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Abstract
N-linked glycoproteins play important roles in biological processes, including cell-to-cell
recognition, growth, differentiation, and programmed cell death. Specific N-linked glycoprotein
changes are associated with disease progression and identification of these N-linked glycoproteins
has potential for use in disease diagnosis, prognosis, and prediction of treatments. In this review,
we summarize common strategies for N-linked glycoprotein characterization and applications of
these strategies to identification of glycoprotein changes associated with disease states. We also
review the N-linked glycoproteins altered in diseases such as breast cancer, lung cancer, and
prostate cancer. Although assays for these glycoproteins have potential clinical utility, research is
needed to translate these glycoproteins to clinical biomarkers.
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1 Introduction
Protein glycosylation is one of the most common modifications made to proteins [1].
Glycans can be attached to proteins either via an amide group (N-linked glycosylation) or a
hydroxyl group (O-linked glycosylation). N- and O-linked glycosylations are distinct protein
modifications; they occur through different biosynthetic pathways, and potentially have
independent functions [2]. N-linked glycosylation plays fundamental roles in many
biological processes such as cell adhesion, cell migration, and signal transduction [3].
Abnormal expression of N-linked glycoproteins has been observed in various diseases, and
previous studies have shown that glycoprotein changes can be used as biomarkers for
disease diagnosis [4, 5]. The majority of the biomarkers used in diagnosis, prognosis, and
prediction are N-linked glycosylated proteins [6]. Examples include carbohydrate antigen
CA-19–9 used for diagnosis of colon cancer [7], prostate-specific antigen (PSA) for prostate
cancer [8], α-fetoprotein for liver cancer [9], and β-human chorionic gonadotropin for germ
cell tumors [10]. In addition, since N-linked glycoproteins are most membrane-bound
proteins or extracellular proteins [11], they are accessible for therapeutic purposes, such as
Her2 receptor for breast cancer therapy [12].

For in-depth characterization of N-linked glycoproteins to identify disease-associated
glycoprotein changes, glycoproteins must be efficiently separated from other cellular
components before further characterization. Several methodologies have been developed to
achieve this.
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2 Methodologies used to identify N-linked glycoproteins associated with
disease
2.1 Lectin-affinity chromatography

Glycoproteins or glycopeptides can be affinity isolated with an immobilized glycan-binding
protein such as lectin [13]. Certain lectins possess affinity for particular oligosaccharide
moieties, and thus various lectins bind to different structures of glycans on glycoconjugates
[14–16]. Various lectins have been used in glycoprotein isolation: examples include Con A
for high mannose type N-glycans, Lens culinaris agglutinin for core-fucosylated N-glycans,
Sambucus nigra for sialylated N-glycans (Table 1). Although lectins do not possess absolute
specificity, subtle differences in glycoprotein profiles can be detected [17]. Advantages of
this selection approach are reversible binding, multiple affinity selectors [18], and
retrievability of glycans for characterization and quantification [19]. For instance, isotopic
glycosidase elution, labeling on lectin-column chromatography, and iTRAQ 8-plex isobaric
tags have been used to identify and quantify N-glycosylation sites in lung cancer sera [20].

2.2 Hydrazide chemistry
Zhang et al. reported a method for selective isolation, identification, and quantification of N-
linked glycoproteins via hydrazide chemistry [21]. This method involves the conjugation of
glycoproteins or glycopeptides to a solid support after oxidization of the carbohydrates on
the glycoproteins/glycopeptides and specific release of formerly N-linked glycopeptides by
peptide-N-glycosidase F [21]. This method has been applied to the identification of
glycoprotein changes associated with different histological subtypes of ovarian cancer [22],
aggressive prostate cancer [23], lung cancer [24], and skin cancer [25].

The hydrazide chemistry methods can be modified to analyze cell-surface glycoproteins
[26,27], sialylation-specific glycopeptides [28,29], and glycopeptides containing glycans
[30]. Rather than using N-linked glycopeptides for quantification, Chen et al. quantified
nonglycosylated peptides derived from the glycoproteins immobilized on hydrazide beads
and identified glycoproteins associated with hepatocellular carcinoma (HCC) [31].

