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Abstract
This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting
poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative
connection between pole-zero locations and the underlying physical properties of CAR data. Most
previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected
power, it does not encode latency information. Thus, an analysis that studies the real and
imaginary parts of the data together could be more powerful. Pole-zero fitting of CAR data is
examined using data compiled from various studies, dating back to Voss and Allen (1994). Recent
CAR measurements were taken using a middle ear acoustic power analyzer (MEPA) system
(HearID, Mimosa Acoustics), which makes complex acoustic impedance and reflectance
measurements in the ear canal over the 0.2 to 6.0 kHz frequency range. Pole-zero fits to
measurements over this range are achieved with an average RMS relative error of less than 3%
using 12 poles. Factoring the reflectance fit into its all-pass and minimum-phase components
approximates the effect of the ear canal, allowing for comparison across measurements. It was
found that individual CAR magnitude variations for normal middle ears in the 1 to 4 kHz range
often give rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the
s-plane may differ between normal and pathological middle ears. This study establishes a
methodology for examining the physical and mathematical properties of CAR using a concise
parametric model. Pole-zero modeling shows promise for precise parameterization of CAR data
and for identification of middle ear pathologies.
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1. Introduction
1.1. Background

Acoustic reflectance measurements and their clinical applications have been the subject of
many recent studies. These studies have shown that power reflectance, the magnitude
squared of the complex acoustic reflectance1 (CAR), shows distinct and often systematic
variations between pathological and normal middle ears (e.g. Feeney et al., 2003; Allen et
al., 2005; Hunter et al., 2010). Studies by Voss et al. (2012) and Nakajima et al. (2012) have
investigated the efficacy of reflectance measurements for differential diagnosis of middle ear

3MSE: mean squared error
1CAR: complex acoustic reflectance
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pathology. Laser doppler vibrometry is the current standard for presurgical differentiation
between ossicular fixation, ossicular discontinuity, and third window disorders (Rosowski et
al., 2003, 2008). Nakajima et al. concluded that power reflectance performed as well as laser
doppler vibrometry, both in combination with audiometry. This is a valuable result, because
CAR measurements can be performed using the United States Food and Drug Adminstration
(FDA) approved HearID system (Mimsosa Acoustics), which costs an order of magnitude
less than the laser Doppler vibrometer (≈ 10, 000 vs. 100, 000 USD) and requires less
training to operate (Nakajima et al., 2012). Voss et al. systematically manipulated cadaver
ears to isolate the effects of various pathologies in differing degrees of severity, and studied
the CAR response. They also concluded that power reflectance may be a strong supplement
to audiometry for the diagnosis of certain pathologies.

CAR and impedance are measured at ambient pressure by a probe conétaining a calibrated
microphone and receiver, sealed in the ear canal. The probe is calibrated using a multi-
cavity least squares procedure (Allen, 1986) to find the acoustic Thévenin equivalent
parameters of the source. A stimulus is emitted by the probe and the complex cavity
pressure response is measured. From the calibration pressure responses, the acoustic
impedance, reflectance, and related quantities (admittance, power reflectance, etc.) may be
calculated. The CAR Γ(f) is equal to the ratio of the reflected to incident wave pressure at
the microphone, located in the ear canal, as a function of frequency. The magnitude squared
of the reflectance |Γ(f)|2 represents the relative acoustic power reflected back to the ear canal
from the middle and inner ears. The power reflectance is related to conductive hearing
functionality and is therefore relevant to clinical assessment of the middle ear. The complex
acoustic impedance Z(ω) and reflectance Γ(ω) as functions of frequency (ω = 2πf) are
related by

(1)

where r0 = ρc/A is the surge resistance, ρ is the density of air, c is the speed of sound, and A
is the area of the ear canal.

The clinical utility of CAR depends on its capacity to discern normal from pathological
results, thus requires a method for comparison of the measurements across ears. Direct
comparison of CAR is complicated because the probe insertion depth L varies across
subjects. This variation has a large effect on the reflectance phase and the complex acoustic
impedance. The ear canal is frequently modeled as a rigid-walled tube of uniform area and
distance L between the probe tip and the tympanic membrane2 (TM). Under this
assumption, the relationship between the CAR at the probe and at the TM becomes

(2)

In many cases this is not a realistic model, particularly because of variation in the ear canal
area A(x) with distance x (Farmer-Fedor and Rabbitt, 2002). However, consideration of the
CAR magnitude (or the power reflectance |Γ(ω)|2) is highly effective, because when the
approximation in Eq. 2 can be made,

(3)

2TM: tympanic membrane
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Eliminating the variation due to insertion depth by using the CAR magnitude or power
reflectance allows for comparison across measurements. The relationship in Eq. 3 was
experimentally verified by Voss et al. (2008).

Variation due to the ear canal confounds phase information associated with the eardrum and
ossicles, but taking the magnitude of the CAR eliminates all relevant phase information. An
analysis of the complex data could be more powerful and generalizable if the canal effect
can be accounted for in a rigorous manner, without eliminating all phase data. This study
seeks to develop a method for concise parametric characterization of CAR measurements,
with the ultimate goal of improving and automating differential diagnosis of middle ear
pathology. This is accomplished by fitting poles and zeros to the complex data.

1.2. Pole-Zero Fitting
Poles and zeros may be expressed in terms of a rational polynomial fraction, as the roots of
the denominator and numerator, respectively. Such a function will have the form

(4)

where s is the complex frequency variable (s = σ + jω), ai and bi are the polynomial
coefficients, Np is the number of poles, Nz is the number of zeros, pn are the poles, and zm
are the zeros. Poles and zeros are a familiar concept as related to impedance, but considering
Eq. 1 we see that the reflectance may also have poles and zeros via a simple algebraic
transformation.

