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ABSTRACT

One of the primary tasks in deciphering the func-
tional contents of a newly sequenced genome is the
identi®cation of its protein coding genes. Existing
computational methods for gene prediction include
ab initio methods which use the DNA sequence
itself as the only source of information, comparative
methods using multiple genomic sequences, and
similarity based methods which employ the cDNA or
protein sequences of related genes to aid the gene
prediction. We present here an algorithm imple-
mented in a computer program called Projector
which combines comparative and similarity
approaches. Projector employs similarity informa-
tion at the genomic DNA level by directly using
known genes annotated on one DNA sequence to
predict the corresponding related genes on another
DNA sequence. It therefore makes explicit use of the
conservation of the exon±intron structure between
two related genes in addition to the similarity of
their encoded amino acid sequences. We evaluate
the performance of Projector by comparing it with
the program Genewise on a test set of 491 pairs of
independently con®rmed mouse and human genes.
It is more accurate than Genewise for genes whose
proteins are <80% identical, and is suitable for use
in a combined gene prediction system where other
methods identify well conserved and non-conserved
genes, and pseudogenes.

INTRODUCTION

In order to predict protein coding genes (genes in the
following), both the location of the genes within the genome
as well as the gene structures have to be determined. The exact
locations of the exon±intron boundaries are crucial for
de®ning the encoded amino acid sequence and thus the
protein product of the gene. The gene identi®cation strategies
used to produce gene sets for complete genome sequences
such as human (1) combine the results of multiple computa-
tional approaches, each of which may perform optimally given
certain sorts of information, choosing which methods to use in
which place depending on the evidence available.

Due to the recent and ongoing sequencing of entire
genomes, we are now in a position to compare almost every
newly sequenced genome with an already sequenced evolu-
tionarily related genome, for example, the mouse with the
human genome (2), Fugu rubripes with the human genome (3)
or Anopheles gambiae with the Drosophila melanogaster
genome (4). Reports on the sequencing of a genome are now
typically accompanied by an initial comparative analysis with
an evolutionarily related genome because many tasks, includ-
ing the annotation of genes, are more easily solved through
genome comparisons. Depending on the time of evolutionary
divergence between two genomes and the details of the
processes by which each genome evolves, those parts of the
genomes which are subject to functional constraints have
evolved more slowly than, and differently from, the remaining
parts of the genomes and can thus be identi®ed as islands of
conservation of a speci®c pattern in a sea of change.
Concerning genes, the functional constraints act both on the
encoded three-dimensional proteins and hence the encoded
amino acid sequence, and on the transcription and mRNA
processing signals associated with the gene structure.

Traditionally, similarity based gene prediction methods
such as Genewise (5,6) and Procrustes (7) take the amino acid
sequence of a known protein and predict a gene encoding the
same or a similar amino acid sequence in the input DNA
sequence, see Figure 1A. These methods typically show a
high sensitivity and speci®city for predicting genes whose
amino acid sequence is closely related to the amino acid
sequence of the known input protein, but their performance
decreases considerably with decreasing levels of protein
similarity (8,9). The distinction between ab initio and
similarity based gene prediction methods has recently become
blurred: Pro-Gen (10), Doublescan (11) and SLAM (12) treat
two related input genomic DNA sequences in a symmetric
way and simultaneously align them and predict pairs of related
genes. CEM (13) and SGP-1 (14) base the comparative gene
prediction within two related input DNA sequences on a pre-
generated local alignment. Methods like Twinscan (15),
Genomescan (9) and SGP-2 (16) probabilistically integrate
the pre-generated local alignment between one DNA input
sequence and one or more related informant DNA sequences
(Twinscan and SGP-2) or between one DNA input sequence
and a set of informant protein sequences (Genomescan) into
an underlying gene prediction algorithm which predicts the
genes within the single DNA input sequence. These local
alignments are all generated with programs such as BLAST
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(17,18) which identify regions of high sequence conservation
based on local sequence identity without explicitly modeling
valid gene structures or specifying exact intron±exon bound-
aries.

