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Abstract
Purpose of review—Dramatic advances in molecular characterization of the largely
noncultivable enteric microbiota have facilitated better understanding of the composition of this
complex ecosystem at broad phylogenetic levels. This review outlines current understanding of
mechanisms by which commensal bacteria are controlled and shaped into functional communities
by innate and adaptive immune responses, antimicrobial peptides produced by epithelial cells and
host genetic factors.

Recent findings—Secretory IgA, which targets enteric bacteria, regulates the number,
composition and function of luminal bacteria. Likewise, epithelial production of antimicrobial
peptides help control enteric microbiota growth, translocation and perhaps composition. The
developing role of innate signaling pathways, such as toll-like receptors and NOD2, is beginning
to be studied, with dysbiosis following their genetic deletion. Inflammation and effector immune
responses lead to decreased diversity and selective alterations of functionally active bacterial
species such as Escherichia coli and Faecalibacterium prausnitzii that have proinflammatory and
protective activities, respectively. Studies of humans, mice and comparative species indicate that
both genetic and early environmental factors influence the development of a stable intestinal
microbiota.

Summary/implications—Genetic and mucosal immunity strongly influence the composition
and function of enteric commensal bacteria. This understanding should help develop strategies to
correct dysfunctional altered microbiota in genetically susceptible individuals, better diagnose and
correct potential dysbiosis in high risk individuals at a preclinical stage, and therapeutically target
pathogenic bacterial species that help drive chronic inflammatory conditions.

Keywords
Microbes; Intestine; Immune system

Introduction
Humans have co-evolved with an incredibly complex group of interacting bacteria, fungi
and viruses that populate their intestinal tracts in numbers that exceed mammalian cells by at
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least ten-fold. These enteric microbiota have fundamental physiologic roles in differentiation
and maturation of epithelial cells and the mucosal immune response, as well as integral
pathophysiologic roles in certain disorders, most notably inflammatory bowel diseases[1].

The composition of commensal enteric microbiota is defined by the host
Just as commensal enteric microbiota are important in shaping host development and
inflammation, host factors also influence the luminal microbial composition. This was
elegantly demonstrated in reciprocal microbiota transplantation experiments in which germ-
free (GF, sterile) zebrafish and mice were colonized with intestinal microbes from
conventionally-raised animals[2]. The authors showed that over time, at the phylum level,
the transplanted bacterial community changed to reflect characteristic microbiota of the
recipient host species. These findings suggest that luminal microbial populations do not
grow in isolation, but rather are strongly affected by host-derived factors that are now
beginning to be elucidated.

Chronic intestinal inflammation is associated with phylum-level changes in gut microbial
communities

The gastrointestinal mucosal immune system has evolved to peacefully co-exist with a large
burden of potentially inflammatory microbial components under normal circumstances.
However, genetic and environmental insults can lead to dysregulated immune responses to
commensal bacteria. Reciprocally, immune factors can also shape the composition and
function of commensal enteric microbiota. Much of the data to support this notion comes
from studies of differences in bacterial communities in patients or animals with intestinal
inflammation compared to healthy controls. These studies are difficult to interpret in
aggregate due to variations in animal models, human subjects, sampling methods of luminal
contents, and techniques used to measure microbial composition. However, several general
trends are apparent. Experimental murine models of chemically-induced or spontaneous
colitis exhibit variable changes in overall bacterial abundance (Table 1). Microbial diversity
is decreased in interleukin-10 deficient (IL-10−/−) mice. While Actinobacteria and
Proteobacteria, especially E. coli, are increased in some colitis models, there are variable
changes in Firmicutes and Bacteroidetes. Among the Firmicutes, within the class of
Clostridia, the Clostridiales are increased whereas the Lachnospiraceae, particularly
Clostridium groups XIVa and IV, are decreased.

Despite differences in the “core” microbiome between mice and humans, changes in
microbial composition associated with intestinal inflammation are quite similar. For
example, similar to IL-10−/− mice with colitis, microbial diversity is consistently decreased
in humans with IBD (Table 2). Human IBD is also associated with increased Actinobacteria
(except the Bifidobacteriales) and Proteobacteria, decreased Lachnospiraceae, and variable
changes in Bacteroidetes. However, unlike experimental colitis, there are variable changes
in Clostridiales in human IBD. Moreover, there are increased mucosal-associated bacteria in
human IBD even though the luminal concentrations are decreased. Together, these findings
indicate that dysregulated host immune responses are associated with broad changes in both
the composition and distribution of commensal intestinal microbial communities. However,
whether the microbial changes are a cause of, or result from, inflammation remains to be
determined. Furthermore, the host-derived factors that change the microbiota as well as the
downstream effects of broad microbial shifts on host disease processes are unknown and are
areas of active investigation.
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Chronic intestinal inflammation affects the abundance of specific bacterial strains
important in the pathogenesis of IBD