An example CAR measurement and preview fit is displayed in Fig. 1. This is a normal ear,
subject #7 of Voss and Allen (1994). The fit is performed on reflectance domain data, and
achieves an RMS relative error of 2.5%. Magnitude vs. frequency (Figs. 1a, 1b), and phase
vs. frequency (Figs. 1c, 1d) are shown for both the reflectance and impedance. Effects of the
ear canal are particularly noticeable in the magnitude impedance and reflectance phase
graphs (the magnitude impedance is dominated by the canal standing wave, and the
reflectance phase is nearly linear).

Figure 2 shows the poles and zeros that produce the fit shown in Fig. 1. The Z-domain poles
have been calculated from the fitted Γ-domain poles via Eq. 1. It is very important to note
that the pole-zero plots of Γ(s) (Fig. 2a) and Z(s) (Fig. 2b) are shown only via the fourth
quadrant of the complex plane. All poles and zeros with non-zero ℑ[s] components have
complex conjugates in quadrant three, not shown. Pink poles and zeros are actually located
in the positive real s-plane, but have been inverted over the jω axis so that pole-zero
locations may be more easily viewed using a log ℜ[s] axis. Thus these plots, though limited
to one quadrant, completely describe the set of poles and zeros for a given fit. It was found
that this procedure greatly aids the viewing of these pole zero plots.

Considering the magnitude reflectance, we see that the fine structure minima and maxima in
the mid-frequency range is fit by a group of three pole-zero pairs with ℑ[s] values in that
range. Considering the pole-zero plot of the impedance Z(s), note the solitary pole on the
real axis close to the origin (σ = −23 Hz), as characterized by a stiffness at low frequencies.
The ℜ[s] component of a pole or zero is determined by damping in the middle ear system.
Poles and zeros with smaller damping have a larger effect on the response. Thus, this pole
has a stronger effect than the other zeros and poles on the real axis. Using these pole-zero
fits, we ultimately hope to be able to better model the physics of the CAR and impedance
measurements.
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It is important to note that pole-zero fitting of CAR data cannot be accomplished by
autoregressive moving-average (ARMA) modeling because the time domain signal Γ(t) =
ℱ−1{Γ(ω)} (where ℱ−1 denotes the inverse Fourier transform) is not available. CAR is
measured as a function of frequency, and measurement noise below 100 or 200 Hz typically
prevents the accurate calculation of an inverse FFT. Instead, a method developed by
Gustavsen and Semlyen (1999) is used to fit CAR data directly in the frequency domain.
This procedure finds a rational approximation of the data as a function of complex
frequency, using a vector fitting method. Such pole-zero fits capture magnitude and phase
characteristics of the CAR measurements with a small set of parameters, and with a low
RMS relative error. This procedure is desribed next, along with our results and their
diagnostic implications.

2. Methods
The CAR data sets examined in this paper were compiled from previous studies. A
population of normal ears was drawn from Voss and Allen (1994) and Rosowski et al.
(2012). Fourteen CAR measurements of ten ears (4 retest measurements) were collected in
vivo up to 15 kHz by Voss and Allen (1994), using a measurement system described in their
paper. Fifty-eight CAR measurements (and 58 retest measurements) were collected in vivo
over a frequency range of 0.2 to 6 kHz, using the Mimosa Acoustics HearID system
(Rosowski et al., 2012). These 58 “strictly normal” ears were required to meet specific
audiometric criteria in order to be included in the study.

Pathological CAR data were drawn from Voss et al. (2012) and Nakajima et al. (2012). The
Voss et al. (2012) CAR measurements were collected from cadaver preparations, which
were manipulated to simulate static pressure disorders in the ME cavity (positive and
negative), middle ear fluid, fixed stapes, disarticulated incudo-stapedial joints, as well as
TM perfora tions. The cadaver ears were also measured in their normal (no simulated
pathology) state. The Nakajima et al. (2012) CAR measurements were collected in vivo
from patients with confirmed stapes fixation due to otosclerosis, ossicular discontinuity, and
superior semicircular canal dehiscence. These data were also collected using the Mimosa
HearID (FDA approved) system.

2.1. Fitting Procedure
Rational approximations to the CAR data as a function of frequency (ω = 2πf) were
calculated using a vector fitting procedure developed by Gustavsen and Semylen (1999).
This procedure is reproduced here for the reader’s benefit. F̂(s), where s = σ + jω is the
complex frequency variable, will be used to denote the complex frequency domain fit, and
F(ω) will be used to denote the frequency domain data. It is important to note that the data is
only available as a function of ω, thus the data is related to the fitted function by F(ω) ≈ F̂
(s)|s=jω. When F̂(s) is evaluated along the jω axis of the complex s-plane, it parametrically
approximates the observed data. Because the middle ear is not a lossless system, the poles
and zeros of the fit are typically located off the jω axis (have non-zero σ); thus F̂(s)|s=jω
typically has minima and maxima instead of zero and infinite values.

The data is fit to a residue expansion of the form

(5)

Constants D and E are real quantities, while the constant poles and residues, Ai and Ci, are
either real or occur in complex conjugate pairs. Note that if E is nonzero, the numerator
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order (Nz) will be one greater than the denominator order (Nz = Np + 1). Similarly, if E is
zero the numerator and denominator orders are equal (Nz = Np), and if both D and E are zero
the numerator order is one less than the denominator order (Nz = Np − 1). Equation 5 is
nonlinear in its unknowns, because the unknown poles Ai appear in the denominator.

The vector fitting procedure is a two step process, which converts a nonlinear least squares
problem to a linear least squares problem by introducing an unknown scaling function with
known poles. This procedure is described at length in appendix Appendix A. It is possible to
fit poles and zeros not only to the complex reflectance Γ(ω), but also to the impedance Z(ω)
and the admittance Y (ω) = 1/Z(ω). The poles and zeros of each fit may then be transformed
between domains using Eq. 1. For example, one may estimate the poles and zeros in the
impedance domain based on a fit performed in the reflectance domain.