A comparative analysis of the mouse and the human
genome (2) estimates that 99% of the mouse genes have a
homologous human gene and 80% have reciprocal best
matches to a human gene that can readily be identi®ed as
the orthologous gene pair. Only 1% of the human and mouse
genes do not have readily identi®able counterparts in the other
genome. Protein coding DNA exhibits the highest degree of
conservation with on average 85% sequence identity, as
opposed to 69% sequence identity for the alignable sections of
intron sequences, and alignment gaps are an order of
magnitude more rare in coding than in non-coding regions
of the genome. Concerning the conservation of gene structure,
86% of the orthologous gene pairs are estimated to have the
same number of coding exons and 46% also the same coding
length, whereas only 1.5% have the same coding length but a
different number of exons. Most cases where there is a
different number of exons can be explained by single exon
fusion or exon splitting events. On average, transcripts in this
set contained 8.3 exons.

It is clear from the above numbers that a novel similarity
based gene prediction method that could explicitly model both
the conservation of exon±intron structure and the encoded
amino acid sequences between two related genes would have
access to additional information compared with existing
methods. This should help cross-annotation of related
genomes, as none of the existing similarity based methods
explicitly models the conservation of gene structure. A
limitation of this method as well as the existing protein-
based homology methods is that only those genes can be
detected that have an already known partner in another
genome. Genes that are unique to one genome or genes whose
partner exists, but has not yet been identi®ed, cannot be
detected using this method.

METHOD AND THEORY

Our method predicts new genes according to the known genes
annotated on a related DNA sequence by employing a
probabilistic pair hidden Markov model (pairHMM) (19).
The states and transitions of the pairHMM underlying
Projector are the same as for Doublescan (11) and can
model the most prevalent con®gurations which can arise
through the alignment of pairs of related genes which appear
in colinearity in two DNA sequences, including exon fusion or
splitting events. However, instead of taking two similar DNA
sequences of unknown gene contents as the input information
and predicting the genes within the two sequences as well as
an alignment between them as done by the comparative ab
initio gene prediction method Doublescan, Projector takes the
known genes of one of the two sequences as additional input
information and predicts the genes of the other DNA sequence
according to the known genes of the related DNA sequence. In
order to implement the constraint imposed by the known genes
into Projector, the algorithm by which the state path with the
highest overall probability (the optimal state path) is derived is
altered.

Let X be the input DNA sequence with known genes and Y
the input DNA sequence whose genes are unknown. We think
of a sequence of time steps, in each of which the current state s
reads a ®xed, state-dependent number of letters Dx(s) from
sequence X and a potentially different ®xed number of letters
Dy(s) from sequence Y. The information on the known genes of
sequence X are translated into annotation labels Xi

ann for each
sequence position i in sequence X. In contrast to Doublescan,
which considers all possible annotations and alignments of the
two input sequences in the calculation of the optimal state
path, Projector considers only those annotations and align-
ments which are compatible with the known genes of input
sequence X. This constraint is implemented in the following
way into the recursion step of the Viterbi algorithm (20):

v�s; i; j� � maxs0 fv�s0; iÿ Dx�s�; jÿ Dy�s��ts0 �s�es�i; j�Yiÿ1

k� iÿDx�s�
d�Xann

k ;X�s�pre
k �g

where v(s, i, j) denotes the element of the Viterbi matrix which
corresponds to the probability of the state path with highest
probability which ends in state s and which so far has read i
letters from sequence X and j letters from sequence Y, ts¢(s) is
the transition probability to go from state s¢ to state s. es(i, j) is
the emission probability of state s to read Dx(s) letters from
sequence X (letters Xi±Dx(s), ..., Xi±1) and Dy(s) letters from
sequence Y (letters Yj±Dy(s), ..., Yj±1). d(Xk

