameters. By
using a two-component mixture-Beta model to
approximate the PNM fitting residuals, we employ
an empirical Bayes method to detect PE genes. We
estimate that about one-third of the genes in the
genome of Saccharomyces cerevisiae are likely to
be transcribed periodically, and identify 822 genes
whose posterior probabilities of being PE are
greater than 0.95. Among these 822 genes, 540 are
also in the list of 800 genes detected by Spellman.
Gene ontology annotation analysis shows that
many of the 822 genes were involved in important
cell cycle-related processes, functions and
components. When matching the 822 resynchro-
nized expression profiles of three independent
experiments, little phase shifts were observed, indi-
cating that the three synchronization methods
might have brought cells to the same phase at the
time of release.

INTRODUCTION

The cell cycle program is encoded in the genomes of living
organisms and is executed through the reciprocal interaction
of gene expression and specific cellular processes.
Saccharomyces cerevisiae (budding yeast) has been used as
a major model organism to study which genes are expressed
periodically during the cell cycle and how these genes in turn

contribute to the cell cycle clock. Traditional experimental
methods revealed over 100 genes that are cell cycle regulated
in yeast (1). By taking advantage of recently developed
microarray techniques, Cho et al. (2) conducted a genome-
wide transcription analysis on synchronized yeast cells with a
sequence of experiments covering about two mitotic cell
cycles, from which they detected 421 periodic transcripts by
visual inspection. Spellman et al. (1) applied additional
synchronization techniques and identified 800 periodic tran-
scripts by fitting to sinusoidal functions. Based on these time
course microarray experiments, a number of strategies have
been developed including clustering (3—6), the single-pulse
model (7) and the partial least squares model (8). Despite these
extensive efforts, there is still disagreement over whether
these experiments are indeed informative on cell cycle-related
genes (9) and, if so, which genes are periodically expressed in
yeast cells. With the fast accumulation of functional genomics
data, powerful statistical methods can help integrate informa-
tion from various sources into a coherent picture of the
molecular mechanisms underlying the cell cycle (10-13).

A significant hurdle in the identification of periodically
expressed genes by microarray experiments arises from the
substantial amount of noise in the observations. Although
microarray technology can monitor transcription levels of
thousands of genes simultaneously, only when the sampled
cells are in good synchrony can time course readings reflect
cell cycle course transcriptions. However, obtaining a pure
synchronized population is non-trivial even for a single time
point, and tight synchrony will decay gradually due to the
diversity of individual cell growth rates. Consequently,
expression profiles of periodically expressed genes observed
from microarray experiments normally display a pattern that is
relatively clear with a high and sharp peak within the first cell
cycle, which becomes flatter or even undetectable in the
ensuing cycles. With non-negligible synchrony decay, it is
inappropriate to estimate the transcriptional periodicity dir-
ectly from the microarray expression data without proper
adjustment. In addition, efforts are also needed for handling
the function fitting bias, the block/release effect and
discrepancies between experiments. For example, the simple
Fourier analysis may not fit a periodic profile that does not
conform to a single sine wave. The same problem arises when
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applying the single-pulse model to periodic profiles with more
than one peak. Even if the transcriptional periodicity could be
accurately estimated within each data set, combining these
poorly reproducible results can still be a challenging problem.

We propose a periodic—normal mixture (PNM) model,
which is a linear combination of sinusoidal functions, to fit the
transcription profile of every gene in cell cycle microarray
experiments. Compared with the existing models such as
simple sinusoid (1) or single-pulse (7), the PNM model is
more flexible and provides a better fit to the data. For those
periodically transcribed genes, the PNM model results in
relatively small fitting errors (or residual), whereas, for non-
periodically transcribed genes, the PNM residuals tend to be
larger. We show that the sum of squares of the PNM residuals
for a gene selected at random from the genome follows
approximately a two-component mixture-Beta distribution:
one component for those periodic transcripts and the other for
non-periodic ones. We develop an empirical Bayes procedure
based on this mixture-Beta distribution to determine genes that
are periodically transcribed. Finally, we conduct phase
matching of different experiments according to the resyn-
chronized periodic transcripts.