Throughout this paper, we will describe goodness of fit using a mean squared error3 (MSE)
metric presented in decibels, relative to the L2 norm of the signal as follows

(6)

A MSE of −30 dB corresponds to an RMS relative error of 3.16%. The example fit for
subject #7 from the Voss and Allen (1994) study, shown in Figs. 1 and 2 was performed in
the reflectance domain over the 0.1 to 10 kHz frequency range. Using an MSE tolerance of
−30 dB, a fit of order Np = 14 and Nz = 15 was found with an MSE of −31.6 dB and E =
−1.9 × 10−6. Because E was close to 0, the data was re-fit with E forced to 0, yielding an
MSE of −31.9 dB for Np = Nz = 18 after 18 iterations. For comparison, when the data was
fit with order Np = 18 and Nz = 19 over 18 iterations, an MSE of −30.6 dB (1.3 dB worse)
was achieved with E = −1.0 × 10−6. In this example fit, there are several poles and zeros that
appear to be overlapping, due to the small extrema from high frequency noise in the data.
Eliminating the pole-zero pairs at ℑ[s] ≈ 7.5 kHz and ℑ[s] ≈ 9 kHz from the fit increases the
MSE to −31.5 dB, a tolerable change of about 0.1 dB, and does not increase the
corresponding impedance domain MSE.

An error analysis of the fitting procedure is given in Fig. 3. Average MSE vs. pole order is
plotted in different domains for pole-zero fits to two data sets of normal middle ears. Figure
3b shows the average MSE for fits over 0.1 to 10 kHz to 14 measurements of normal ears
made by Voss and Allen (1994). Figure 3a shows the average MSE for fits over 0.2 to 6 kHz
to 112 measurements of normal ears made by Rosowski et al. (2012). Error bars show ±1
standard deviation of the average. It is apparent that the fit error saturates after about 10 to
20 poles, as the algorithm begins to fit the measurement noise. Figure 3a shows higher
average MSEs than Fig. 3b. This is primarily because the Voss and Allen (1994)
measurements were fit over a larger frequency range, including more noise than the
Rosowski et al. (2012) measurements. Discrepancies between goodness of fit in the
impedance and admittance domains for these two data sets are due to the frequency range of
the fit and noise. Because of the typical shape of the impedance response, low frequency
noise has a larger effect on error in the impedance domain, and high frequency noise has a
larger effect on error in the admittance domain. There are differing amounts of low and high
frequency noise between the 0.1 to 10 kHz and the 0.2 to 6 kHz ranges, causing differences
in impedance domain error relative to admittance domain error.

Considering Fig. 3, the fitting procedure consistently performs best in the reflectance
domain. Additionally, for diagnostic applications it is desirable to have the best possible fit
to the magnitude reflectance. While the impedance magnitude and phase are both dominated
by the ear canal response, in the reflectance domain only the phase is significantly affected
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by the ear canal. It is preferable to achieve the best fit to the magnitude reflectance, which
shows diagnostic promise. Additionally, the dynamic range of the reflectance is much
smaller than that of the impedance, typically spanning less than about 10 dB, whereas the
impedance may span 20 to 40 dB (1 to 2 orders of magnitude). Due to the nature of the least
squares procedure, the small magnitude data points of Z(ω) inadvertently receive less
emphasis in the fitting procedure than the data points with larger magnitude. Thus, fitting to
the impedance may provide a better approximation to low frequency data (where the
magnitude is large, as in Fig. 1b), but will yield a poorer fit in the mid-frequency region of
the reflectance magnitude. This range, typically about 1 to 5 kHz (Allen et al., 2005;
Rosowski et al., 2012), shows individual variation of fine structure minima and maxima for
normal middle ears. To appropriately characterize the reflectance it is necessary to capture
these minima and maxima. Fitting the data in the reflectance domain gives approximately
equal weight to the error across frequencies. Fitting 112 measurements over the 0.2 to 6 kHz
range in the reflectance domain, an average RMS relative error of 2.13 ± 0.73% is achieved
with 12 poles for 18 iterations of the fitting algorithm. Fitting the data over a larger
frequency range typically requires more poles.

Typically, fits to the CAR yield values of E close to zero, as in the example fit to Voss and
Allen (1994) subject #7 discussed previously. Typically, |E| is very small for fits to both
normal and pathological measurements, averaging on the order of 10−5 for fits with Np < 20.
For higher pole orders there is more variation in the value of |E|, which is to be expected as
the number of fitting parameters increases. Average |E| values are similar for normal and
pathological data sets, indicating that this is a property of the reflectance and not a property
of middle ear functionality. These results suggest that E should be forced to 0 during the
fitting procedure, enforcing a relative pole-zero order of Np = Nz. For most fits, forcing E to
be zero has a negligible affect on the error; often this effect may be remedied by adding a
few more poles. However, the average value of |D| is on the order of 1 for fits with Np < 20,
so it is not negligible. Thus, it is important to allow D to be non-zero when fitting the
reflectance.