ann, X(s)k
pre) is 1 if the

label X(s)k
pre predicted by state s for sequence position k

coincides with the annotated label Xk
ann, and 0 otherwise. It is

thus this extra factor Pi±1
k=i±Dx(s) d(Xk

ann, X(s)k
pre) in the above

formula which implements the constraint into the state path
calculation, because all state paths which do not reproduce the
known annotation of sequence X are assigned zero probability
as soon as a discrepancy occurs between the annotated and the
predicted label of a position in sequence X. Using the above
formula for the recursion step, the Viterbi algorithm calculates
the state path with the highest probability which simultan-
eously satis®es the following conditions: (i) it reproduces the

Figure 1. Different types of similarity based gene prediction methods: (A)
gene prediction based on protein similarity (e.g. Genewise and Procrustes),
(B) gene prediction based on protein and gene structure similarity (e.g.
Projector). Genomic DNA is symbolized by arrows, exons by boxes, introns
by kinked lines and intergenic stretches of the DNA by straight lines.
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known genes of sequence X, (ii) it predicts genes in sequence Y
which correspond to the known genes of sequence X and (iii) it
predicts an alignment between the two sequences.

Special emission probabilities

Technically, the extra factor in the Viterbi recursion which
constrains the state paths to those that reproduce the known
annotation of sequence X can be interpreted as a modi®cation
of the nominal emission probabilities, es(i, j), of the pairHMM.
We call these emission probabilities which now also depend
on the position within the input sequences rather than only the
letters at that position special emission probabilities and
denote them by e¢s(i, j). For Projector, they have the form
e¢s(i, j) = es(i, j) Pi±1

k=i±D(s) d(Xk
ann, X(s)k

pre) for every state s
which reads letters from sequence X [see also Yeh et al. (9)
and Korf et al. (15)].

Special transition probabilities

A novel feature of the pairHMM underlying Doublescan and
Projector is the concept of position dependent transition
probabilities which are used to implement the sequence signal
scores provided by external programs into the pairHMM
framework in a way which fully preserves the pairHMM's
probabilistic interpretation. We call these position dependent
transition probabilities special transition probabilities. Both
Doublescan and Projector use an external program called
StrataSplice (21) similar to that in Burge and Karlin (22) to
gain more detailed information on every potential splice and
translation start site within the two input sequences. The
sequence signals of these states are too complex and contained
in a sequence interval which is too wide to be adequately
captured directly within the states and transitions of our
HMM. Before the state path calculation is started within
Doublescan and Projector, StrataSplice goes along each
sequence separately and assigns a log-odds score (in bits,
i.e. log base 2) to each possible splice site and translation start
site. This score is a measure of how likely the potential splice
site is to be true. Once these scores have been assigned, they
are used within the state path calculation to modify the
nominal values of some transition probabilities. Every tran-
sition leading into a translation start or a splice site state is
assigned the full nominal probability if the corresponding
sequence signal scores are high, and it is reduced to a lower
value if the corresponding scores are low. We choose to
calculate the special transition probability for such a transition
from state s¢ to state s at sequence positions i in X and j in Y as
follows:

t¢s¢(s, i, j) = ts¢(s) (prior(i, j) ´ 2score(i, j)) /
(prior(i, j) ´ 2score(i, j) + 1 ± prior(i, j))

where prior(i, j) =
���������������������������
priorx;i priory;j

p
and score(i, j) = scorex,i +

scorey,i if the state s is a match state, or (prior(i, j) = priorx,i and
score(i, j) = scorex,i) or (prior(i, j) = priory,j and score(i, j) =
scorey,j) if the state reads only letters from sequence X or only
sequence Y, respectively. The priors priorx,i and priory,j are the
respective prior probabilities of seeing the sequence signal (in
the general case their values may depend on the sequence
position, as the prior probability of seeing a GC 5¢ splice site
may for example be different from seeing a consensus GT 5¢
splice site) and the scores scorex,i and scorey,j are the

respective log-odds scores of the sequence signals at sequence
position i in X and j in Y.