We applied the PNM model to the budding yeast gene
expression data sets, and obtained estimates of the cell cycle
lengths and the rates of synchrony decay in five experiment
series. Using an empirical Bayes procedure, we estimate that
~32% of the 5510 tested genes may be periodically tran-
scribed, among which 822 have a posterior probability of 0.95
or greater to be periodic. Among the 822 genes, 282 were
absent from the list of 800 genes reported in Spellman et al.
(1). Our gene ontology (GO) annotation analysis showed that
many of these newly detected periodically transcribed genes
are involved in important cell cycle-related processes, func-
tions and components. Inter-experimental phase matching of
these 822 adjusted profiles implies that the three synchroniza-
tion methods might have brought cells to the same cell cycle
phase at the time of release. The phase shift results were also
used to infer the consensus transcription profiles of these
periodically expressed genes.

MATERIALS AND METHODS

Data pre-processing

The data sets of five yeast cell cycle experiments, cdc28 (2),
alpha, cdcl5, elutriation (1) and fkh (10), were downloaded
from the authors’ websites. For clarity, we name these data
sets according to their synchronization methods. The first two
time points of each data set were deleted in order to alleviate
the block/release effect. The 90 and 100 min time points of the
cdc28 data set were also deleted due to unsatisfactory
hybridizations (4). The cdc28, alpha and cdcl5 data sets
were chosen for periodicity studies. From each of the three
data sets, we discarded 1000 genes with least variation of
expression level and also genes with 25% or more missing
values (the model tends to over-fit with too much missing
data). The remaining genes were centered and normalized
with mean 0 and SD of 1. Out of a total of 6178 genes, 5510
passed the initial screening in at least two data sets, from
which the periodically expressed genes were detected by

fitting the PNM model and the two-component mixture-Beta
model.

The PNM model

Let T be the length of the cell cycle period of a particular cell,
and let p = 27/T, which is called the cell cycle frequency or
rate. We assume that the cell cycle rates of the yeast cell
population follow a normal distribution, i.e. p ~ N(i,0%). At
time #, a cell reaches its cell cycle stage s = tp. The
transcription level V of a periodically expressed gene is
described by a periodic function of stage (or time), i.e. V(s) =
W(tp) = V(tp + 2nr), which can be approximated by a linear
combination of a few sinusoidal functions:
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Because growth rates of cells within the population vary, the
observed expression level of a gene at a certain time point is
the summation of expression levels of that gene in cells
residing in possibly different cell cycle stages, with the
addition of an experimental noise & Thus, the observed
expression level of a gene at time ¢, Y(#), can be modeled as:
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A particularly attractive aspect of assuming a normal distri-
bution for the cell cycle rate is that the signal part of Y(¢) can
be represented as a linear combination of sinusoidal functions
with exponential de-synchronization factors.

To compensate for the effect of synchrony decay, Spellman
et al. (1) used 40 evenly spaced points around the estimated
division time length to approximate the de-synchronization
effect. Zhao et al. (7) assumed that the cell age (i.e. cell cycle
time) follows a normal distribution with a standard deviation
that grows exponentially along time. Here we argue that the
main source of synchrony decay lies in the diversity of cell
cycle frequency and, as shown by equation 2, that the
synchrony of the cells decays exponentially in the square of
time ¢ (after the cells’ release) and the variance of the cell
cycle rate o°.

Theoretically, the Fourier decomposition function 1 can
approximate any continuous periodic function to infinite
precision with an infinite number of sinusoids (K—).
However, due to the limited number of measurement points,
K must be limited to a small number to avoid over-fitting. We
chose K = 3 here because the mean cell cycle length was
estimated to be 60~120 min in the three experiments
considered in Spellman et al. (1), and there are only 9-12
measurement points in each cell cycle. When the cell cycle
rate distribution (¢ and o) is known, the Fourier coefficients of
each periodic transcript, ay, by (k =1, 2, 3), can be estimated
from equation 2 using the least-square method.