When the fitting procedure is performed in the reflectance domain, all fits to Γ(ω) are stable
(all poles are in the left half s plane) because stability is enforced by the algorithm.
However, when the fit is transformed to the impedance domain by the relation in Eq. 1,
stability is not ensured. If E is allowed to be nonzero, out of the fits performed to 112
measurements of Γ(ω) over 0.2 to 6 kHz (Rosowski et al., 2012) with a −30 dB MSE
tolerance, no fits are stable when transformed to the impedance domain. With E = 0 and all
other conditions the same, 59 fits are stable in the impedance domain. All of these fits are
also minimum phase in the impedance domain, meaning that the zeros of Ẑ(s) reside in the
left half s plane as well as the poles, ensuring that both the impedance and admittance are
causal and stable. Of the fits to Γ(ω) that are unstable in the impedance domain, 46 have a
single pole on the real axis in the right half s plane causing the instability. That pole has a
mean value of ℜ[s]/2π = 17.78 Hz with a standard deviation of 12.17 Hz. This is
approximately at the origin of the s plane, characterizing the low frequency stiffness of Z(ω)
for normal middle ears. The remaining fits to Γ(ω) with unstable Ẑ(s) have higher pole
orders and may need more careful attention during the fitting procedure (e.g. there are many
or large noise peaks causing misbehavior of the fit between the impedance and reflectance
domains). Note that the positive real condition for an impedance (Brune, 1931) is stricter
than the minimum phase condition. Due to noise, some CAR measurements have |Γ(ω)| > 1,
corresponding to ℜ{Z(ω)} < 0 for some ω. Typically, fits to these measurements will share
this property.
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2.2. Comparing Across Measurements
Considering the CAR instead of its magnitude re-introduces the problem of comparing CAR
measurements, because of the effect of the ear canal on the complex response. This effect is
difficult to extract, particularly because the limited frequency range of the measurements
does not allow for a good estimate of the ear canal length between the probe and the TM.
Even though measurements are available to 15 kHz for the Voss and Allen (1994) study,
there is high frequency noise in the data that makes it difficult to accurately estimate L.

Using the Weiner factorization technique

(7)

where Γ̂ap(s) is the all-pass component and Γ̂mp(s) is the minimum-phase component of the
pole-zero fit Γ̂ (s), it is possible to preserve the magnitude reflectance while removing some
undesirable variability in the complex measurement. To construct Γ̂ap(s), poles are
introduced in the left half s plane to mirror the zeros of Γ̂ (s) in the right half s plane (e.g. the
same distance from the jω axis). The minimum-phase component Γ̂mp(s) contains all
singularities of Γ̂ (s) that are in the left half s plane, and zeros at the same locations as the
poles of Γ̂ap(s). This process yields unique functions Γ̂ap(s) and Γ̂mp(s), and ensures that Γ̂
(s) = Γ̂ap(s)Γ̂ mp(s). These functions have the properties |Γ̂ap(s)| = 1 and |Γ̂mp(s)| = |Γ̂ (s)|. The
reflectance magnitude is maintained in the minimum-phase component of the fit, and the
component of the reflectance that is uniformly lossless across frequency, including any pure
delay, is removed. This works well assuming negligible losses in the ear canal.

From this factorization it is possible to solve for the TM impedance fit

(8)

using Eq. 1. In many cases the all-pass component of the factorization has an approximately
linear phase (constant group delay), resulting in a robust estimate of L in Eq. 2. In these
cases, the TM impedance estimate is similar to the “propagated impedance” function
described by Voss and Allen (1994), calculated by removing a pure delay from the
reflectance. Removing ear canal delay eliminates the deep “standing wave” notch in the
impedance magnitude that is characteristic of the ear canal (Scheperle et al., 2008; Withnell
et al., 2009). When Γ̂ap(s) gives a good approximation to the ear canal pure delay

(9)

3. Results
3.1. Factorization of Γ ̂ (s)

An example factorization is shown in Fig. 4, for subject #7 from Figs. 1 and 2. Before
factorization, the overlapping pole-zero pairs at 7.5 and 9 kHz were removed. Figures 4a and
4b show the resulting poles and zeros of the all-pass and minimum-phase components of Γ̂
(s).

The reflectance phase and the phases of the all-pass and minimum-phase components of Γ̂
(s) are shown in Fig. 4d. For this fit the phase of Γ̂ap(s) is approximately linear, meaning that
the group delay is approximately constant,
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(10)

where ϕ (ω) is the phase. For subject #7 (Voss and Allen, 1994), the group delay of Γ̂ap(s)
has a mean value of τ̄ = 40.39 µs, with a standard deviation of 0.45 µs. Taking L̂ = τ̄ c/2, the
estimated length L̂ is 7.0 mm. This is a reasonable estimate for the residual length of the
canal, given that Voss and Allen estimate the length of the foam plug plus probe at 1.5 cm,
and the typical total ear canal length between the opening and center of the TM is about 2.35
cm (Fletcher, 1925). The TM impedance and phase are shown in Figs. 4e and 4f. Removing
an approximately constant 40.39 µs of delay across frequency from the reflectance fit Γ̂(s)
removes the deep notch in ẐTM(ω).

A second example factorization is shown in Fig. 5. This is cadaver ear 12R from the Voss et
al. (2012) study, in its normal (no simulated pathology) state. Unlike measurements made in
vivo, CAR measurements of cadaver ears typically have a much shorter probe to TM
distance L due to the nature of the preparation. For this ear, the group delay of the
reflectance all-pass component does not appear to be constant. The group delays of the fit Γ̂
(s) and its components Γ̂mp(s) and Γ̂ap(s) are shown in Fig. 6b, along with a similar plot from
Voss and Allen (1994) subject 7 (Fig. 6a). For the Voss et al. (2012) ear 12R the mean group
delay is 33.97 µs over the entire frequency range of the fit, with a standard deviation of
12.20 µs. This group delay is not constant, and appears to have the most frequency
dependence between 4 and 6 kHz. If it is assumed that the constant portion of the group
delay is representative of any pure delay in the canal, the minimum value of the group delay
of Γ̂ap(s) over the 0.2 to 6 kHz range (min(τap) = 21.73 µs) yields the estimate L̂ ≈ 3.8 mm,
which is short compared to L̂ for the in vivo measurement. Variation of the all-pass group
delay with frequency may be accounted for by non-uniform area of the ear canal, or lossless
mass-stiffness properties of the TM and middle ear. The TM in particular may contribute a
significant amount of lossless delay (Puria and Allen, 1998; Parent and Allen, 2010).