2.3 Boronic acid
Affinity ligands based on boronic acid derivatives have been used to capture carbohydrates,
nucleosides, glycolipids, RNA, and glycoproteins [32, 33]. The principle of boronate-
affinity chromatography is that boronic acids can form covalent ester bonds with cis-diols
under basic conditions so that glycopeptides can be separated from other molecules [34, 35].
The boronate ester bond can be reversibly hydrolyzed under neutral or acidic conditions.
Suksrichavalit et al. reported synthesis of a “clickable” boronic acid ligand by introduction
of a terminal acetylene group into commercially available 3-aminophenyl boronic acid [36].
Compared to other boronic acid methods, the new clickable boronic acid approach showed
superior effectiveness in separating model glycoproteins (ovalbumin and RNase B) from
BSA and RNase A in the presence of crude E. coli proteins.

2.4. Metabolic incorporation of sugar analogs for glycoprotein isolation
Metabolic oligosaccharide engineering is an emerging strategy for glycoprotein profiling.
Synthetic monosaccharides containing azide [37–40], ketone [41], and thiol [42] functional
groups have been metabolically incorporated onto glycoproteins in cells and living
organisms, thereby arming them for covalent reaction with affinity probes. Azido
monosaccharides are useful analogs due to the small size of the azide, absence in biological
systems, and orthogonality to cellular functional groups [43]. Azide-labeled glycoproteins
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can be detected through the reaction with phosphines using Staudinger ligation [44] or
alkynes using click chemistry [45,46].

Yang et al. used metabolic oligosaccharide engineering to identify metastasis-associated
cell-surface sialoglycoproteins in prostate cancer via the metabolic incorporation of
AC4ManNAz [47]. The experimental workflow of this study is illustrated in Fig. 1 [47].
First, metabolic labeling of non-metastatic and highly metastatic prostate cancer cell lines
was conducted using an azide-containing mannose analog. Second, the azide-labeled
glycoproteins were chemoselectively conjugated to biotinylated alkyne. Third, the
biotinylated proteins were enriched by streptavidin capture. Finally, the enriched proteins
were separated by 1D gel electrophoresis, digested to peptides, and identified by LC-MS/
MS. Using this method, a number of glycoproteins are identified with overexpression in
highly metastatic prostate cancer cell lines. Bertozzi et al. successfully profiled the cell-
surface glycoproteins in a prostate cancer cell line (PC-3 cells) and primary human prostate
cancer tissue treated with peracetylated N-azidoacetylgalactosamine [48]. Over 70 cell-
surface glycoproteins were identified, and CD146 and integrin β-4 were biochemically
validated in this study.

2.5 Other methods
Other methodologies have also been used to analyze glycoproteins. SEC can be used to
isolate glycopeptides as glycopeptides have increased mass compared to nonglycopeptides
[49]. Hydrophilic interaction LC followed by partial deglycosylation [50] and an online
combination of RP/RP and porous graphitic carbon LC [51] are chromatographic methods
for glycoprotein isolation. An innovative fluorescence-based multiplexed proteomics
technology was also reported for identification and differential analysis of both
glycosylation patterns and protein expression levels in a single experiment using gel
electrophoresis and serial staining with Pro-Q Emerald 488 glycoprotein stain and SYPRO
Ruby protein stain for glycosylation and protein, respectively [52].

3 Disease-associated N-linked glycoproteins identified by glycoproteomics
A number of N-linked glycoprotein changes have been identified of association with
different diseases using glycoproteomic approaches (Table 2). Studies have focused on
common cancers including lung cancer, HCC, skin cancer, prostate cancer, ovarian cancer,
and breast cancer. The cancer-associated glycoproteins were identified by different
methodologies including lectin-affinity chromatography, hydrazide chemistry, and
metabolic labeling. Many of these cancer-associated glycoproteins are extracellular proteins,
such as cathepsin-L, tenascin-C, and versican [53].