Assessing the synchrony decay and the transcriptional
periodicity

To estimate the synchrony decay, we started from a selected
set of periodically expressed genes identified by traditional
methods (1). The mean ¢ and SD o of the cell cycle rate were
inferred from the expression level of these genes by
minimizing the total residual sum of squares (RSS):

RSS= Yl =3 S0 - [Vliwoloias® 3

geE 1t

where eg is the RSS for gene g, E denotes the selected set of
periodically expressed genes, and ¢ refers to the measurements
in time. Different genes may have different transcription
levels, V,(tp), but the cell cycle frequency distribution remains
the same. Therefore, i, O, ag., and by could be estimated
iteratively by the following method. After computing ¢ and o
from the initial periodically expressed gene set, all genes in the
data sets are fitted by the PNM model, and the top 100 genes
with the smallest RSS are selected for another round of re-
estimation of parameters # and o. The iterations are repeated
until i, o-and the top 100 genes become stable. The final 1 and
o are then fixed in equation 2 to estimate the Fourier
decomposition parameters dgy, by and the RSS €2 for all pre-
processed genes.

All of the five data sets were analyzed using the PNM model
to estimate ¢ and o In the elutriation and fkh experiments, the
data with regard to the second cell cycle are far from complete,
and thus are not used to estimate the transcription periodicity.
Only three data sets, namely cdc28, alpha and cdcl5, were
used in the following analyses.

Detecting periodically expressed genes

The periodic transcripts should have smaller RSS than the
aperiodic transcripts. However, choosing a good threshold to
separate the two groups of genes is non-trivial. Cho et al. (2)
detected 421 periodic transcripts by visual inspection from one
microarray experiment. Spellman ef al. (1) combined three
independent microarray experiments and significantly in-
creased both the gene number and the reliability of the
prediction. The ad hoc solution taken by Spellman et al. (1) is
to sum up the periodicity measurements for each gene and
design a cut-off value based on prior biological knowledge.
Zhao et al. (7) chose a threshold for each experiment and
overlapped the selected genes. His result contained three lists
with increased reliability but a reduced number of genes. Due
to the noisy nature of the experiments, we feel it necessary to
develop a formal statistical procedure to combine different
experiments and to identify periodically transcribed genes.
Note that the RSS of a periodic transcript g can be written as

ADINACE JVg(fPM(p)dp)z =D (Ye(t) =¥ (1) 4
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Since Y(¢) is normalized to have mean O and SD 1 before the
model fitting step, the RSS is in fact equal to the ratio of two
sums of squares:
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Hence, e should follow a Beta distribution approximately.
Similarly, for those aperiodic transcripts, when fitted by the
PNM model, the RSS should also follow a Beta distribution
but with different parameters. Therefore, the distribution of
RSS in the whole data set could be approximated by a two-
component mixture-Beta distribution. If we assume that the
proportion of periodic transcripts is a fixed value across the
three experiments, then the maximum likelihood estimates
(MLEs) of the proportion of periodic genes, % and the
parameters of the two Beta distributions, 6};, are the arguments
that maximize the likelihood function

3

S5 log(yBeta(el | ) + (1 — 7)Beta(el, | 62)) 6
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where e2; is the sum of squares of model fitting residuals of
gene g in the i-th data set, and i = 1, 2, 3 corresponds to the
three data sets: cdc28, alpha and cdcl5, respectively. If yis
known, the posterior probability for gene g to be periodically
expressed can be computed by the Bayes theorem:

3
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A gene with P, = 0.95 is declared as periodically transcribed.

Matching different experiments

We expect that expression profiles of most periodically
expressed genes would be less varied under different
synchronization techniques; otherwise, what can be found
from the experiments would be no more than mere artifacts.
Nevertheless, it is well known that different cell-arresting
techniques may block cells at different checkpoints. The PNM
resynchronized expression profiles enable us to compare the
expression patterns shown in these different experiments, and
to estimate the inter-experimental phase shifts by minimizing
the matching errors.

27
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Here g refers to all the periodically expressed genes detected, s
= tp is the cell cycle stage, and V, »3(s), Vg 15(s) and V, ,(s)
denote the transcription levels of the corresponding gene
estimated from the three data sets. The cdc28 phase is used as
a standard, since the data quality of cdc28 is relatively higher
than that of the other two sets. The relative phase shifts of
cdcl5 and alpha (m; and m,) can be estimated from equation
8. The transcription profile of a periodically expressed gene is
estimated by the weighted average of the gene’s transcription
patterns from the three data sets, with the phases adjusted:

V,(s) = Vg,28(5)/"§¢28 + Vgus(s + ml)/eéls + Veals + m2)/6;2 9
¢ 1/6§,28 + 1/e§,15 + l/eéa
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Figure 1. Transcription profiles of five typical groups of stage-specific genes. Solid lines represent the transcription profiles of stage-specific genes. The line
of asterisks represents the average transcription profile of the genes within each group.