3.2. Normal Ears
Figures 7 and 8 show a summary of fits to 4 measurements of ears with varying conditions
(normal + 3 pathologies). Figure 7 shows a reflectance summary, while Fig. 8 shows a
sensitivity analysis of key poles and zeros for each measurement. In this section we will
focus on the normal ear measurement (plotted in black in Fig. 7), ear 22L of the Rosowski et
al. (2012) study of normal ears. This fit was performed on reflectance domain data with E =
0, achieving an MSE of −35.6 dB with 12 poles and 12 zeros. The resulting poles and zeros
of Γ̂mp(s) are shown in Fig. 8a (right). The magnitude reflectance |Γ̂mp(jω)| = |Γ̂ (jω)| is
plotted in Fig. 7a. Normative data, plus or minus 1 standard deviation for 112 measurements
of normal ears (Rosowski et al., 2012), is shown as the shaded grey region. Ear 22L falls
within this normal region.

Figure 7b shows the power transmittance (Allen et al., 2005; Rosowski et al., 2012; Liu et
al., 2008) defined as

(11)

The mean and normative region of the transmittance for normal middle ears have a very
distinct shape. Rosowski et al. (2012) characterize the rising slope as 15 dB per decade and
the falling slope as −23 dB per decade, with a flat region occurring between about 1 and 4
kHz. This is a useful way to characterize reflectance data, because deviations of the power
absorbance from normal are more easily recognized, and are closely related to hearing
sensitivity (Allen et al., 2005).
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Figure 8a (left) shows a sensitivity analysis of poles and zeros from Fig. 8a (right). Figure 8a
(left) displays a ratios of the modified magnitude reflectance to the original |Γ̂ mp(jω)| shown
in Fig. 7a for two different color-coded sensitivity analyses. For each sensitivity analysis,
the reflectance is modified by shifting a pole-zero pair of Γ̂mp(s) on the s plane, and the
minimum and maximum range of the modified magnitude reflectance to the magnitude
reflectance ratio RΓ is shown for a 10% shift of the color coded singularity. Pole-zero pairs
are shifted as a unit about their 2-dimensional centers. Sensitivity regions show the
minimum and maximum values of the ratio

(12)

out of 1000 shifts of the chosen pole, zero, or pair (sk) by

(13)

where Θ is a random variable distributed as (−π, π).

Considering Fig. 8a (left), the light green region shows a sensitivity anal ysis of the pole-
zero pair at 1 kHz, and the dark green region shows a sensitivity analysis of the pole-zero
pair at 2.5 kHz. Note that the frequency axis of the sensitivity plot is aligned with that of the
pole-zero plot for comparison. According to Fig. 8a (left), the reflectance magnitude is only
significantly affected by variations of the pair location in the frequency neighborhood where
each pair resides. This indicates that the exact location and curvature of the minima and
maxima in those frequency regions are determined by the corresponding pole-zero pairs.
This is similar to the observation in section 1.2 that the fine structure minima and maxima in
the mid-frequency range of |Γ (ω)| (Voss and Allen (1994) subject #7) are fit by pole-zero
pairs in the same ℑ[s] range. Thus, the individually varying fine structure minima and
maxima in the 1 to 5 kHz range (Allen et al., 2005; Rosowski et al., 2012) are characterized
primarily by pole-zero pairs with ℑ[s] values in that range.

3.3. Pathological Ears
A similar sensitivity analysis to that presented in Fig. 8a for a normal ear is applied to
pathological ears from the Nakajima et al. (2012) study. A representative measurement has
been chosen for each pathology, including stapes fixation (Fig. 7 red, Fig. 8b), ossicular
disarticulation (Fig. 7 blue, Fig. 8c), and superior semicircular canal dehiscence4 (SSCD)
(Fig. 7 purple, Fig. 8d).

3.3.1. Stapes Fixation—The red fit curve and data points in Figs. 7a and 7b show an
example CAR measurement (patient ear 62L,Nakajima et al. (2012)) for a patient with
confirmed stapes fixation due to otosclerosis, in the presence of an intact TM and aerated
middle ear. The reflectance domain fit has Np = 10, Nz = 10, and an MSE of −40.3 dB. The
transmittance (Fig. 7b) and magnitude reflectance (Fig. 7a) for this ear fall significantly
outside of the normative regions.

Stapes fixation due to otosclerosis is best characterized by an increased middle ear stiffness
(Feeney et al., 2003; Allen et al., 2005; Nakajima et al., 2012). This typically results in an
elevated reflectance magnitude at low frequencies, corresponding to a right shift of the low-
frequency sloping region of the transmittance (Allen et al., 2005). This behavior is apparent

4SSCD: superior semicircular canal dehiscence

Robinson et al. Page 9

Hear Res. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in Fig. 7b, where the transmittance curve for ear 62L is significantly shifted to the right of
the normative region at low frequencies. The sensitivity plot in Fig. 8b (left) emphasizes low
frequency singularities, due to the unusual behavior of the magnitude reflectance at low
frequencies.

The red region of Fig. 8b (left) shows a sensitivity analysis of the pole of Γ̂mp(s) on the real
axis, closest to the origin. The movement of this pole affects the magnitude reflectance at
low frequencies up to about 2 kHz. Moving this pole towards the origin should strengthen its
effect, increasing the magnitude reflectance at low frequencies, and moving it away from the
origin will decrease the magnitude reflectance at low frequencies. The gold region shows the
sensitivity analysis for the pole-zero pair at about 1.75 kHz. While its largest effect occurs in
the frequency neighborhood where the pair resides, movement of this pole-zero pair also
affects the magnitude reflectance at low frequencies. This pair appears to characterize the
‘break-point’ of the transmittance, where the transition between the initial slope and the
relatively flat region occurs For normal ears, this breakpoint occurs significantly lower in
frequency, around 1 kHz.