While experimental colitis and human IBD are associated with similar phylum-level changes
in the enteric microbiota, recent data also suggest that inflammation alters the abundance of
specific bacterial species. For example, numbers of E. coli are consistently increased in both
human IBD and experimental colitis (Table 3). Specifically, the B2 and D phylogenetic
groups of E. coli, and adherent-invasive strains of E. coli that bind to CEACAM6 on human
epithelial cells are associated with Crohn’s disease[17, 32, 33*]. Furthermore, mice
engineered to express the human CEACAM6 receptor only develop intestinal inflammation
when colonized with adherent-invasive E. coli[33*].

While the expansion of certain strains of E. coli may worsen intestinal inflammation, recent
data indicate that increased numbers of a Firmicute in the Clostridiales order, F. prausnitzii,
are protective. Interestingly, mice with TNBS colitis that do not harbor F. prausnitzii
develop a dysbiosis, and administration of F. prausnitzii restores the intestinal microbiota to
a normal state and decreases colitis[4]. Similarly, there are decreased numbers of fecal and
mucosal-associated F. prausnitzii in ileal Crohn’s disease[4, 15*, 29]. These findings
suggest that the inflammation-associated changes in specific bacterial species may impact
the composition of the entire intestinal microbial community and enhance or attenuate gut
inflammation. Given the broad diversity of the commensal enteric microbiota, further
studies will likely identify additional bacterial species affected by host inflammation.

The adaptive immune system shapes commensal microbial communities
Though much is known about the effects of intestinal inflammation on the general
composition of the gut microbiome, relatively little is known about how specific
components of the inflammatory milieu interact with the commensal luminal microbes.
Among the multitude of mucosal adaptive immune responses, the impact of intestinal
secretory IgA (sIgA) on luminal bacteria is the best characterized.

Secretory IgA serves as the first line of defense against intestinal microorganisms by
limiting adhesion and entry into the epithelium, thereby facilitating clearance via the fecal
stream—a process termed immune exclusion[34, 35]. By this mechanism, sIgA confines
intestinal microbial populations to the lumen, mucosa, or mesenteric lymph nodes, and
limits their systemic spread. Secretory IgA also maintains mucosal homeostasis through its
effects on the composition of the commensal microbial community. This was originally
reported by Fagarasan et al., who showed a 100-fold increase in the number of small
intestinal anaerobes in AID−/− mice, which do not produce sIgA[36]. Similarly, others have
demonstrated an expansion of luminal commensal anaerobic bacteria in Rag2−/− mice,
which lack B- and T-cells[37]. Reconstitution of Rag2−/− mice with normal bone marrow
restored the luminal microbiota to the normal state, confirming the importance of
homeostatic adaptive immune responses in shaping commensal bacterial communities[37].
Interestingly, increased numbers of non-cultivatable anaerobes known as segmented
filamentous bacteria (SFB) were detected in the small intestine of Rag2−/− and AID−/−
mice and returned to normal levels upon reconstitution of the adaptive immune system using
bone marrow transplant or parabiosis models, respectively[37]. The relevance of these
findings is underscored by recent data suggesting that luminal SFB are critical for the
development of normal intestinal immune function, including Th17 cell responses and
antimicrobial peptide secretion[38**]. Furthermore, the presence of SFB enhances
resistance to murine Citrobacter rodentium-induced colitis[38**]. Together, these results
suggest that sIgA and other components of adaptive immunity alter gut microbial
communities, which may in turn affect subsequent innate and adaptive intestinal immune
responses.
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In addition to shaping the constituents of the enteric microbiota, sIgA also affects the
function of certain commensal bacteria. Peterson, et al., elegantly measured the in vivo
effects of monoclonal IgA on luminal bacteria in Rag1−/− mice selectively colonized with a
commensal bacterial strain, Bacteroides thetaiotaomicron, and implanted with a
subcutaneous monoclonal IgA hybridoma reactive to B. thetaiotaomicron capsular
polysaccharide [39]. While luminal concentrations of B. thetaiotaomicron were similar
between hybridoma-harboring mice and controls, the luminal bacteria in mice carrying the
hybridoma downregulated genes encoding the capsular polysaccharide and genes involved
in the metabolism of host-derived reactive oxygen and nitrogen species. These results
suggest that commensal antigen-specific sIgA induces changes in luminal microbial gene
expression that may allow the bacteria to exist in a non-inflammatory, symbiotic relationship
with the host.