Table 1. The cell cycle period and synchrony decay in five microarray experiments

PNM Spellman et al. (1) Aach and Church (15) Zhao et al. (7)
cdc28 83.2 = 8.5 85 85
alpha 59.5 £52 66 £ 11 67.5 £ 6.5 58
cdel5 1157 £ 11.1 110 119.0 = 14.0 115
Elutriation 408.9 + 52.3 390 4225 =775
fkh 108.3 = 18.7

The listed standard variations of 7 estimated by PNM are those at the end of the first cell cycle.

Clustering of the periodic transcripts

The periodically expressed genes detected by PNM can be
assigned to five clusters based on their activation stages: M/G;
(G, early), G,/S (G, late), S, G, and M phases. We first
selected five groups of well-studied genes with known
activation stages. These genes and their active phases can be
found in Table 1 of the Supplementary Material available at
NAR Online. Five typical stage-specific transcription profiles
were calculated by averaging the resynchronized transcription
profiles of genes in each group. These five typical transcription
profiles together with those of the genes that are used to derive
them are plotted in Figure 1.

The remaining periodically expressed genes are then
assigned to the five groups by matching their profiles to the
five typical stage-specific profiles according to the Pearson
correlation coefficient. The clustering results can be found in
Supplementary Table 1.

RESULTS AND DISCUSSION
The synchrony decay

Distributions of the cell cycle frequency in the five yeast cell
cycle microarray experiments were estimated by the PNM
model using equation 3, from which one can also derive the
cell cycle period T and the rate of synchrony decay. The
estimation results are listed in Table 1, together with some of
the previous results. We see that PNM estimates of T are in
close agreement with those reported previously. The

synchrony decay at time ¢ can be characterized by of, where
o is the standard deviation of cell cycle frequency. For the data
sets cdc28, alpha, cdcl5 and elutriation, o is estimated as
~10% of u, which means that by the time the cells complete
their first cycle, the cell cycle stages of 95% of the cells in the
population will span a range as wide as 40% of the whole cell
cycle. This estimation is supported by the cytological obser-
vation that synchronized cdc28 yeast cells complete the first
cell cycle in 70-110 min, a range of ~48% of its cell cycle
duration time (2). The large variation in cell cycle rate
diversity results in such rapid synchrony decay that it is
problematic to directly combine the information from the first
cell cycle with that from the second one when measuring the
periodicity of transcription profiles.

PNM resynchronization of genes

Although the Fourier transformation method adopted by
Spellman et al. (1) and some other researchers (4,8,9,14) is
powerful in periodicity analyses, it has been pointed out that
cyclic patterns may not conform to a single sine wave (9).
Similarly, the single-pulse model (7) is also too simplistic to
capture the high-frequency information in periodic profiles.
The PNM model approximates periodic transcript expres-
sions by Fourier decomposition, and describes the synchrony
decay explicitly as an exponentially weighted mixture of
periodic components (equations 1 and 2). It also facilitates a
subsequent mixture-Beta method to reliably detect periodic
transcripts. Furthermore, the PNM-based procedure estimates
synchrony decay parameters by iteratively optimizing and
selecting periodic transcript samples from the whole data set,
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Figure 2. The periodic—normal mixture model fitting of the CLN2 profiles in the three data sets: cdc28, cdcl5 and alpha. Columns 1-3, transcription profile
fitted with one, two and three sinusoids; column 4, the PNM fitting (K = 3 with normal mixture) to real observations. Solid curves are the PNM model and

the asterisks are observations.

which makes the result relatively independent of the genes
chosen initially.

The PNM fittings of CLN2’s transcription profiles in the
three data sets are shown in Figure 2. The PNM fittings of four
other periodically expressed genes are plotted in Figure 3. The
Fourier coefficients of all the periodically expressed genes
detected by PNM can be found in Supplementary Table 1.