Empirical studies led us to take the geometric mean for
merging both the two individual priors as well as the two
individual probabilities underlying the scores. The natural way
to combine two probabilities which are not mutually exclusive
might appear to take their product, but if the splice site is fully
conserved this would effectively score it twice, which is
wrong. The geometric mean scores it once. An arithmetic
mean does not work because it allows a very poor site, e.g.
with probability 0, to be accepted if paired with a good site. In
practice the geometric mean worked best of several methods
we tried (with the Doublescan not the Projector test set). A
more complex approach could make use of the level of
similarity, but this would make the combination depend on the
local sequences as well as the scores, adding signi®cantly to
complexity and compute time. It remains an option for future
exploration.

The probability of such a transition thus becomes dependent
on the value of the sequence signal scores and priors at the
given pair of sequence positions, and the corresponding
transition within the pairHMM is called special. In order to
retain the probabilistic interpretation of the transition prob-
abilities, we have to ensure that the sum of transition
probabilities emerging from each state at any pair of sequence
positions remains equal to one. Once the values of the special
transition probabilities emerging from one state have been
calculated, the remaining non-special transition probabilities
are rescaled by a common factor which ensures that the sum of
all transition probabilities emerging from that state add up to
one. The rescaling factor for a non-special transition from state
s¢ to state s¢¢ at sequence positions i in X and j in Y is:

ts0 �s00; i; j� � ts0 �s00��1ÿ
X

s;s0! special

ts0 �s; i; j��=

�
X

s;s0! non special

ts0 �s��

Hence Ss ts¢(s, i, j) = 1 for all possible triplets of state s¢,
sequence positions i in X and j in Y.

With the aid of special transition and special emission
probabilities, the recursion step within the Viterbi algorithm of
Projector can then be written as:

v(s, i, j) = maxs¢ {v(s¢, i ± Dx(s), j ± Dy(s))
t¢s¢(s, i ± Dx(s), j ± Dy(s)) e¢s(i, j)}

where t¢s¢(s, i ± Dx(s), j ± Dy(s)) and e¢s(i, j) correspond to the
non-special terms whenever a transition or emission is not
special. The baseline transition probabilities ts¢(s) and non-
special emission probabilities es(i, j) of Projector are the same
as for Doublescan. The time and memory requirements of the
Viterbi algorithm both scale with the product of the sequence
lengths LX and LY of the two input sequences X and Y. As for
Doublescan, we use Projector with the Stepping Stone
algorithm (11,23) which heuristically restricts the search
space by constraining the alignment to an envelope around a
set of mutually compatible BLAST matches. The Stepping
Stone algorithm implementation also employs the linear
memory implementation of the Viterbi algorithm due to
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Hirschberg (24) to reduce both time and memory requirements
to effectively linear behavior.

RESULTS

In order to investigate the advantages and disadvantages of our
new method, we compiled a set of pairs of homologous human
and mouse genes and used Projector to predict the human
genes using the mouse genes as constraints and vice versa. As
Projector is the ®rst program to predict genes from similar
gene structures, we had no directly equivalent program to
compare it to. We chose Genewise (Version 2.1.22c) for
comparison, as this is a program which is commonly used for
such tasks, for example, by the Ensembl project (25). We
compare the human and mouse genes predicted by Projector
using the known mouse and human genes, to the human and
mouse genes predicted by Genewise using the known mouse
and human protein sequences.