Innate immunity influences the composition and function of the intestinal microbiota
In addition to adaptive immune responses, the innate immune system also affects luminal
microbes. For example, mice deficient in Toll-like receptor (TLR) 5, a cell-surface receptor
that recognizes bacterial flagellin, have altered intestinal microbiota and develop metabolic
syndrome[40**]. Interestingly, the metabolic syndrome was transmitted to immunologically
intact mice simply by transfer of the commensal enteric microbiota. Similarly, deficiency of
T-bet, a transcription factor that orchestrates inflammatory responses, altered intestinal
microbial composition in Rag2−/− mice that lack adaptive immunity, and was associated
with colitis that can be transmitted to genetically intact hosts by luminal microbes[41]. In
parallel, NOD2 deficiency resulted in selective expansion of Bacteroides species and an
opportunistic pathogen, Helicobacter hepaticus, in the ileum, but not feces[42]. The
mechanisms by which TLR5, NOD2 and T-bet deficiency impact luminal microbes are
currently unknown.

The influence of antimicrobial peptides on the intestinal microbiota
Another component of innate immunity, the antimicrobial peptides (AMPs), are
evolutionary ancient molecules used by host organisms to control potentially dangerous
enteric microbes. Their incredible diversity, with more than 1500 AMPs reported to
date[43], allows for a broad spectrum of antimicrobial activity against bacteria, fungi,
viruses and protozoan organisms[44]. In the mammalian gastrointestinal tract, AMPs are
produced primarily by epithelial cells. Both enterocytes and Paneth cells are capable of
synthesizing AMPs, and secrete them into the intestinal crypts and mucus layer overlying
the epithelial surface[45]. This results in high levels of antimicrobial activity at the mucosal
surface, which allows for defense against pathogenic organisms and likely modulation of
commensal microbiota.

Although regulation of intestinal microbiota by AMPs is mechanistically appealing, this
concept has been difficult to verify due to the enormous diversity of the AMP molecules and
the complexity of the mammalian microbiota. However, recent work using Drosophila
melanogaster provides important insights into the role of AMPs in regulating the intestinal
microbiota. Only seven distinct AMPs have been described in Drosophila [46], whose
intestinal tract hosts a mere 10–20 bacterial phylotypes (as compared to 500–1000 in
humans)[47]. Furthermore, induction of AMP expression in the Drosophila gut is entirely
dependent on the immune deficiency signaling pathway[46], while the transcription factor
Caudal suppresses AMP transcription by binding to regulatory sequences of the AMP
genes[48]. This relative simple system makes Drosophila an ideal model to study AMP
regulation of gut microbiota. Ryu and colleagues reported that inhibition of Caudal by RNA
interference (RNAi) led to over-expression of all tested AMPs and gut epithelial cell
apoptosis by day 18 [49]. Interestingly, apoptosis was not observed in mutant flies that were
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housed in GF conditions, implicating the intestinal microbiota as a key mediator of the
phenotype. Specifically, there were decreased numbers of Acetobacteraceae strain EW911
(A911), but increased levels of Gluconobacter sp. strain EW707 (G707) in Caudal-RNAi
relative to wild-type (WT) flies. Monoassociation of WT GF flies with G707 resulted in
high levels of gut cell apoptosis compared to WT flies monoassociated with other gut
commensals. This study demonstrates that dysregulation of AMP expression can profoundly
change the commensal microbiota, with important downstream effects on gut physiology.

New understanding of AMP regulation in the mouse has extended these studies to the
mammalian host. Cryptdins are mouse AMPs produced by Paneth cells, and are similar in
structure and function to a group of human AMPs known as α-defensins[50]. In mice,
matrilysin 7 (Mmp7) is necessary to cleave pro-cryptdin precursors into their active forms.
Mmp7-deficient (Mmp7−/−) mice lack mature cryptdins and succumb more rapidly to
Salmonella infection than their WT counterparts[51]. In contrast, transgenic mice that over-
express a human α-defensin, human defensin 5 (HD-5), are markedly resistant to
Salmonella challenge[52]. These two mouse models provide another experimental system to
study the effects of AMPs on the intestinal microbiota.

Salzman and colleagues have extensively characterized the intestinal microbiota in the ileum
of both Mmp7−/− and HD-5 transgenic mice using molecular methods[53**]. Consistent
with previous studies, the Firmicutes and Bacteroidetes phyla were predominant in both
mouse groups. However, Mmp7−/− mice had higher levels of Firmicutes and lower levels of
Bacteroidetes than their WT counterparts, while reciprocal findings were observed in the
HD-5 transgenic mice. Further analysis of specific bacterial changes revealed that the HD-5
transgenic mice had significant depletion of SFB in their intestinal microbiota and fewer
lamina propria Th17 cells relative to WT mice, consistent with prior observations that SFB
are critical for Th17 development[38**]. These findings support the concept that AMP
levels have profound, biologically relevant effects on the intestinal microbiota.