Identification of the periodically expressed genes

The MLEs of the parameters in the mixture-Beta distribution
for the RSS are listed in Supplementary Table 2. Both a
numerical approximation method (Newton—Raphson) and the
Metropolis—Hastings sampling approach were applied and
they gave consistent results. Parameter ¥ is estimated as 32.3
* 1.8%, implying that about one-third of the 5510 analyzed
genes are periodically transcribed. Although this number is
high, it is not too surprising that periodic transcripts make up
about one-third of the whole yeast transcriptome given the
importance of the cell cycle in the organization and replication
of the cell. The posterior probability of every gene being
periodically expressed was estimated by equation 7 with
parameters fixed at their MLEs.

Figure 4 shows histograms of the RSS after fitting the PNM
model to each gene in the three experiments. The approxima-
tions of these histograms by two-component mixture-Beta
distributions are overlaid. It can be seen that in all three
experiments, the two Beta distributions, corresponding to the

periodic and aperiodic transcripts, overlap substantially due to
the limited accuracy and stability of these experiments.
Combining data from all the experiments improved the
specificity of the prediction of periodic genes significantly.
Using 0.95 as a cut-off, we obtained 822 genes whose
posterior probabilities of being periodically transcribed, as
computed using equation 7, are greater than or equal to the
cut-off value. The list of 822 selected genes and their
corresponding annotations can be found in Supplementary
Table 1. Using a simulation method, we estimated that in the
list of 822 genes we expect to see no more than eight false
positives (details omitted).

Table 2 shows the comparison of our list of 822 cell cycle
genes with the lists of such genes reported in some previous
studies. Our list shares 540 genes with the list of 800 genes
identified by Spellman et al. (1).

As a control experiment, we performed two randomization
tests to check the validity of the mixture-Beta model versus
the single-Beta model. In the first test, we generated a set of
RSS with the same size as the real data set by randomly
sampling from a Beta distribution. In the other test, we
permuted the time points of each gene to remove the time
trend, fitted it by the PNM model, and calculated the model
fitting RSS. These RSS are then fitted by the mixture-Beta
distribution as done with the real data sets. In addition, these
RSS were also fitted by a single-Beta distribution, and the
differences between the log-likelihoods of the two models
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Figure 3. The PNM model fittings of four periodically expressed genes in the three data sets: cdc28, cdcl5 and alpha. Solid curves denote the PNM model

and the asterisks denote observations.
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Figure 4. Histograms of model fitting residual sum of squares of the three data sets (cdc28, cdcl5 and alpha) overlaid with the fitted mixture-Beta

distributions.

were calculated. Both tests were repeated 100 times, resulting
in 200 log-likelihood differences. For comparison, the real
data set was also fitted by a single-Beta distribution and the
same log-likelihood difference was computed. We observed
that the log-likelihood difference for the real data exceeded all
of the 200 simulated ones, which strongly supports our use of
the two-component mixture-Beta model.

The expression phases of the periodically expressed
genes

According to previous studies, different synchronization
techniques arrested yeast cells at different cell cycle phases:
cdc28 at G,/S, cdcl5 at M phase and alpha at G; phase (1).
However, this does not imply that the arrested cells will
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Table 2. PNM posterior probabilities of previously identified periodically expressed genes

Method No. of genes PNM tested Pmean P > 0.95 Source

Traditional approach 104 102 0.865 78 76.5% Spellman et al. (1)
Visual inspection 421 409 0.808 289 70.7% Cho et al. (2)
Fourier transformation 800 788 0.822 540 68.5% Spellman et al. (1)
SPM overlap-1 1106 1041 0.698 539 51.8% Zhao et al. (7)
SPM overlap-2 260 257 0.963 229 89.1% Zhao et al. (7)
SPM overlap-3 78 78 0.997 77 98.7% Zhao et al. (7)

Pmean: mean posterior probability of each list. Pmean of PNM selected 822 genes is 0.992.
SPM overlap-1, 2, 3 are the lists of the genes which passed the SPM threshold one, two and three times in experiment cdc28, alpha and cdcl5 according to

the data from the authors’ website.