3.3.2. Ossicular Discontinuity—The blue fit curve and data points in Figs. 7a and 7b
show an example CAR measurement (patient ear 28L, Nakajima et al. (2012)) for a patient
with confirmed ossicular discontinuity, in the presence of an intact TM and aerated middle
ear. The reflectance domain fit has Np = 10, NZ = 10, and an MSE of −31.3 dB. The
transmittance (Fig. 7b) and magnitude reflectance (Fig. 7a) for this ear also fall outside the
normative regions, but the nature of this variation is quite different from that due to stapes
fixation.

Ossicular discontinuity typically causes a zero in the magnitude reflectance between 0.5 and
0.8 kHz, indicating a narrow-band (tuned) resonance (Nakajima et al., 2012). This is visible
in the case of ear 28L, which has a deep notch in the reflectance magnitude at about 700 Hz
and a corresponding elevated transmittance in that frequency region. The transmittance does
not have a normal breakpoint at 1 kHz. The poles and zeros of Γ̂mp(s) correspondingly show
an abnormal behavior in this range. In Figs. 4b, 5b and 8a (right), showing Γ̂mp(s) for
normal ears, there is typically a pole-zero pair with very close proximity to each other at 1
kHz. Figure 8b indicates that this pair may partially characterize the breakpoint between the
low frequency slope and the flat region of the transmittance, though for stapes fixation this
pair occurs significantly above 1 kHz. In this case of ossicular discontinuity there are poles
and zeros at and below 1 kHz, but they are not tightly paired.

Figure 8c (left) shows a sensitivity analysis when poles and zeros close to 1 kHz are varied
by ±10%. The darker blue region indicates that the strong zero at about 700 Hz characterizes
the deep notch in the magnitude reflectance. The magnitude reflectance is very sensitive to
the location of this zero, experiencing sharp relative dips when it is moved higher or lower
in frequency. The lighter blue shows the sensitivity of the magnitude reflectance to the pole
at 1 kHz. Not only does this pole affect the magnitude reflectance in the 1 kHz region where
the magnitude reflectance is higher than average, but it has a significant (seemingly
uniform) effect on the magnitude reflectance for all frequencies below about 2 kHz.

3.3.3. Superior Semicircular Canal Dehiscence (SSCD)—The purple fit curve and
data points in Figs. 7a and 7b show an example CAR measurement (patient ear 52L,
Nakajima et al. (2012)) for a patient with confirmed SSCD, in the presence of an intact TM
and aerated middle ear. The reflectance domain fit has Np = 12, Nz = 12, and an MSE of
−34.3 dB. The transmittance (Fig. 7b) and magnitude reflectance (Fig. 7a) for this ear fall
slightly outside the normative regions around 1 kHz.

Robinson et al. Page 10

Hear Res. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SSCD typically shows a similar variation from normal to that caused by ossicular
discontinuity, though not as extreme (Nakajima et al., 2012). In Fig. 7a there is a slight dip
in the reflectance at 1 kHz, corresponding to a slight elevation of the transmittance at that
frequency (Fig. 7b), relative to the normal middle ear region. Comparing this with the blue
curves for ossicular discontinuity, the effect is similar but not as pronounced, and the notch
occurs in a slightly higher frequency range around 1 kHz. Because the variation in the
magnitude reflectance is observed at low frequencies around 1 kHz, the sensitivity of poles
and zeros in that region is analyzed.

Figure 8d (left) shows the sensitivity analysis for the pole-zero pairs at 500 Hz and 1 kHz in
Fig. 8d (right). The darker purple region shows that shifting the pole-zero pair at 1 kHz
causes large variations in the magnitude reflectance in that frequency neighborhood. Notice
that the zero of this pair is significantly closer to the imaginary s axis than the pole,
increasing its relative strength (effect on the reflectance). This zero, and its distance from the
pole, affects the depth of the minimum in the magnitude reflectance at 1 kHz. The pole-zero
pair also characterizes the nature of the breakpoint in the transmittance between the initial
slope and the flat region. The lighter purple region of Fig. 8d (left) shows the effect of the
pole zero pair at 500 Hz on the magnitude reflectance. Shifting this pole-zero pair causes a
variation in the reflectance magnitude around that frequency. However, the effect is not very
pronounced; the pole and zero are very close together, and appear to be fitting a small noise
peak in this frequency region. In fact, this effect is so small compared to the effect of the 1
kHz pole-zero pair, that the lighter purple region is hard to see.

4. Discussion
4.1. Limitations

The pole-zero fitting method is limited by the data provided, and will typically not be valid
outside that frequency range. Because the reflectance is not known at higher or lower
frequencies, the calculation of Γ̂ap(s) is inherently imperfect. Additionally, the relative order
of the fitting procedure is determined by high frequency behavior.

It is also important to note that the data is slightly impacted by the estimation of the surge
resistance r0 (Eq. 1). For the MEPA system, the canal area A is set according to the foam tip
size used. It has been shown that small variations in the ear canal area relative to the
calibration cavity area, within 20%, cause a negligible change in the reflectance
measurement (Keefe et al., 1992; Voss and Allen, 1994). However, this will have a small
affect on the CAR function and the pole-zero locations of its approximation. If Ẑ(s) ≡ N(s)/
D(s) then

(14)

Thus, inaccuracy in the estimate of the surge resistance r0 will cause inaccuracies in the
poles and zeros, especially those with large |s| values.