Interestingly, abnormal expressions of certain glycoproteins are associated with more than
one type of cancer. For example, elevated alpha-1-antichymotrypsin is associated with both
nonsmall cell lung carcinoma and HCC. Upregulated galectin-3-binding protein (Gal3BP or
Mac-2 BP) is associated with both HCC and ovarian cancer, whereas downregulated
expression of insulin-like growth factor binding protein 3 is associated with both HCC and
nonsmall cell lung carcinoma. Elevated periostin levels are associated with both aggressive
prostate cancer and ovarian cancer, and elevations of versican level are associated with both
breast cancer [28] and ovarian cancer [54]. Most of these proteins are extracellular matrix
(ECM) proteins or interact with ECM proteins. Galectin-3 binding protein is involved in
tumor cell adhesion to the ECM [55] and can enhance extracellular level of protease in
HT-29 cells [56]. Periostin is an important ECM protein involved in development and
adhesion [57]. Periostin interacts with many other ECM proteins, such as fibronectin,
collagen V, and tenascin-C [58, 59]. Epithelialmesenchymal transition (EMT), a process of
morphologic transdifferentiation, is one of the critical steps of tumor metastasis [60–62].
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EMT of cancer cells can enhance invasion into the surrounding desmoplastic stroma [63].
Periostin is recently reported as a member of the EMT program and periostin expression was
found to correlate closest with progression variables in nonsmall cell lung cancer [63]. The
opposite mechanism, mesenchymal-epithelial transition (MET), has been recently reported
for the ECM protein versican in vitro [63]. Versican may play a critical role in intercellular
signaling, connecting cellular reaction with the ECM and regulation of cell motility, growth,
and differentiation [64]. Versican, as a putative indicator of MET, did not behave conversely
to EMT proteins. Instead, versican behaved concordant to periostin in both stroma and
epithelia of nonsmall cell lung cancer [63]. Although, the function and the subcellular
compartment of the epithelial protein remain unclear, expression alteration of EMT-MET
proteins has been documented in both desmolastic stroma and carcinoma cells [65,66].

Changes of many glycoproteins have been identified in multiple cancer types. The question
is raised whether protein changes are a general biophysical effect of cancer or whether they
are specific to certain cancer types. PSA is the current screening marker for prostate cancer;
however, PSA is organ specific but not disease specific [67]. Development of cancer does
not actually result in higher levels of PSA while the enlarged glands in men with benign
prostatic hyperplasia secrete more PSA. The prostate gland leaks PSA into the bloodstream
resulting in a higher blood level of PSA in men with prostatic hyperplasia and in those with
cancer. Therefore, considering the size of prostate and adjusting for the value of PSA
improves the accuracy of PSA as a prostate cancer biomarker [68]. Most disease-associated
glycoproteins may not be organ specific like PSA, but might be cancer specific. For specific
cancer diagnosis, cancer-specific glycoproteins can be combined with other markers and
additional medical approaches to increase the accuracy of tests.

4 Quantification of glycosylated isoforms may improve biomarker
performance

It is worthwhile to note that particular glycosylation forms of a glycoprotein are associated
with particular cancers (Table 2). Advances in proteomic technologies have stimulated a
great interest not only in glycoprotein identification, but also in comprehensive analysis of
glycosylation of each glycoprotein. These studies have revealed that specific glycoforms of
a glycoprotein may be associated with diseases. For example, fucosylated GP73 is
overexpressed in HCC [69], and fucosylated haptoglobin is associated with lung cancer [70].
Differential glycosylation of complex glycans in membrane-bound and/or extracellular
glycoproteins have clinical relevance [71–73]. Using antibodies against glycoproteins and
glycans, Lim et al. found that serum levels of certain glycoforms of soluble CD44v
increased in particular cancers [74]. They used polyclonal anti-CD44v antibody as an
immobilized capture antibody and antiglycosylation antibodies as detection antibodies. Sera
from patients with cancers had significantly higher levels of soluble CD44v molecules
carrying cancer-associated glycotopes—sialy Lewis x and sialy Lewis a—compared to
normal individuals, whereas the levels of CD44v molecules carrying nonmalignant
glycotopes—sialyl 6-sulfo Lewis x and disialyl Lewis a—were higher in the sera of patients
with benign diseases than those in patients with cancers.