Data set

When compiling the data set, our aim was to establish a large
representative data set of similar mouse and human gene pairs
without compromising on the reliability of the annotation. We
thus selected homologous mouse and human gene pairs whose
proteins were mutual best matches within the two proteomes
and required that every human gene was fully supported by
human mRNA evidence and that every mouse gene was fully
supported by mouse mRNA evidence (26) (using Refseq of 10
February 2003 as the source of RNA evidence). As we aim to
test if mouse genes can be reliably predicted using human
genes instead of their protein products and vice versa, we
retained only those pairs whose protein coding part was
completely known (both gene structures had to include both
start and stop codons). Starting with 21 962 human and 14 160
mouse Ensembl transcripts with Refseq links, 8330 human and
5336 mouse transcripts were fully supported by mRNAs from
Refseq (exact matches). Clustering those transcripts into pairs
if the corresponding proteins are mutual best matches and
requiring both transcripts to include both start and stop codons
reduces the set to 491 transcript pairs, which constitute our test
set. There is no overlap between this test set and the set of 36
human and mouse gene pairs on which the parameters of the
model were trained (11).

The genes in our test set have on average 8.8 exons
(minimum 1, maximum 65) and the DNA sequences are on
average 25 355 base pairs (bp) long (minimum 2240 bp,
maximum 280 150 bp). For 44% of the gene pairs, the genes in
a pair have the same number of exons and the same coding
length. For 51% gene pairs, the genes in a pair have the same
number of exons, but a different coding length, and 5% of the
gene pairs consists of genes which are related by events of
exon fusion or exon splitting. These ®gures are comparable
with those given in the introduction for the whole genome,
except that there are only a third as many exon fusion or
splitting events as estimated by the Mouse Genome
Sequencing Consortium (2). However, given that the exon
number is typical of the genome, there is nothing about the
construction of this set that should select for maintenance of
exon number.

Performance

We compare the set of genes predicted by Projector (human
genes predicted using known mouse genes and mouse genes
predicted using known human genes) with the annotated
genes. Similarly, the genes predicted by Genewise (human
genes predicted using known mouse proteins and mouse genes
predicted using known human proteins) are compared with the
annotated genes.

As the aim of both programs is to predict genes correctly,
we report the performance of Projector and Genewise not only
at exon level, as is customary, but also at gene level and for
start and stop codons as this turns out to be crucial to fully
understand each method and their differences. We measure the
quality of the performance in terms of sensitivity and
speci®city. The sensitivity is the fraction of annotated features
which are accurately predicted and the speci®city is the
fraction of predicted features which exactly match an
annotated feature.

We report the performance as a function of the percent
identity of the two encoded proteins because this has a
signi®cant impact on performance. The expectation is that
pairs of genes whose encoded proteins have a low percent
identity are more dif®cult to predict than gene pairs whose
proteins are similar. The performance of Projector and
Genewise as a function of the percent identity is shown in
Figure 2.

Both gene sensitivity and speci®city show a strong
dependence on the percent identity for both programs.
Genewise outperforms Projector in sensitivity and speci®city
for well conserved genes (percent identity larger than 80±
90%), but shows a marked decrease in performance for less
similar genes. Projector's sensitivity and speci®city show a
weaker dependence on percent identity and both outperform
Genewise for percent identities below 80%. The genome-wide
distribution of percent identities between mouse and human
genes [see black entries of ®gure 19a in (2)] peaks at ~90%,
but the mean value is positioned at ~60% as the distribution
has a long tail towards low percent identities. The majority of
gene pairs is thus found in the range where Projector
outperforms Genewise. The extra information provided by
explicitly modeling the similarity of exon±intron structure
enhances Projector's performance particularly in the mid to
low percent identity range where protein similarity alone does
not provide enough guidance.

The behavior of the gene level performance can be
explained in more detail by analyzing the performance for
exons, start and stop codons. The sensitivity of Genewise for
detecting exons and stop codons shows a strong dependence
on similarity, whereas that of Projector is more uniform and
high even in the low similarity range, explaining the
differences in sensitivity at gene level. The difference in
speci®city at gene level is more dif®cult to explain and seems
to be mainly due to the small difference in exon speci®city.
Although it is smaller than the difference of the start codon
speci®city, it in¯uences the gene level performance much
more as there are multiple exons per gene (average 8.8).