4.2. Relative Order (Nz vs. Np)
A relative fit order of Nz = Np + 1 indicates a linear behavior of the data at high frequencies,
a relative order of Nz = Np indicates a constant behavior, and Nz = Np #x002212; 1 indicates
that the data goes to zero at high frequencies. Recall that the relative order is determined by
zero or nonzero values of the fit parameters E and D. Thus, imperfect calculations of these
parameters may not reflect the true order of the reflectance or impedance of the middle ear.
For instance, the reflectance function should be zero at time t = 0 (Rasetshwane and Neely,
2011). In the Laplace transform of the fit Γ̂(s), a non-zero fit parameter D will be a delta
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function at t = 0. For the 112 Rosowski et al. (2012) measurements, the reflectance is fit
with a small D. On average, the magnitude of D for those measurements (Np = 12, Nz = 12)
is 0.833 ± 0.371.

If the value of D is a good approximation, it may be used to estimate the inaccuracy in r0.
Considering the time domain form of Eq. 1, at time t = 0

(15)

Theoretically Γ(0) = 0, such that r ̄0 = r0. If r0 is estimated incorrectly by the measurement
tool, then the corrected surge resistance is

(16)

The relative order of the impedance Z(s) must have the property |Nz − Np| ≤ 1, because it is
an input impedance. This property need not be true in the reflectance domain, though for a
polynomial fraction approximation Nz < Np must hold in order for the time-domain
reflectance to be 0 at t = 0. However, considering Eq. 14, a pole-zero representation of Ẑ(s)
will yield an equal order (Np = Nz) approximation of Γ(s) if there are no cancellations of
powers of s.

4.3. Applications
The fitting algorithm is fast, and may be easily implemented in a reflectance measurement
system. Ultimately, it should allow for more robust automated classification than visual
assessment or correlations between magnitude reflectance values and audiometric
measurements. Pole-zero fitting is advantageous because it condenses the entire complex
response to a small set of parameters, without extensive processing of the magnitude
reflectance (e.g. a somewhat arbitrary choice of the frequency points over which to average
the magnitude CAR). However, further study is needed to meet this objective. Using larger
volumes of normal and pathological CAR data, in combination with known physical
characteristics of normal and pathological middle ears, the complex data must be further
studied, and classification strategies sought.

Pole-zero fits may also be used to synthesize network models of the complex impedance
(e.g. Brune (1931)). However, such RLC networks will not necessarily be unique. Networks
synthesized from pole-zeros fits of CAR measurements will often lack direct physical
interpretations, such as the Zwislocki (1962), Kringlebotn (1988), or Parent and Allen
(2010) models. However, they may have utility for analyzing CAR data.

4.4. Summary
This study establishes a methodology for examining the physical and mathematical
properties of CAR data using pole-zero fitting. Pole-zero fits can characterize CAR data
with low error and small number of parameters. While considering the complex data
reintroduces the effect of variation in the probe-TM distance, measurements may be
effectively compared across ears by factoring the reflectance fit into its minimum-phase and
all-pass components. The magnitude of the minimum-phase component of the CAR is equal
to the reflectance magnitude, thus preserving the current diagnostic standard. In this
preliminary investigation, it was found that pole-zero locations show distinct pole-zero pairs
in the mid-frequency region of individual variation for normal ears, and may systematically
differ for various pathologies, similar to the magnitude reflectance. Pole-zero modeling
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shows promise for mathematically characterizing CAR data in order to enable improved
automated identification of middle ear pathology using a noninvasive, yet relatively low cost
measurement system.
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Appendix A

Vector Fitting
The vector fitting procedure is a two step process, which converts a nonlinear least squares
problem to a linear least squares problem by introducing an unknown scaling function κ(s),
having known poles ai, defined by Gustavsen and Semlyen (1999) as

(A.1)

This vector system of equations consists of two relations which are linear in their unknowns
c̃i, d̃, ẽ, and b̃i. Both κ(s) and (κ ·F̂)(s) share the same known poles ai. These are the ‘starting
poles’ of the algorithm; their selection is described briefly in section ??. The vector fitting
method relates the system of equations in Eq. A.1 to the measured data F(ω) via

(A.2)

When evaluated over the many available frequency points of F(ω), Eq. A.2 results in a
overdetermined linear problem in the unknowns c̃i, d̃, ẽ, and b̃i. The data can then be
approximated by

(A.3)

given the estimated values of c̃i, d̃, ẽ, and bi.

Because (κ · F ̂)(s) and κ(s) share the same poles there is a perfect cancellation in Eq. A.3,
thus the zeros of κ(s) become the poles of F̂(s). One may see this by considering the product
form of Eq. A.1

(A.4)

where ζ̃i are the zeros of (κ · F̂)(s) and z̃i are the zeros of κ(s). Combining Eqs. A.3 and A.4
yields
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(A.5)

Thus, the zeros of the scaling function κ(s) become the poles of the fitted function F̂(s) (Eq.
5) such that Ai = z̃i. Gustavsen and Semlyen observe that it is more accurate to calculate the
remaining quantities Ci, D, and E by recalculating the values of c̃i, d̃, ẽ, and b̃i, using z̃i as
the starting poles. Once this has been accomplished, it is possible to equate Ci = c̃i, D = d̃,
and E = ẽ.

An appropriate selection of starting poles is necessary for the convergence of the vector
fitting method. For a function with resonance peaks, such as the reflectance, Gustavsen and
Semlyen (1999) suggest that the starting poles come in complex conjugate pairs and be
linearly distributed over the frequency range of the data. Pole pairs of the form

(A.6)

with , are advised for suitable performance of the algorithm. This is necessary as the
linear problem can become ill-conditioned if the starting poles are real. Large differences
between the starting poles and the best fit poles of the response can cause large differences
between κ(s) and (κ · F̂)(s) that result in poor least squares solutions (Gustavsen and
Semlyen, 1999).