Host genetic regulation of the intestinal microbiome
The relative influences of host genetics vs. environment in shaping the gut microbial
composition and function are not yet definitively established. Human, mouse and
comparative species studies indicate that both genetic and environmental influences
contribute to formation of the intestinal microbiota.

Human studies—Comprehensive pyrosequencing analysis of fecal samples from young
adult female twins demonstrated that microbiota from family members are more similar than
from unrelated individuals. However, there was no significant difference in the degree of
similarity of the gut microbiotas between monozygotic and dizygotic twins, although
monozygotic twins trended toward greater similarity. Importantly, a core microbiome was
more evident at the level of shared bacterial gene functions rather than composition of
bacterial species[54**]. In deep sequencing analysis of stool specimens from a single
monozygotic twin pair, 36–49% of bacterial phylotypes were shared among both twins[55].
Molecular analysis of fecal and mucosal biopsies from ten monozygotic twin pairs either
concordant or discordant for Crohn’s disease demonstrated decreased microbial diversity
with disease and decreased F. prausnitzii and increased mucosal E. coli concentrations in
ileal Crohn’s disease[20, 29]. Frank et al.[56*] reported that NOD2 composite genotype,
ATG 16L1 genotype and disease phenotype (ileal involvement) were associated with shifts
in mucosally associated microbial composition in Crohn’s disease patients. In familial
Mediterranean fever patients, the presence of mutated alleles of the MEFV gene that
encodes Pyrin was associated with significant changes in fecal bacterial community
structure[57].
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Mouse studies—Reproducible strain-specific variations in relative concentrations of the 8
bacterial species that compose the defined Altered Schaedler Flora (ASF) in 23 inbred
mouse strains indicated an important role of host genetics in determining the intestinal
microbiome, although a significant cage effect demonstrated local environmental
influences[58]. Stable strain-specific fecal eubacterial profiles in six mouse strains supported
a strong genetic influence, although uterine implantation of two different mouse strains in
the same foster mother showed no differences in fecal microbiota profiles in the offspring
with different genetic background[59]. Relocation studies showed that environmental
changes prior to four weeks of age affected fecal microbiota, although bacterial profiles
were stable in adult mice. These studies indicate that host genotype helps shape intestinal
microbial composition, but early life environmental influences alter the ultimate microbiota
profile.

Studies in knockout mice indicate that Crohn’s disease-related genes affect commensal
microbiota. Mice deficient in the multidrug resistance gene (Abcb-1 transporter or P.
glycoprotein) have differences in cecal microbiota at 12 weeks that precede onset of
colitis[60*]. In preliminary studies, we demonstrated that NOD2 deficiency in mice results
in decreased mucosally-associated F. prausnitzii in both the ileum and cecum[61], consistent
with previously observed regulation of ileal Bacteroides concentrations[42]. Although not
known to be related to IBD, genetic deletion of the apolipoprotein a-I gene, which leads to
impaired glucose tolerance and increased body fat), affected gut microbiota, although
dietary changes had a greater effect (calculated 12% genetic effect vs. 57% dietary effect on
structural variation of gut microbiota)[62].

Comparative vertebrate studies—Studies of broadly divergent vertebrates in zoos and
free-living environments indicate that the composition of intestinal microbiota is heavily
influenced by diet, structure of the GI tract (foregut, hindgut and cecal anatomy) and species
phylogeny[63, 64]. In broad terms, the human commensal bacterial community is typical of
an omnivorous primate. In parallel studies, the phylogenetic structure and pattern of
virulence genes in mammalian E. coli diverged in carnivores, omnivores and herbivores[65].

Conclusion
A coordinated interplay between commensal microbiota and mucosal immune responses is
reciprocally regulated by each partner. Both innate and adaptive immune responses strongly
influence enteric bacterial composition and perhaps function, which is further molded by
activated effector immune responses during inflammation. Luminal alterations of decreased
bacterial diversity and expansion of selected species, most notably E. coli, occur during both
acute and chronic inflammation of multiple causes, suggesting that these changes are
nonspecific. Firm evidence implicates sIgA, whose primary target is luminal bacteria, innate
bacterial signaling pathways and AMPs in shaping enteric microbiota profiles. Likewise,
host genotype, in conjunction with environmental influences including diet and microbial
exposure early in life, shape enteric microbial composition, which is remarkably stable once
fully developed. Future research needs to better explain the role of T lymphocytes in
regulating microbiota, microbial alterations in hosts with disease-related genetic
polymorphisms, primary vs. secondary effects of inflammation, functional consequences of
dysbiosis in intestinal inflammation and the homeostatic and pathogenic immune responses
on enteric bacterial gene expression and function.
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