Lectin immunosorbent assay was used to analyze the different glycosylation patterns of
serum PSA and PSA from prostate cancer tissue [75,76]. In these studies, PSA was first
captured with a PSA monoclonal antibody and then detected by a biotinylated lectin.
Recently, our group performed simultaneous analysis of total, glycosylated, and sialylated
PSA from prostate cancer and noncancerous tissues [77]. Selected reaction monitoring
(SRM) was used to quantify total glycopeptides from PSA and sialylated PSA glycopeptide
isolated from prostate cancer and noncancerous tissues. The abundance of glycosylated PSA
and sialylated PSA was different relative to total PSA in prostate cancer and noncancerous
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tissues. These data showed that analysis of glycosylated PSA may improve the cancer
specificity of this biomarker. Other reports have shown that specific glycoforms are
associated with diseases [70, 78] and suggest that the quantification of different glycosylated
isoforms of glycoproteins may provide unique information with clinical relevance.

5 Future directions
It is challenging to identify protein markers for disease diagnosis. With implementation of
glycoproteomic methods, however, great progress has been made in identification of
glycoproteins associated with various diseases. To increase the accuracy of diagnosis and
predication of prognosis, associations of specific glycoforms with particular diseases will
need to be determined. Use of a panel of proteins and glycoforms as well as other medical
approaches may be combined to enhance accuracy. To identify particular cancer-specific
proteins, organ-specific proteins may be identified and monitored in diseased tissues and
body fluids [79]. Compared to global proteomics, glycoproteomics provide advantages of
organ specificity and a focus on a subproteome to reduce sample complexity [80]. Organ-
specific glycoproteins like PSA are potentially useful in disease diagnosis and should be
explored as drug targets as the limited organ access will reduce the risk of side effects.
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Figure 1.
Experimental workflow of analysis of cell-surface sialoglycoproteins using click chemistry.
(1) Metabolic labeling of cells with peracetylated azidomannose (AC4ManNAz). (2)
Chemoselective conjugation of azido sugars with a biotinylated alkyne capture reagent via
Cu (I)-catalyzed click chemistry. (3) Lysis of labeled cells. (4) Affinity purification using
streptavidin (SAv) resins. (5) Elution of captured sialoglycoproteins. (6) SDS-PAGE
separation of sialoglycoproteins. (7) Isolation of gel slices and subsequent digestion and
release of peptides. (8) Analysis of peptides by LC-MS/MS. (9) Bioinformatic analysis.
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Table 1

Specificity of selected lectins used to capture specific glycoproteins

Name/abbreviation Origin Binding preference
a)

LCA Lens culinaris Fuca1-6GlcNAc and a-Man, a-Glc

PSA Pisum sativum 1,6-Fucosylation of the trimannosyl cor e and a-Man

AAL Aleuria aurantia Fuc al,6-GlcNAc4Fuc al3/l,4-GlcNAc, Fuc al,2-Gal

AAA Anguilla anguilla Fuc linked to the GlcNAc

LTA Lotus tetragonolobus Fuc a1,3/1,4-GlcNAc, Fuc a1,2-Gal, Lex

Con A Concanavalin Two nonsubstituted or C2-substituted a-mannopyranosyl residues in one molecule

Man unsubstituted a t C3, C4, C6

RCA Ricinus communis Terminal Galb1,4GlcNAc, Gal

WGA Wheat germ Bisected hybrid type sugar chains, terminal a-GlcNAc or chitobiose, glycoprotein with
clustered NeuAc

SNA Sambucus nigra NeuAc(a-2,6)Gal(b-1,4)GlcNAc4(a-2,3)NeuAc, no interaction with terminal b-Gal, b-GalNAc
or NeuAc-GalNAc