Projector has an increased rate of wrong exons with respect
to Genewise (6% opposed to only 0.3%). Most of them (59%)
correspond to exons shorter than 30 bp whose length is a
multiple of three. They thus do not entail frame shifts within

Nucleic Acids Research, 2004, Vol. 32, No. 2 779



Figure 2. Performance of Genewise (gray) and Projector (black) as a function of the percent identity between the two protein sequences encoded in each pair
of related genes. For each of the protein percent identity intervals (0, 0.6, 0.7, 0.8, 0.9, 1), the data point is drawn at the average percent identity of the protein
pairs contained in that interval (the numbers of genes in the intervals are 32, 48, 126, 304 and 472, respectively). The errors indicate the statistical error of the
performance value and correspond to one standard deviation. Please refer to the text (Results, section Performance) for the de®nition of sensitivity and
speci®city.
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the amino acid sequence, but only the insertion of few extra
amino acids which are similar to an exonic part of the gene
which was used as constraint. One possible explanation for
this behavior is that predicting an extra intron and extra exon is
more favorable in these cases than modeling dissimilar ends of
exons using the match exon state. These wrong exons could be
removed in a post-processing step which would leave the
sensitivity for exons (94%) unchanged while increasing the
speci®city from 89 to 92% and reducing the rate of wrong
exons from 6 to 3%.

In order to further study the performance of Projector we
divided the test set into two subsets and evaluate the
performance as a function of the protein percent identity
(Fig. 3). Set 1 consists of 465 pairs of genes whose number of
exons is the same and set 2 of the remaining 26 gene pairs
whose number of exons is different and whose genes are
therefore related by events of exon-fusion and exon-splitting.
The gene sensitivity and speci®city ®gures are relatively poor
for genes with different numbers of exons. Of 33 exon-fusion
and exon-splitting events, the exons involved in 13 of 33
events were predicted correctly and those of a further seven
splitting events at least overlapped the annotated exons.
However, Projector's aggregate performance for start codons,
stop codons and exons is about the same for both sets. There
are two other factors that might in¯uence these results: First,
the genes in set 2 have on average four more exons per gene
(12.7 opposed to the average value of 8.8 in the entire test set)
and are also signi®cantly longer (41 263 bp opposed to the
average value of 25 355 bp in the entire test set), i.e. they are
generally more challenging to predict. Second, the parameters
of the underlying pairHMM were trained on a rather small
training set of 36 gene pairs (1) which comprised only one
gene pair which was related by exon-fusion and exon-splitting.

Projector and Genewise seem to complement each other
well as Genewise seems to be particularly well suited for very
well conserved gene pairs and Projector for less well
conserved pairs. It is possible that the relatively lower
performance of Projector in the high percent identity range
is due to the lower average percent identity of its training set
and that a special version of Projector for the high similarity
range could be compiled by training with a dedicated set of
very well conserved genes pairs.

DISCUSSION

Gene identi®cation is still a dif®cult problem, as is recognized
by the continuing uncertainty about the number of protein
coding genes in vertebrate genomes. Although many gene
prediction methods can be used across the whole genome, all
recently published large genomes (1±4), have used a compos-
ite approach to identify genes such as that used by Ensembl
(25), which combines different computational approaches
depending on what evidence is available. Our aim in this work
was to develop an improved method for a class of genes that
currently are not completely correctly identi®ed, using a type
of data which is increasing in availability. In particular, we
expect there will be genome sequences for organisms that do
not have extensive mRNA or EST coverage, but that are
related to well annotated genomes such as mouse and man
with very large targeted cDNA resources and so many veri®ed
gene structures.