Overlaps of gene lists of traditional approach (T), Cho et al. (C), Spellman et al. (S) and Zhao et al. (Z) are: T-C 73, T-S 95, T-Z 88, C-S 304, C-Z 304

and S-Z 525.

re-enter their cell cycle at the point where they were being
blocked. We estimated the relative phase shifts m; (cdc15-
cdc28) and m; (alpha—cdc28) by equation 8 and obtained m; =
2.1% and m, = 8.6% of one entire cell cycle. These results
imply that in the three experiments, the yeast cells may have
restarted their cell cycles from roughly the same phase. A
possible explanation is that, although the former cell cycle
program was blocked at different phase points, 120-210 min
of arrest duration gave yeast cells enough time to overcome
the blocking effect and hence the cells were fully prepared to
enter the next cell cycle. Consequently, at the time of release,
yeast cells can initiate the next cell cycle without finishing the
former paused one. This prediction is supported by experi-
mental evidence that in the cdc28 experiment, budding started
at ~30 min after release (0.367, T = 83.2 min) (2), and in the
cdcl5 experiment, budding started within 50 min of release
(before 0.43T, T'=115.7 min) (1). Although dumbbell-shaped
cdcl5 mutant cells appear to be arrested at late M phase
without finishing the former division, at the end of arrest the
undivided cells have already grown large enough to start the
next division, and most of the G; functions have already been
achieved. Therefore, after being released, the cells could get
into S phase almost immediately. In fact, small buds appeared
shortly after release in the cdcl5 experiment as in the other
two. The M phase-arrested appearance is simply a conse-
quence of the physical separation of the nucleus and the
cytoplasm that occurs due to the cell arrest techniques.

After estimating the relative phase shifts among the three
experiments, we integrated the three transcription profiles and
obtained the consensus transcription profile functions as
weighted averages of the corresponding profiles from the
three experiments using equation 9. These profile functions
were used to estimate the expression phases of the genes
which were assigned to five stage-specific profile classes
(Fig. 5).

Our phasing results match well with that of Spellman e al.
(1) in most cases, with only ~20% of the genes (110) assigned
differently. Most of these 110 genes were assigned to the
adjacent phases in Spellman et al. (1). For example, 32 of our
M/G, genes were phased at G,/M by Spellman et al. (1), but
many of these genes, such as FAR1, CLN3 and pre-replication
complex genes MCM2, MCM6, CDC54 and CDC47, are well
known to be expressed at the stage immediately after exit, and
peaked in early G;. We assigned SWI4 to G,/S instead of
M/G,, which agrees well with the observation that SWI4

G1Early genes{107)

GlLate genes{3@85)

S phase genes(B6)

G2 phase genes(132)

M phase genes{192)

Figure 5. Clustering of the 822 PNM-identified periodic transcripts into the
five stage-specific groups.

was expressed in a positive feedback at START and
peaked at G/S. More details can be found in Supplementary
Table 1.
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Table 3. Over-representation of the 822 periodically expressed genes in SGD Gene Ontology terms

No. of genes Process known?* Cell cycle® Cell cycle/known (%)
Gene Ontology®© 5814 3999 496 12.4
PNM (P)¢ 822 524 146 27.9
Spellman et al. (S)° 800 529 141 26.7
S and P! 540 353 121 343
PS¢ 282 171 25 14.6
S-ph 260 168 17 10.1

2The number of genes with known process by Gene Ontology.
"The number of genes annotated as ‘cell cycle’ by Gene Ontology.

cAll of the genes covered by Gene Ontology.

dThe periodically expressed genes identified by the PNM model (P).
°The periodically expressed genes identified by Spellman et al. (S).

fThe genes identified by both PNM and Spellman ef al.

€The genes identified only by PNM but not by Spellman et al.
"The genes identified only by Spellman et al. but not by PNM.

Annotation study of the periodically expressed genes

The biological roles of the 822 PNM detected periodically
expressed genes as well as those detected by Spellman et al.
(1) were analyzed using the Saccharomyces Genome Database
(SGD) GO Term Finder (http://www.yeastgenome.org), and
the P-value for each term was calculated. Table 3 lists the
number and portion of genes annotated by GO as ‘cell cycle’
for both the PNM-identified and Spellman-identified genes.
The GO terms that are significantly over-represented in the list
of 822 PNM-identified cell cycle genes with P-values less than
107 are listed in Supplementary Table 3. The results show that
nearly all of the top significant terms are involved in the
chromosome cycle, spindle cycle and bud cycle. On the other
hand, far fewer periodically expressed genes are involved in
the general transcription apparatus, protein synthesis, mito-
chondrion metabolism and other cytoplasmic processes. Only
a small number of periodically expressed genes were involved
in transportation, signaling or protein modification functions.