MAL Maackia amurensis NeuAc a23Gal bl,4GlcNAc

a)
Fuc, fucose; Glc, glucose; Man, mannose.
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Table 2

Disease-associated glycoproteins identified by glycoproteomics

Protein name Alternation Diseases Reference Method used

Alpha-1-antichymotrypsin (ACT) Upregulated Nonsmall cell lung cancer (NSCLC) [24] Hydrazide chemistry

Alpha-1-antichymotrypsin (ACT) Upregulated Hepatocellular carcinoma (HCC) [81] Hydrazide chemistry

Alpha-1-antitrypsin, 40 kDa variant Upregulated HIV [82] 2DE analysis

Arylsulfatase B Upregulated Skin cancer [25] Hydrazide chemistry

Cathepsin L Upregulated Aggressive prostate cancer [53] Hydrazide chemistry

CEA5 Upregulated Mucinous ovarian carcinoma [54] Hydrazide chemistry

CEA6 Upregulated Mucinous ovarian carcinoma [54] Hydrazide chemistry

CUB domain containing protein 1 Upregulated Metastatasic prostate cancer [47] Metabolic labeling

ER-associated DNAJ (ERdj3) Upregulated Paclitaxel-resistant oviarian cancer
cells

[83] Fluorescence-based
multiplexed proteomics
and multilectin affinity
chromatography

Fucosylated GP73 Upregulated Hepatocellular carcinoma (HCC) [69] Lectin

Fucosylated Haptoglobin Upregulated Lung cancer [70] 2DE analysis

Galectin-3-binding protein (Gal3BP)
(Mac-2 BP, S90K)

Upregulated Most ovarian cancer subtypes [54] Hydrazide chemistry

Galectin-3-binding protein (Gal3BP)
(Mac-2 BP, S90K)

Upregulated Hepatocellular carcinoma (HCC) [31] Hydrazide chemistry

Insulin-like growth factor binding
protein 3 (IGFBP-3)

Downregulated Hepatocellular carcinoma (HCC) [31] Hydrazide chemistry

Insulin-like growth factor binding
protein 3 (IGFBP-3)

Downregulated Nonsmall cell lung cancer (NSCLC) [24] Hydrazide chemistry

Mesothelin Upregulated High-grade serous, low-grade serous,
and transitional-cell ovarian
carcinoma

[54] Hydrazide chemistry

Metalloproteinase inhibitor 1 (TIMP1),
glycosylated form

Upregulated Lung cancer [84] Lectin

Microfibrillar-associated protein 4 Upregulated Aggressive prostate cancer [53] Hydrazide chemistry

Palmitoyl-protein thioesterase 1 (PPT1) Upregulated Paclitaxel-resistant ovarian cancer
cells

[83] Fluorescence-based
multiplexed proteomics
and multilectin affinity
chromatography

Periostin Upregulated Aggressive prostate cancer [53] Hydrazide chemistry

Periostin Upregulated Most ovarian cancer subtypes [54] Hydrazide chemistry

Prohibitin 1 (PHB) Upregulated Liver cancer [85] Lectin

Prostaglandin D synthase (lipocalin-
type) (L-PGDS)

Downregulated Nonsmall cell lung cancer (NSCLC) [24] Hydrazide chemistry

Tenascin-C Upregulated Skin cancer [25] Hydrazide chemistry

Thrombospondin 1 (TSP-1) Downregulated Hepatocellular carcinoma (HCC) [31] Hydrazide chemistry

Triose phosphate isomerase (TPI) Upregulated Paclitaxel-resistant oviarian cancer
cells

[83] Fluorescence-based
multiplexed proteomics
and multilectin affinity
chromatography

Tumor rejection anatigen (gp96) Upregulated Paclitaxel resistant oviarian cancer
cells

[83] Fluorescence-based
multiplexed proteomics
and multilectin affinity
chromatography

Versican Upregulated Breast cancer [28] Hydrazide chemistry
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Protein name Alternation Diseases Reference Method used

Versican Upregulated Most ovarian cancer subtypes [54] Hydrazide chemistry
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