With more and more genomes being sequenced and
analyzed, it becomes increasingly likely for a gene to have a
known partner that has been experimentally validated in a
related genome, and similarity based methods which explore
this feature will become increasingly important. The method
presented here ®lls an existing gap by directly using known
gene structures rather than protein sequences to predict related
genes. As opposed to existing protein based similarity
methods which a priori do not know if and where introns
are inserted into the protein sequence, Projector not only
exploits the similarity of the two related genes at the protein
level, but also explicitly models the similarity of their exon±
intron structures, which are well conserved in evolution.
Indeed the FINEX program (27) uses the exon±intron
structure of proteins to search for similarity, as we are using
it in gene ®nding. Previously Guigo et al. had incorporated
some information on gene structure conservation in a post-
processing step after gene prediction that required that at least
one intron boundary was conserved (28).

Results on a representative test data set from the mouse and
human genomes show that Projector signi®cantly outperforms
the widely used protein based gene prediction method
Genewise both in terms of sensitivity and speci®city in the
percent identity range below 80% where the majority of gene
pairs are found. Given the extra information our new method
is using, it is not surprising that Projector outperforms
programs like Doublescan, Pro-Gen, SLAM, CEM and
Twinscan, which only have access to comparative genome
sequence, not gene structures. For example, exon sensitivities
are typically in the 0.7±0.8 range for these methods (though of
course test sets vary), whereas they are ~0.9 for Projector.
However, of course, Projector can only predict a gene where
there is an annotated one in the other sequence. The explicit
modeling of gene structures should also enable Projector to
avoid the mapping of known cDNA sequences to processed
pseudogenes as the difference in gene structures should be
heavily penalized. However, pseudogenes containing introns
will still generate problems; we believe that these are best
handled by dedicated methods for identifying pseudogenes.

There are several potentially interesting extensions to
Projector. First, the underlying pairHMM could be extended
to model full gene structures comprising also the untranslated
exons. One could thereby also predict and study the similarity
within the untranslated regions of genes which is something
that current programs do not address. Secondly, one could try
to predict conserved splice variants using the current version
of Projector or a version that was carefully retrained on a
larger training set. Given two splice variants of one human
gene one could try and predict the corresponding two splice
variants of the mouse gene, for example.

This article presents a new gene prediction method, but does
not aim to propose an annotation pipeline for entire genomes.
A newly sequenced genome could be prepared for an analysis
with Projector by ®rst mapping the known genes of one or
more related genomes to their approximate locations within
the new genome using basic alignment tools like the BLAST
family of programs. The pairs of corresponding genome
sections in which the main similarities occur in colinearity
could then be used as input to Projector, which would predict
the genes in the sequence of interest according to the known
genes of the corresponding related sequence. As Projector
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Figure 3. Performance of Projector as a function of the percent identity for those pairs of genes whose number of exons is the same (set 1, 465 gene pairs,
black) as well as for those whose number of exons is different (set 2, 26 gene pairs, gray). The intervals are the same as in Figure 2, namely 0, 0.6, 0.7, 0.8,
0.9, 1. Again, the data point is drawn at the average percent identity of the protein pairs contained in that interval (the numbers of genes in the intervals are
30, 48,122, 284, 446 for set 1 and 2, 0, 4, 20, 26 for set 2). The errors indicate the statistical error of the performance value and correspond to one standard
deviation. Please refer to the text (Results, section Performance) for the de®nition of sensitivity and speci®city.
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does not require pre-aligned sequences as input and as it is
capable of modeling sequences with multiple and partial
genes, the selected subsequences do not have to comprise
entire genes. An additional bene®t of Projector compared with
the existing protein based gene prediction methods is that it
simultaneously predicts an alignment between the two
sequences. Conserved subsequences within the non-coding
regions are thus directly predicted in their gene context and
can be further investigated, for example, to explore if
conserved intergenic or intron sections correspond to inter-
esting novel functional elements.

A web-server of Projector is available at www.sanger.ac.uk/
Software/analysis/projector, where also the test set of known
mouse and human genes as well as the set of genes predicted
by Projector and Genewise can be obtained.
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