Thirty-two additional GO terms were found in which all
genes under these terms were in the list of 822 genes. Most of
these GO terms are closely related to the cell cycle. They are
absent from Supplementary Table 3 only because the total
number of genes under these terms was too small. The terms
with three or more genes are: pre-replication complex (eight
genes), kinesin complex (six genes), DNA repair synthesis
(four genes), DNA replication factor A complex (three genes),
cation antiporter (three genes), septin checkpoint (three genes)
and heteroduplex formation (three genes).

In addition to functional analyses of the entire set of genes
identified by the PNM model, we also compared genes that
were uniquely identified by Spellman et al. (1) with those
uniquely identified by PNM analyses. After the elimination of
unannotated open reading frames (ORFs) and those currently
listed as dubious from both sets, analysis with GO Term
Finder revealed that the PNM model uniquely identifies and
significantly enriches for a number of additional ‘cell cycle’
genes (P = 2.1 X 1072, 25 genes), whereas Spellman et al.’s
enrichment is less significant (P > 0.05, 17 genes). Although
both approaches enrich for different sets of periodically
expressed genes identifiably involved in the cell cycle that are
listed under ‘growth and/or maintenance’ (PNM, P = 6.54 X
10719 Spellman, P = 3.00 X 10719), the PNM model uniquely
identifies a number of functionally related groups of genes
whose expression peaks during the cell cycle phase(s) in

which such processes are known to occur. These include a
number of genes found in categories such as the organization
and biogenesis of the cell (P = 8.01 X 1077), cytoplasm (P =
1.89 X 1073), chromosome (P = 1.93 X 107%), nucleus (P =
2.97 X 1073), organelle (P = 2.93 X 1073) and mitochondrion
(P =5.79 X 1073), as well as those involved in mitochondrial
genome maintenance (P = 1.43 X 10-), mitochondrial fission
(P = 3.02 X 1073) and vacuole inheritance (P = 6.50 X 1073).
Moreover, a substantive fraction of these genes has been
shown to be essential for normal progression through the cell
cycle.

In comparison, the approach of Spellman e al. uniquely
identifies groups of periodically expressed genes involved in
processes that are less identifiably cell cycle related, such as
metabolism (organic acid, carboxylic acid and amino acid P =
9.63 X 1077) and, seemingly the meiosis-specific processes of,
reproduction (P = 1.40 X 107%) and conjugation (P = 2.23 X
107%), which are probably responses to environmental stresses
and external mating signals rather than to natural cell cycle
needs. Although it is difficult to assess which approach may be
better suited to identify cell cycle-specific genes, these
analyses indicate that the PNM model uniquely enriches for
functionally related genes that are readily identifiable as being
involved in the cell cycle.

On the other hand, for many cell cycle-related GO terms
(e.g. cell cycle and cell proliferation), only a small portion of
genes (~30%) belong to the list of 822 cell cycle genes. The
remaining genes whose expression does not show significant
cell cycle features may be weakly periodic genes, housekeep-
ing genes, silent genes or genes that respond to signals other
than cell cycle events. This implies that for many cell cycle
events, only a small portion of the involved genes are
transcriptionally regulated, leaving others to be regulated at
post-transcriptional levels.

We found 166 adjacent pairs among the 822 periodically
transcribed genes where the term ‘adjacent gene pair’ refers to
a pair of genes on the same chromosome without any
‘chromosomal  features’ between them (http://www.
yeastgenome.org, SGD, April 19, 2003). ‘Chromosomal
features’ include ORF, ARS, CEN, rRNA, tRNA, snRNA,
snoRNA, RNA genes, LTRs and transposons. Fifty-four
percent of the 48 co-upstream pairs and 52% of the 44 co-
downstream pairs showed a similar expression pattern with a
coefficient of correlation between the pair of genes greater



than 0.5, e.g. the four pairs of histone genes. On the other
hand, only 39% of the 74 serial pairs showed a similar
expression pattern with a coefficient of correlation greater than
0.5. Furthermore, we found three pairs of genes that showed
‘inverse’ expression pattern with a coefficient of correlation
lower than —-0.5. These include CLB1-CLB6 and CLB2-
CLBS, both of which are co-downstream, and IST2-RFC5,
which are co-upstream. It may be interesting to investigate
further how these adjacent gene pairs are co-regulated or
reversely regulated by their shared upstream or even down-
stream regions.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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