As the starting poles ai approach their optimal locations, the scaling function κ(s) will
approach 1 (the calculated zeros z̃i of κ(s) converge to the ai values). The method may be
used iteratively to converge on the best fit, by setting the starting poles equal to the new
poles at each iteration (Gustavsen and Semlyen, 1999). If the least squares procedure returns
unstable poles (ℜ[z̃i] > 0), their real parts are reflected to the left-half s plane before the next
iteration. Due to this, the error will not always decrease monotonically with iteration.
Depending on the application, it may also be beneficial to impose properties other than
stability. For instance, one might force the impedance to be minimum phase, instead of
merely stable. This can be done by inverting the real part of any zero that appears in the
right half s-plane, similar to the procedure for enforcing stability of the poles. Such a
constraint may cause an increase in error, but could have utility for physical modeling.

The fit error can depend on the starting pole values due to the noise in the data. Additionally,
due to the nature of the fit, the smoothness of the reflectance function and the number of
available parameters, there exist multiple non-unique fits yielding reasonable fit errors (e.g.
within a certain MSE tolerance). Thus the poles (of an already low error fit) may vary with
iteration, causing non-monotonic behavior of the error. Typically, significant MSE
improvement over the first few iterations occurs only for low pole orders (e.g. Np < 10). For
high pole orders (e.g. Np > 20) the fitting procedure achieves close to its lowest MSE within
the first iteration. When the order is reasonably high, the starting poles better cover the
entire frequency range, causing the fit to converge very quickly. For low orders of poles,
more iterations are necessary to move the poles toward their best fit locations.
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Figure 1.
Voss and Allen (1994) subject #7; example data and fit for a normal ear. (a) Reflectance
magnitude, (b) impedance magnitude, (c) reflectance phase, (d) impedance phase. The fit
was performed over 0.1 to 10 kHz, yielding 18 poles and 18 zeros with an RMS relative
error of 2.5% (MSE = −31.9 dB).
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Figure 2.
Voss and Allen (1994) subject #7; example pole-zero fit for a normal ear. (a) Poles and
zeros of Γ(s), (b) poles and zeros of Z(s). The fit was performed over 0.1 to 10 kHz, yielding
18 poles and 18 zeros with an RMS relative error of 2.5% (MSE = −31.9 dB). Pink poles
and zeros are actually located in the positive real s-plane, but have been inverted over the jω
axis so that pole-zero locations may be more easily viewed using a log ℜ[s] axis.
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Figure 3.
Fit error evaluation across the Z, Y and Γdomains for different data sets (18 iterations).
Lines show the average MSE (dB) for each domain, with error bars indicating one standard
deviation. (a) 14 measurements of normal ears (Voss and Allen, 1994) fit over the 0.1 to 10
kHz range, (b) 112 measurements of normal ears (Rosowski et al., 2012) fit over the 0.2 to 6
kHz range.
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Figure 4.
Voss and Allen (1994) subject #7; example of a factored reflectance fit. (a) Poles and zeros
of Γap(s), (b) poles and zeros of Γmp(s), (c) reflectance magnitude, (d) reflectance phase, (e)
impedance magnitude, (f) impedance phase. Note that Γmp(s) has no poles or zeros in the
positive real s-plane, thus the fit is completely described by 4th quadrant of the s-plane
(shown in (b)) without any plotting tricks. All 4 quadrants of the s-plane are shown in plot
(a) to allow the reader to view the symmetry of |Γap(s)|. The fit was performed over 0.1 to 10
kHz, yielding Np = 18 and Nz = 18 with an RMS relative error of 2.5% (MSE = −31.9 dB)
as shown in Fig. ??; the pole-zero pairs at ℑ[s] ≈ 7.5 kHz and ℑ[s] ≈ 9 kHz were removed,
yielding a MSE of −31.5 dB and Np = 14 and Nz = 14.
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Figure 5.
Voss and Allen (1994) subject #7; example of a factored reflectance fit.(a) Poles and zeros
of Γap(s), (b) poles and zeros of Γmp(s), (c) reflectance magnitude, (d) reflectance phase, (e)
impedance magnitude, (f) impedance phase. Note that Γmp(s) has no poles or zeros in the
positive real s-plane, thus the fit is completely described by 4th quadrant of the s-plane
(shown in (b)) without any plotting tricks. All 4 quadrants of the s-plane are shown in plot
(a) to allow the reader to view the symmetry of |Γap(s)|. The fit was performed over 0.2 to 6
kHz, yielding Np = 12 and Nz = 12 with a MSE = −35.8 dB.
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Figure 6.
Group delay of the fit Γ̂(s), and its factors Γ̂mp(s) and Γ̂ap(s). (a) Voss and Allen (1994)
subject #7, (b) Voss et al. (2012) ear 12R (‘normal’ middle ear state).
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Figure 7.
A comparison of normal and pathological ears. (a) Power reflectance |Γ(jω)|2, (b)
transmittance level (dB). Grey region shows the normative region for the Rosowski et al.
(2012) study of normal ears (±1 standard deviation). The black data points and line show the
data and fit for normal ear 22L of Rosowski et al. (2012). The blue, red, and purple show the
data and fit for stapes fixation ear 62L, disarticulation ear 28L, and SSCD ear 52L of
Nakajima et al. (2012).
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Figure 8.
Sensitivity analysis of poles and zeros for the ears shown in Fig. 7. Each subplot shows the
pole-zero plot Γmp(s) of the fit (left), and the corresponding sensitivity analysis of the
highlighted poles (right). The sensitivity analysis represents a ratio of modified reflectance
magnitude |Γ(jω)| to the original fit, given a slight variation in the location of the highlighted
pole, zero, or pole-zero pair. Each sensitivity plot shows two different color-coded analyses.
Notice that the frequency axes are aligned for each pair of plots. (a) Normal ear, (b) stapes
fixation, (c) disarticulation, (d) SSCD.
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